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Coherent x-ray source due to the quantum reflection of an electron beam
from a laser-field phase lattice
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Within the scope of relativistic quantum theory for electron-laser interaction in a medium and using the
resonant approximation for the two degenerated states of an electron in a monochromatic radiation field, a
nonperturbative solution of the Dirac equation is obtained. The multiphoton cross sections of the electrons’
coherent scattering on the plane monochromatic wave at the Cherenkov resonance are obtained, taking into
account the specificity of an induced Cherenkov process and spin-laser interaction as well. As a result of
coherent reflection from the ‘‘phase lattice’’ of a slowed plane wave in a medium, electron beam quantum
modulation at high frequencies occurs. So, a coherent x-ray source in an induced Cherenkov process is
expected, since such a beam is a potential source of coherent radiation itself.
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I. INTRODUCTION

The creation of coherent sources of electromagnetic ra
tion above optical region of frequencies up to the x ray og
ray is mainly connected with the realization of free electr
lasers~FELs! via free-free induced transitions. Because
smallness of the electron-photon interaction cross sec
and relatively large spreads of actual electron beams,
implementation of these problems is possible in the p
cesses with the largest length of coherence, such as ind
Cherenkov, Compton, and undulator processes~see, e.g.,
@1–3#!. From this point of view, the schemes of undulator@4#
and Cherenkov@5# lasers have first been investigated expe
mentally ~at present the undulator scheme is actually dev
oped and the first lasing has been carried out in this syste!.
However, the amplifying frequencies are still far below x ra
On the other hand, the unavailability of the normal-inciden
mirrors of high reflectivity at short wavelengths in order of
ray practically excludes a resonator scheme of radiation g
eration. In this case it is necessary to implement a single p
high gain FELs. The most attractive scheme that is prese
considered is the self-amplified spontaneous emission@6#,
where the spontaneous undulator radiation from the first
of an undulator is used as an input signal to the downstre
part.

The output intensity of FELs can be significantly i
creased in the super-radiant regime when the radiation in
sity is scaled asr2, wherer is the electron beam density. Th
super-radiation in FELs can be initiated by the seve
mechanisms. The effects of electron and radiation pulses
to the relative slippage can lead to super-radiant behavio
FEL intensity@7#. This is a self-organizing phenomenon ar
ing from the initially unbunched electron beam. Another p
cess that initiates super-radiation is the coherent spontan
emission when the radiation fields emitted by electrons
summed up coherently giving ther2 scaling. The coheren
spontaneous emission arising from the longitudinal spec
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components of the electron pulse shape has been the su
of recent studies, both theoretical and experimental@8#. As
has been shown, the latter can lead to significant enha
ment of the start-up power of FELs@9# reducing the length of
amplifiers, which is so crucial for single pass FELs.

Coherent spontaneous emission can arise from the
tially prebunched electron beam in the klystron interact
scheme. This scheme is applicable in the classical interac
mode when the stimulated process of emission or absorp
is determined by the phase synchronism condition. As a
sult, in the first interaction region the momenta of the p
ticles in the beam become modulated and, simultaneou
the particles in the beam begin to be weakly bunched~see,
e.g.,@10#!. In the free drift region particle bunching develop
further and in the second interaction region bunched part
beam can be used to generate spontaneous super-radi
However, employing this scheme for short wave radiation
problematic since the effective bunching length~the drift
space length! L;lv/dv (l is the wavelength of stimulated
radiation-bunching wavelength,v is the particle velocity, and
dv is the velocity modulation amplitude! is rather small,
which poses obvious difficulties in maintaining the accura
of the parameters of the scheme, in view of which the p
ticle bunches are spread out. We also note that the klys
scheme is extremely sensitive to beam spreads~bunching is
spread out even for monochromatic electron beam!.

During the coherent interaction with the em wave, a qu
tum modulation of particle beam density occurs in differen
to the classical one after the interaction remains unlimite
long ~for monochromatic beam!. This is a result of the co-
herent superposition of particle states with various ene
and momentum due to absorbed and emitted photons in
radiation field that is conserved after the interaction~due to
wave property of a single particle!. The quantum-modulated
state of the particle leads to modulation of the beam den
after the interaction at the frequency of the stimulating wa
and its harmonics@11#. In stimulated processes the classic
modulation or bunching of the beam occurs if the parti
wave packet’s size (Dx) is small enough:Dx!l . In the
opposite case, the quantum modulation of the beam ta
place. The quantum modulated beam is the assembly of
©2001 The American Physical Society06-1
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herently excited particles and can be used to produce su
radiation in various schemes. This radiation is analogou
free-induction decay and photon-echo in atomic syste
@12#. The different radiation mechanisms of quantu
modulated beams have been investigated in the works@13#.

