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Slowing Down of Light in Photorefractive Crystals
with Beam Intensity Coupling Reduced to Zero
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A considerable deceleration of light pulses in crystals with nearly compensated space-charge field
proves that the strong dispersion of dynamic photorefractive gratings in the vicinity of Bragg resonance
is of primary importance for light slowing down.
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FIG. 1. Schematic of pulse propagation through a photore-
fractive crystal in the presence of a coherent pump wave.
Propagation of light pulses through a resonant system
was already a topic over 100 years ago [1], but the last
decade has brought a renaissance of interest to this field,
especially after revealing the possibility of enormous de-
celeration, trapping, and coherent storage of light with
electromagnetically induced transparency (EIT) [2]. This
interest is related both to fundamental aspects of non-
trivial light pulse manipulation and to possible applica-
tions for optical delay lines, for quantum computing, and
for developing sensitive measurement techniques.

Recently it has been shown that another nonlinear
effect, recording of dynamic refractive index gratings in
photorefractive crystals, can be also used for the slowing
down of pulse propagation [3,4]: a pulse velocity as low as
0:02 cm=s has been reported [3]. To get the slowing down
of light pulses, crystals with a so-called nonlocal non-
linearity were used (BaTiO3, Sn2P2S6) that ensure a
strong intensity coupling of two waves during the record-
ing of a dynamic grating (see, e.g., [5]). Two waves were
directed to the photorefractive crystal, the intense cw
pump wave and the much weaker signal wave with
Gaussian temporal envelope (Fig. 1). These waves re-
corded a dynamic refractive index grating in the sample,
and, because of self-diffraction from this grating, the
signal pulse was delayed, usually to a time comparable
to the grating decay time in the crystal [3].
Simultaneously, the delayed pulse was strongly amplified
(�103 times) at the expense of the intensity of a strong
pump wave.

The huge amplification of the signal pulse yields a
simple qualitative explanation of the time delay of the
output pulse: The initial part of the pulse is propagating in
a medium with relatively weak refractive index grating; it
is not strongly affected at the output. With progressing
time, the amplitude of the index grating is increasing, and
the number of photons diffracted from the pump wave
into the signal is growing. This results in much stronger
amplification of the falling-down pulse front as compared
to the uprising front of the pulse. As a consequence, the
maximum of the transmitted amplified pulse is delayed
with respect to the maximum of the pulse that propagates
04=93(24)=243604(4)$22.50 24360
through the sample with no pump wave. Not calling into
question this intuitive explanation, we intend to empha-
size that it is not the amplification itself which is crucially
important for light slowing down with photorefractive
gratings, but a large frequency dispersion of a propagation
constant dk=d� that is typical for 3D dynamic gratings
with long decay times (here k and � are the signal wave
number and signal wave frequency detuning to the pump
wave, respectively). Both effects, the gain and the non-
linear change of the phase, can be understood from the
expression for steady-state output signal field, As�‘� �
As�0� exp��‘�, calculated in undepleted pump approxima-
tion [5]. Here � is the coupling constant that depends on
frequency detuning � of the signal wave to pump wave; it
possesses both a real part responsible for amplification
and an imaginary part that modifies a propagation con-
stant k [5].

Just the strong dispersion mentioned above ensures a
dramatic decrease of the light group velocity [1] in a
similar way as for other narrow resonances like those
related, e.g., to excitons in semiconductors [6], to EIT in
gases [2], to a narrow quantum coherence ‘‘hole’’ in the
homogeneously broadened absorption line of ruby [7,8].

For a majority of photorefractive crystals a large dis-
persion is inseparable from a large gain factor and the
formulated statement about priority of dispersion might
look senseless. It is possible to find, however, special
conditions when large dispersion exists with virtually
zero gain. To prove the primary importance of the dis-
4-1  2004 The American Physical Society



FIG. 2. Schematic of the experimental setup with photore-
fractive crystal (PRC), electro-optic modulator (EOM), beam
splitter (BS), mirror (M), piezoelectrically driven mirror
(PM), photodiode (PD), signal generators (SG1 and SG2),
high voltage amplifier (HVA), and lock-in amplifier. The arrow
near the sample indicates the positive direction of the sponta-
neous polarization; double arrows show the polarization of the
light waves.
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persion we investigate the pulse propagation in photore-
fractive crystals with two types of movable species, one
positively and the other negatively charged. With no ex-
ternal field applied to the sample and with identical
temporal frequencies of the recording waves these
charges form two out-of-phase gratings that can totally
compensate each other and reduce to zero the intensity
coupling of the signal wave to the pump wave. This
complete compensation occurs, however, only in the fre-
quency degenerate case. In crystals with strongly differ-
ent decay times of two gratings even a slight deviation
from the resonance (for 10�3 Hz in Sn2P2S6 crystals [9])
affects one of the two gratings much stronger than the
other, and the differential gain appears. This narrow
resonance provides also a strong frequency-dependent
change of the signal wave phase [9], i.e., leads to k���.