Quantum modulation of the particle beams at the inter
tion with a laser radiation at the above optical frequenc
can be obtained through multiphoton transitions in the pr
ence of a ‘‘third body’’ ~to realize the energy-momentum
exchange with the coherent field providing coherent sup
positions ofN@1 particles’ quantum states!. The good can-
didates for this goal may serve induced Cherenkov, Com
ton, and undulator processes due to these above-menti
properties. For the stimulated Cherenkov process at thq
50 interaction angle the possibility of quantum modulati
at hard x-ray frequencies due to the particle ‘‘reflectio
from the laser pulse@14# has been studied in the work@15#.
At the arbitrary interaction angle the exact solution of t
problem is very complicated as the quantum equation of m
tion is reduced to the Matheu-type equation. An analysis
ing the perturbation theory has been done in the work@16#.

In recent studies@17,18# it has been shown that cohere
interaction of electrons with a plane monochromatic wave
a dielectric medium can be described as a resonant scatt
of a particle on the ‘‘phase lattice’’ of a traveling wave sim
lar to the Bragg scattering of the particle on the crystal
tice. The latter is obvious in the frame of reference~FR! of
rest of the wave. Since the index of refraction of a medi
n.1 (n(v)[n as the wave is monochromatic! in this FR
there is only a static periodic magnetic field and an ela
scattering of a particle takes place. The law of conserva
for the Cherenkov process taking into account the quan
recoil translates into the Bragg resonance condition betw
the de Broglie wave of the particle and this static perio
structure. Hence, in the induced Cherenkov process the
teraction resonantly connects two states of the parti
which are degenerated over the longitudinal momentum w
respect to the direction of the wave propagation. These
the states with the longitudinal momentumpx ~incident par-
ticle! andpx1l \k ~scattered particle!, as far as the conser
vation law of this process isupxu5upx1l \ku (l - number of
absorbed or radiated photons with a wave vectork5kx). The
latter is the same as the Bragg condition of the electron
herent elastic scattering on crystal lattice. Therefore, in
stimulated Cherenkov process, no matter how weak the w
field is, the usual perturbation theory is not applicable
cause of such degeneration of the states. So, the intera
near the resonance is necessary to describe by the se
equation@17#. The latter, in particular, reveals zone structu
of the particle states in the field of the transverse electrom
netic~em! wave in a dielectric medium@17,18#. Note that the
application of the perturbation theory ignoring the abov
mentioned degeneration in this process has reduced to e
tially incorrect results that have been elucidated in the pa
@19#.

Hence, to reveal the above-mentioned quantum prope
of an electron state in the induced Cherenkov process,
ticularly those leading to quantum modulation effect for
electron beam, it is necessary to solve the Dirac equatio
01650
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a plane em wave in a medium at an arbitrary interact
angle beyond the scope of the perturbation theory. In
present paper the case of strong radiation field is conside
Using the resonance approximation for the above-mentio
two degenerated states in a monochromatic radiation fi
@17#, a nonperturbative solution of the Dirac equation~non-
linear over field solution of the Hill-type equation! is ob-
tained. The multiphoton probabilities of free electrons’ c
herent scattering on a strong monochromatic wave at
Cherenkov resonance are calculated, taking into accoun
above-mentioned specificity of the induced Cherenkov p
cess@17,18# and spin-laser interaction as well. In the result
this resonant scattering the electron beam quantum mod
tion at high frequencies occurs that corresponds to the e
tron energy exchange at the coherent reflection from
‘‘phase lattice’’ of the slowed wave in a medium. By th
proper choice of electron-laser parameters one can ach
the energy exchange corresponding to x-ray frequencies
we can expect to have, in principle, a coherent x-ray sou
in the induced Cherenkov process, since such a quan
modulated beam is a potential source of coherent su
radiation.

This paper is organized as follows. In Sec. II we consid
the Dirac equation for an electron in the strong em radiat
field in the medium and obtain a set of ordinary different
equations for transition amplitudes. In Sec. III by the res
nant approximation we obtain transition amplitudes a
probabilities of multiphoton emission or absorption. A sum
mary of results is given in Sec. IV, and implications for sho
wave super-radiation are discussed.

II. NONLINEAR SOLUTION OF THE DIRAC EQUATION
FOR THE ELECTRON IN STRONG EM RADIATION

FIELD IN A MEDIUM

In this section we shall solve the Dirac equation for
spinor particle in the given radiation field in a medium

i
]C

]t
5@â$p̂2eA~t!%1b̂m#C, ~1!

where

â5S 0 s

s 0 D , b̂5S 1 0

0 21D ~2!

are the Dirac matrices, with thes Pauli matrices,m ande are
the mass and charge of a particle, respectively~here we set
\5c51), p̂52 i“ is the operator of the generalized m
mentum,A5A(t2nx) is the vector potential of a linearly
polarized plane wave propagating in theOX direction in a
medium,

A5$0,A0~t!cos~vt!,0%, t5t2nx. ~3!

We shall assume that the em wave is adiabatically switc
on att52` and switched off att51` @A(t57`)50#.

To solve the problem, it is more convenient to pass to
FR of the rest of the wave (R frame moving with the velocity
V51/n). As is noticed, in this FR there is only the stat
magnetic field that will be described according to Eq.~3! by
the following vector potential:
6-2
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AR5$0,A0~x8!cosk8x8,0%, ~4!

where

k85vAn221. ~5!

The wave function of a particle in theR frame is connected
with the wave function in the laboratory frameL by the
Lorentz transformation of the bispinors

C5Ŝ~q!CR , ~6!

where

Ŝ~q!5ch
q

2
1axsh

q

2
, thq5V5

1

n
~7!

is the transformation operator. ForCR we have the following
equation:

i
]CR

]t8
5@â$p̂82eAR~x8!%1b̂m#CR . ~8!

Since the interaction Hamiltonian does not depend on
time and transverse~to the direction of the wave propaga
tion! coordinates the eigenvalues of the operatorsĤ8, p̂y8 , p̂z8
are conserved:E85const,py85const,pz85const and the so
lution of Eq. ~8! can be represented in the form of a line
combination of free solutions of the Dirac equation with a
plitudesai(x8) depending only onx8:

CR~r 8,t8!5(
i 51

4

ai~x8!C i
(0) . ~9!

Here

C1,2
(0)5S E81m

2E8
D 1/2F w1,2

sxpx81sypy8

E81m
w1,2

G
3exp@ i ~px8x81py8y82E8t !#,

C3,4
(0)5S E81m

2E8
D 1/2F w1,2

2sxpx81sypy8

E81m
w1,2

G
3exp@ i ~2px8x81py8y82E8t !#, ~10!

where

px85~E822py8
22m2!1/2, w15S 1

0D , w25S 0

1D . ~11!

The solution of Eq.~8! in the form ~9! corresponds to an
expansion of the wave function in a complete set of the w
functions of an electron with certain energy and transve
momentum py8 @with longitudinal momenta6(E822py8

2

2m2)1/2 and spin projectionsSx56 1
2 #. The latter are nor-
01650
e

-

e
e

malized to one particle per unit volume. Since there is sy
metry with respect to the directionAR ~theOY axis! we have
taken, without loss of generality, the vectorp8 in the XY
plane (pz850).

Substituting Eq.~9! into Eq. ~8! then multiplying by the
Hermitian conjugate functions and taking into account~10!
and ~2! we obtain a set of differential equations for the u
known functionsai(x8). The equations fora1 , a3 anda2 , a4
are separated and for these amplitudes we have the follow
set of equations:

px8
da1~x8!

dx8
5 iepyAy~x8!a1~x8!2eAy~x8!

3~px82 ipy8!a3~x8!exp~22ipx8x8!,

px8
da3~x8!

dx8
52 iepyAy~x8!a3~x8!2eAy~x8!

3~px81 ipy8!a1~x8!exp~2ipx8x8!. ~12!

A similar set of equations is also obtained for the amplitud
a2(x8) anda4(x8). For simplicity, we shall assume that be
fore the interaction there are only electrons with specifi
longitudinal momentum and spin state, i.e.,

ua1~2`!u251, ua3~1`!u250, ua2~2`!u250,

ua4~1`!u250. ~13!