It is shown that in a 9-mm-thick crystal that ensures
very modest intensity coupling in the steady state (signal
beam is depleted 1.5 times instead of being amplified ’
10 000 times as in [3]) the signal pulse still can be delayed
for several seconds. The analogy of grating-assisted light
slowing down to that which is due to electromagnetically
induced transparency, as is suggested in our previous
Letter [3], becomes even more convincing with this result.
In this Letter we are not looking for further improvement
of already reported data on pulse velocity in photorefrac-
tive crystals (what can be done for sure with long-re-
sponse-time materials); the aim is to prove a fundamental
thesis that a considerable slowing down can be achieved
in a medium with negligibly small beam coupling.

In what follows it is shown experimentally that a large
dispersion can be achieved with virtually zero gain when
taking as an example nominally undoped photorefractive
tin hypothiodiphosphate (Sn2P2S6, SPS) [10] and study-
ing nearly degenerate coupling of two cw plane waves.
While a gain spectrum with a hole has already been
reported for SPS [9], the phase delay spectrum is mea-
sured in such a system for the first time. Then the data on
light slowing down are presented, with gratings that are
recorded in the same sample by two matched pulses, i.e.,
pulses possessing identical Gaussian temporal profiles.
Finally we show how this technique of pulse slowing
down can be scaled down to the domain of millisecond
pulses with semiconductor photorefractive crystals.

The coupling of two light beams from a He-Ne laser is
studied in undoped Sn2P2S6 with a pronounced electron-
hole competition in grating formation. The transmission
photorefractive gratings are recorded, with the grating
vector parallel to the crystallographic x axis by two
waves polarized also along the x axis (Fig. 2).

The intensity of the signal wave is taken to be 3% of the
pump wave intensity. The frequency detuning � is con-
trolled via a linear (sawtooth) phase shift of the pump
wave, introduced with the piezoelectrically driven mir-
ror. The same piezomirror introduces also a low-
amplitude (about 0.2 rad) high-frequency cosine phase
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modulation (!m ’ 1:5 kHz). Such a modulation does not
affect the grating recording, but it allows for evaluation of
the phase shift in the output signal wave (see, e.g., [11]).
This is done by measuring the amplitude of the first
harmonic of the modulation frequency !m in the trans-
mitted signal with the help of the lock-in amplifier. Direct
measurement of the signal wave intensity with and with-
out the pump wave allows for evaluation of intensity
coupling in the steady state.

Figure 3 represents the measured dependences of the
signal transmission T � jAs�‘�=As�0�j

2 (a),(c) and non-
linear change of propagation constant �k (b),(d) as a
function of frequency detuning, which are typical for
nearly compensated dynamic gratings formed by two
types of movable charge species. The solid lines in
Figs. 3(c) and 3(d) show dependences [9] calculated from
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with the real coupling constants �f;s and decay times f;s
for the ‘‘fast’’ and ‘‘slow’’ gratings, respectively. The data
of Figs. 3(a) and 3(c) allow one to extract the absolute
values for the gain spectrum ���� � 2Ref�g and to cali-
brate the measurements of �k taking into account Eqs. (1)
and (2).

The fast grating which is due to photoexcited holes is
shifted in space in this particular experiment in a way to
deplete the signal wave. Because of development of the
fast grating the attenuation of the signal intensity occurs
within a relatively broad spectral range. The width of this
resonance of about �200 Hz is related to the buildup time
of this grating, f ’ 0:8 ms. When the fast grating is
already developed the thermally excited electrons start
to move in the nonuniform electric field to compensate it.
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FIG. 4. Time delay of the output pulse maximum (a) and
output pulse duration (b) as a function of input pulse duration;
Ip � 1 W=cm2, grating spacing " � 1:8 �m.
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FIG. 3. Experimental dependences of sample transmission T
(a),(c) and variation of propagation constant �k (b),(d) of a
weak signal wave on frequency detuning of the signal wave.
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The buildup time of the slow electron grating is about
s ’ 80 s and therefore the relevant resonance is much
narrower. It can be seen that exactly at degenerate fre-
quency the diffraction ‘‘bleaching’’ occurs and signal
transmission increases from a few percent to more than
60% [Figs. 3(a) and 3(c)]. Such a partial bleaching is a
consequence of incomplete grating compensation; it may
be improved in SPS via heating the sample.

The transmission of the signal wave shown in Fig. 3(a)
and 3(c) looks similar to that known for cold gases with
EIT [12]: a narrow EIT transmission line appears within
the strong absorption of the atomic resonance. The mea-
sured spectrum of the phase delay resembles the disper-
sion profile of EIT, too [13]: There is no phase delay for
unshifted frequencies, but there are two regions of nearly
linear phase variations with the derivatives dk=d� differ-
ent in sign and quite different in absolute values
[Figs. 3(b) and 3(d)].