From the condition of conservation of the norm we have

ua1~x8!u22ua3~x8!u25const ~14!

and the probability of reflection isua3,4(2`)u2.
Application of the unitarian transformation

a1~x8!5b1~x8!expS i
epy8

px8
E

2`

x8
Ay~h!dh2 i

q8

2 D ,

a3~x8!5b3~x8!expS 2 i
epy8

px8
E

2`

x8
Ay~h!dh1 i

q8

2 D
~15!

simplifies Eq.~12!. Here q8 is the angle between the mo
mentum of electron and the direction of the wave propa
tion in theR frame. The new amplitudesb1(x8) andb3(x8)
satisfy the same initial conditions:ub1(2`)u251, ub3
(1`)u250, according to Eq.~13!.

From Eqs.~12! and ~15! for the b1(x8) and b3(x8) we
obtain the following set of equations:

db1~x8!

dx8
52 f ~x8!b3~x8!,

db3~x8!

dx8
52 f * ~x8!b3~x8!, ~16!
6-3
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where

f ~x8!5
eAy~ t !p8

px8
expS 22ipx8x82 i

2epy8

px8
E

2`

x8
Ay~h!dh D ,

p85Apy8
21px8

2. ~17!

Using the following expansion by the Bessel functions

exp~2 iasink8x8!5 (
N52`

`

JN~a!exp~2 iNk8x8!,

we can reduce Eq.~16! to the form

db1~x8!

dx8
52 (

N52`

`

f N exp@2 i ~2px82Nk8!x8#b3~x8!,

db3~x8!

dx8
52 (

N52`

`

f N exp@ i ~2px82Nk8!x8#b1~x8!,

~18!

where

f N5
p8

2py8
Nk8JNS 2j

m

px8

py8

k8
D , j5eA/m. ~19!

III. RESONANT APPROXIMATION FOR TRANSITION
AMPLITUDES

Because of conservation of particle energy and transv
momentum~in R frame! the real transitions in the field wil
occur from apx8 state to the2px8 one and, consequently, th
probabilities of multiphoton scattering will have maxim
values for the resonant transitions

2px85sk8 ~s561,62 . . . !. ~20!

The latter expresses the condition of exact resonance
tween the electron de Broglie wave and the incident ‘‘wa
lattice.’’ In the L frame, inelastic scattering takes place a
Eq. ~20! corresponds to the well-known Cherenkov cons
vation law

2E~12nv cosq!

~n221!
5sv, ~21!

whereq is the angle between the electron momentum a
the wave propagation direction in theL frame ~the Cheren-
kov angle!, v andE are the electron velocity and energy.

So, we can utilize the resonant approximation keep
only resonant terms in the Eq.~18!. Generally, in this ap-
proximation, at detuning of resonanceudsu5u2px82sk8u
!k8 , we have the following set of equations for the certa
s-photon transition amplitudesb1

(s)(x8) andb3
(s)(x8):

db1
(s)~x8!

dx8
52 f s exp@2 idsx8#b3

(s)~x8!,
01650
se

e-
e
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g

db3
(s)~x8!

dx8
52 f s exp@ idsx8#b1

(s)~x8!. ~22!

This resonant approximation is valid for the slowly varyin
functionsb1

(s)(x8) andb3
(s)(x8), i.e., by the condition

Udb1,3
(s)~x8!

dx8
U!ub1,3

(s)~x8!uk8. ~23!

At first we shall solve the case of exact resonance (ds50).
According to the boundary conditions~14! we have the fol-
lowing solutions for the amplitudes:

b1
(s)~x8!5

chF E
x8

`

f sdhG
chF E

2`

`

f sdhG , b3
(s)~x8!5

shF E
x8

`

f sdhG
chF E

2`

`

f sdhG
~24!

and for the reflection coefficient

R(s)5ub3
(s)~2`!u25th2@ f snx8#, ~25!

wherenx8 is the coherent interaction length. The reflecti
coefficient in the laboratory frame of reference is the pro
ability of absorption atv,1/n or emission atv.1/n. The
latter can be obtained by expressing the quantitiesf s and
nx8 by the quantities in this frame since the reflection co
ficient is Lorentz invariant. So

R(s)5th2@Fsnt#, ~26!

where

Fs5F ~12nv cosq!2

n221
1v2sin2qG 1/2

3
sv

2v sinq
JsS j

2mv sinq

v~12nv cosq! D ~27!

andnt for actual cases is the laser pulse duration in theL
frame. The condition of applicability of this resonant a
proximation~23! is equivalent to the condition

uFsu!v, ~28!

which restricts as the intensity of the wave as well as
Cherenkov angle. Besides, to satisfy the condition~28! we
must take into account the very sensitivity of the parame
Fs towards the argument of Bessel function, according to
~27!. For the wave intensities whenFsnt*1, the reflection
coefficient is of the order of unit that can occur for a lar
number of photonss@1 for the argument of Bessel functio
Z;s@1 in Eq.~27! @according to the asymptotic behavior o
Bessel functionJs(Z) at Z.s@1#.
6-4
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Let us estimate the reflection coefficient of an electr
from the laser pulse or the most probable number
absorbed/emitted photons due to resonance interaction in
induced Cherenkov process. For the typical values of exp
mental parameters of this process in the gaseous med
with the index of refractionn21;1024, at the initial elec-
tron energy E;50 MeV and Cherenkov angleq
;1 mrad, during the ‘‘Bragg reflection’’ from the neody
mium laser pulse (vnt;102,\v51.17 eV) with an inten-
sity 1010 W/cm2 (j;1024) the electron absorbs or emi
about 105 photons.

For the off resonant solution, whendsÞ0, but f s
2.ds

2/4
from Eq. ~22!, we obtain the following expression forR(s):

R(s)5
f s

2

Vs
2

sh2@Vsnx8#

11
f s

2

Vs
2

sh2@Vsnx8#

, ~29!

where Vs5Af s
22ds

2/4, which has the same behavior as
the case of exact resonance . In opposite case whef s

2

dds
2/4 the reflection coefficient is an oscillating function o

interaction length.
As has been mentioned in the Introduction, during

coherent interaction with em wave the quantum modulat
of particle beam density occurs. From Eqs.~9! and ~26! for
the electron wave function after the reflection from the wa
pulse we have the superposition of incident and reflec
electron waves~in the R frame!

CR5a1~2`!C1
(0)1a3~2`!C3

(0) ~30!

and in the result the probability densityrR5CR
1CR is

modulated at the x-ray frequencies

rR
(s)511th2@ f snx8#12F 12

px8
2

E82
G th@ f snx8#

3cos~sk8x82w0!, ~31!

where

sinw05
sinq8

F 12
px8

2

E82
G .

In the laboratory frame of reference from Eqs.~7! and ~30!
we have

r (s).
1

An221
~11th2@Fsnt#12th@Fsnt#cos~svt2q8!,

~32!

where it is taken into account that actuallyusvu!E. As is
seen from Eq.~30! the modulation depth is of the order o
01650
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unit for the intensities whenFsnt;1, which can be satis-
fied for the moderate intensities of the laser radiation of
order of 1010 W/cm2.

IV. DISCUSSION

So far we have dealt with a one particle problem. It
clear that for the monochromatic beam we will have dens
modulation on a spatial harmonic defined by Eq.~21!. For
the actual electron beam the fate of this modulation depe
on the collimation and monochromaticity of the electr
beam. So, in actual cases the modulation produced will
be pure in the sense that it will contain all integer multipl
of the laser frequency. However, the laser field strengths
duration can be chosen in such a manner as to maximize
contribution from the higher harmonics. Due to angu
(Dq) and energetic (D«) spreads of the electron beam, th
modulation will persist for a distance of orderLd
5l/(sDu,«) following the electron beam–laser interactio
where

Du,«5maxH D«

«g2
,tgqDqJ

is the Cherenkov resonance width. For distances larger
Ld the modulation washes out quickly as a result of Dopp
dephasing. The grating structure is not lost, however~as the
quantum modulation is a single particle effect!. If the elec-
trons interact with a second laser field, the various spa
harmonics will rephase at different distances following t
interaction with the second field~this scheme is analogous t
echo techniques for atomic systems!.

Once the modulated beam is created the question rem
as to how to use the modulation at some distanceL,Ld
from the electron beam–laser interaction zone to prod
super-radiation. Typically,Du,« is of order of 1028–1026

and we haveLd;1 –102 cm ~for different harmonics!. The
most direct scheme is to employ the Compton or undula
interaction scheme immediately following the electr
beam–laser interaction. Due to the modulation of the el
tron beam, we will have a macroscopic transition current a
without any initial seeding power such a beam will produ
radiation that will scale asr2, that is, super-radiation. This
scheme is analogous to free-induction decay in cohe
transient spectroscopy for atomic systems@12#.

In summary, we have outlined a method for generat
and detecting the density modulated electron beam ha
space periodl/s (s@1) using optical fields with wavelength
l. Higher harmonics with shorter periods can be produc
by a proper choice of electron-laser parameters.
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