From the measured data the expected group velocity
vgr � d�=dk can be evaluated for long pulses, i.e., for a
well developed slow grating. A rough estimate can be
done taking a ratio �max=�kmax with �max � 1=s that
ensures the largest value �kmax, vgr ’ 1=s�kmax. With
s ’ 80 s and �kmax ’ 0:6 cm�1 we get vgr ’ 0:02 cm=s.
Note that because of the strong difference of the decay
times of the two gratings, s � f, only the first term on
the right-hand side of Eq. (2) is important for evaluation
of the vgr.

Let us now turn to the experiments on slowing down
with gratings we recorded by matched pulses. The
electro-optic modulator driven by the signal generator is
used to tailor the matched pulses with identical Gaussian
temporal envelope and durations from 10�1 to 102 s from
a cw laser output wave (Fig. 2). The intensity of the signal
pulse is 1000 times smaller than the intensity of the pump
pulse. The piezomirror shown in Fig. 2 is immobile in this
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experiment. The pulse delay time � and the delayed
pulse width w at the 1=e level are measured as a function
of the input pulse width t0 [Figs. 4(a) and 4(b)]. Similar to
the results obtained with a BaTiO3 crystal in Ref. [3] the
delay time � is strongly increasing when t0 is approach-
ing s, i.e., when the contribution of the slow grating and
hence the relevant dispersion becomes important
[Fig. 4(a)]. The delay time should saturate for t0 much
longer than s, but with the equipment available we were
unable to get reliable results for pulses longer than 100 s:
The scatter of measured data becomes too large because
of poor long-term stability of the fringe position. The
width of the delayed pulse, as distinct from the case of cw
pumping described in Ref. [3], follows linearly the input
pulse width throughout the whole range of t0 variation
[Fig. 4(b)]. The distortion of the delayed pulse is not
severe and the output pulse remains roughly Gaussian.

A delay time of about 5.5 s measured for the 9-mm-
thick sample gives a velocity 0:16 cm=s; i.e., the slowing
down is weaker (roughly 8 times) than it is estimated
from the dispersion. The reasons for this discrepancy are
related both to the technical problem of working with
very long pulses and to the limitation of the delay time
because of the finite duration of the pump pulses. As one
can see from Fig. 4(a) the delay time is still not saturated
for a pulse duration about 100 s; this means that the
ultimate slowing down is not reached, too.

It should be taken into account also that the estimate is
done for steady-state dynamic gratings with a dispersion
which is not changing during the whole time of pulse
propagation. The quantitative description of the pulse
4-3
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propagation should be based, as distinct from the quali-
tative approach of Ref. [4], on the solution of equations
similar to those solved in [3]; the theory [3] should be
modified to include the formation of the slow grating.

The slowing down of light pulses in Sn2P2S6 has been
already discussed in [3]. Shorter pulses have been used in
that work, with durations comparable to the decay time of
the fast grating, f ’ 1 ms. The slow grating was not
developing within this time range, the compensation
did not occur, and the narrow resonance in Fig. 3 did
not show up. That is why the slowing down was governed
in those experiments by a much more modest dispersion
related to the fast grating resonance and the measured
pulse velocity was reduced to only 40 cm=s.

The following questions may arise: Is the effect of
grating compensation universal and can similar effects
of slowing down without gain be demonstrated with
faster crystals and consequently with shorter pulses?
The answers to both questions are positive. A strong
electron-hole competition in space charge formation oc-
curs in many photorefractive crystals [14]. It is known,
for example, that the gain factor � in CdTe crystals is
changing its sign to the opposite when the wavelength of
the excitation increases from 0.9 to 1:5 �m [15]. This
means that somewhere within this spectral range the
amplitude of a grating formed by photoexcited holes
becomes equal to that of the grating formed by photo-
excited electrons, and complete compensation of two
gratings occurs.

We selected particular samples of CdTe:Ge for which
such a compensation takes place not far from the
Nd3
-doped yttrium aluminum garnet laser wavelength
1:06 �m. Figure 5 represents the gain spectrum ����
measured at � � 1:06 �m in a similar way as was done
for Sn2P2S6 at � � 0:63 �m. The gain factor in this
particular sample is rather modest, but it can go above
1 cm�1 in the best CdTe samples with no applied field.

With the decay time of the slow grating s ’ 130 ms
(Fig. 5) the estimated group velocity is about 30 cm=s.
This velocity is larger than that reported in this Letter for
SPS, and the pulse delay will therefore be smaller; the
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advantage is, however, in much shorter pulses that can be
delayed with CdTe. The other option of working with
short pulses is in using higher light intensities: the decay
of the photorefractive grating is governed by the dielec-
tric relaxation time which depends on photoconductivity.

To conclude, it is shown in this Letter that giant slow-
ing down of light pulses can be reached in experiments
with recording of two out-of-phase dynamic photorefrac-
tive gratings using crystals with strong electron-hole
competition in space-charge formation. Thus it is proved
that photorefractive slowing down can be obtained in
media with no gain and no depletion, quite similar to
slowing down in EIT experiments.

We are grateful to A. Grabar and I. Stoyka for the SPS
sample, to I. Rarenko and Z. Zakharuk for the CdTe:Ge
sample, and to M. Soskin for fruitful discussions.
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