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Two-electron quantum disks
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The energy levels of a quantum disk containing one or two electrons are calculated as a function of an
external magnetic field. The confinement potential is a hard wall of finite height. The cyclotron transition
energies are investigated and the effect of the finite width of the disk on the Coulomb energy is studied. Our
results are applied to the JGa, ,As/GaAs dots and agree well with experiment.

I. INTRODUCTION conduction band at the edge of the dot. This is similar to the
band discontinuity in quantum wells. Parabolic confinement
Quantum dots are structures in which the charge carrierBas the property that the magneto-optical response of the
(electrons or holesare confined in all three dimensioh$. system is solely due to the response of the center of mass
Due to the singular natures{function-like) of their density =~ motion of the system. This is a consequence of a generalized
of states, they are interesting for optoelectronic device appliKohn's theorent. Coupling with the other degrees of free-
cations. From the fundamental physics point of view, theydom is possible by adding band nonparaboliity the elec-
are like artificial atoms in which the number of electrons cantron conduction band or adding a nonparabolic component to
be increased almost unlimited and in a controlled way.  the confinement In the case of a hard-wall confineméft,
Usually, those dot structures are created experimentallihe center of mass motion can no longer be separated out and
by applying lithographic or etching techniques to impose aadiation will couple to more degrees of freedom. As a con-
lateral structure to an otherwise two-dimensio(2D) elec- sequence, a much richer magneto-optical spectrum is ex-
tron system. The dot structufem this manner are mainly pected.
determined by surface effects, process induced damage, andIn the present work, we have investigated the energy lev-
rough heterostructure interfaces. For optoelectronic appliceéls of a quantum disk with a hard-walof finite heighy
tions, high quantum efficiency, strong confinement, and spasonfinement in the presence of an external perpendicular
tial homogeneity are required. In search for defect-free strucmagnetic field. Previous work on hard-wall confinement was
tures of high optical quality, alternative techniques have beerestricted to the one-electron energy spectrum and to the ex-
developed, which form quantum sized structures directlyireme case of an infinite height confinement wall. For ex-
during the growth. ample, circular dots were considered in an arbitrary magnetic
Self-organized growth is recognized to be a very promisfield*? and square-shaped dots at a zero magnetic feld.
ing technique for obtaining well defined high mobility nano- Here, we will study the Coulomb interaction between two
structures, because it leads inherently to a low density oglectrons, which are confined by a hard-wall circular poten-
defects, as compared to the density of defects introducetil of finite height and nonzero thickness. For our numerical
usually with lithographic methods. Self-organized growth ofanalysis of the problem, we have the,@a,_,As/GaAs
In,Ga; _,As quantum dots has been reported using molecuquantum disks in mind.
lar beam epitaxy, metal-organic vapor-phase epitdxgnd The paper is organized as follows. In Sec. Il, we present
metal-organic chemical vapor depositibrfhe dots were the theoretical model and explain our method of solution.
covered with GaAs. Dots of a diameter down to 12 nm havel he numerical results for the two-electron energy spectrum

been realized experimentally. Similar nanometer-scale quargre presented in Sec. Ill. In Sec. IV, we compare our results
tum dots have been realiZedith InAs on GaA$001), butin  with the cyclotron resonance data of Ref. 8 and investigate
this case, the dots are pyramid shaped. the effect of the finite width of the quantum disk on the

It was found experimentally that the J6a, _,As dots are  contribution of the Coulomb energy to the position of the
remarkably uniform in size, with their diameter fluctuating transition energy.
by only about 10% and their thickness, which can be as thin
as a few monolayers, fluctuating by only a single
monolayer’. Lateral diameters of =20 nm(Ref. 8 down to [l. THEORETICAL MODEL
d=13 nm(Ref. 7 have been realized with a dot thickness of
the order ofL,~2.5 nm. This resulted in large interlevel
spacings of 30—40 meV between the ground state and the

The Hamiltonian describing our system is given by

first excited state, which should be compared with only a few el 1 e, o
meV for typical parabolic quantum dots. sz (pj— —Aj) = (pj— “Aj|+V(ri—ry)
In contrast to the electrostatically defined dots in which =1 ¢ J2m(r) ¢
the confinement potential can often be approximated by a 2
parabolic potential, these structures have a hard-wall con- +E V() 1)
finement potential that is induced by the discontinuity of the =1 I
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where V(p,2)=0 (p<R,|z|]<L,), Vo (otherwisg is the where o.=€eB/mc is the cyclotron frequency. The one-
confinement potential witR the radius of the quantum disk electron wave function is separable,¥(p,¢)=
and L, its thickness,r=(p,z) with p=\x2+y% and (1/y27)e"?R/(p), wherel=0,~1,+2,... is the angular
V(r)=e?/4me|r| is the Coulomb potential between the two Momentum, and the radial part of the wave functig(p) is
electrons. We allow for a difference in electron mass betweef@scribed by the following equation:

the dot region and the region outside the dwi(r)=m,,

o . : . h? 9 ( p d ) 7212 I
inside the disk andn, outside the disk. - — +—tow
For the experimental system of J6a; _,As/GaAs disks, 2r gp\m(p) dp/ 2m(p)p® 2" °
one hasx~0.5. For InGa; _,As, we took the physical pa- 1
rameters for an indium concentration £ 0.53, which are + —mw§p2+V(p)}R|(p)= ER(p). (4)
well known, due to the fact that this material has the same 8

lattice parameter as InP and has been investigated very i
tensively for possible optical applications. In GaAs, the elec
trons have an effective mass*/my=0.067, the static di-
electric constant ig,=12.5 and the band gap E;=1.519
eV at helium temperature. For JpGa 4/AS, we have
m*/my=0.041, ¢,=13.8, and a band gap &,=0.813 eV.
This results in a band gap difference dE,=706 meV be-
tween GaAs and IfGa; _,As, which leads to a conduction- Caly- Let G=h;Ri(p)), where h;= \/_(P1‘2+1/2_ Pi-1212,
band offse¥* of aboutAE, =500 meV=V,. In the numeri- Pi+12=(Pj+1tp))l2 for —j=1,...Js=1,  pip=p1,
cal calculation, we included the mass difference between th&i.+12=Pj, = Rs, Rs is the right boundary of the considered
two materials, but we assumee,=13.8 thoughout the region, which is larger thaR. Within this finite difference
whole system, which is expected to be a reasonable approx¢cheme, Eq(4) can be written in the following form:
mation.

We assume that only the lowest electronic subband in the E Al J—Ef ©)
z direction is occupied and that there is no coupling between ; G =EG
thez direction and theX,y) planel® which is satisfied in the
systems under investigation, because of the much strongevhere all the matrix element; ; are equal to zero, except
confinement along the direction as compared to the,§) the diagonal and off-diagonal components,
direction. In the Appendix we argue that the above 3D prob-
lem for the system under consideration witj~2.5 nm and L Byt ) £212 |
R=10 nm can accurately be approximated by a 2D problem A= on2 2m(p;) 2T zﬁwc
in which the effective mass in the JGa;_,As region is l PP
replaced by m*/my=~0.0465 and the barrier height by 1 ,,
Vo~245 meV. This renormalization of the parameters is a + gmwcpj +V(pj),
consequence of the finite penetration of the electron wave
function into the GaAs region. In fact, the Coulomb potential

?for the hard-wall problem wity=, the energy spectrum
of the single-electron problem was solved in Ref. 12 where it
was found that the radial part of the wave function is a linear
combination of confluent hypergeometric functions. Here,
we found it more convenient to use the nonuniform space
grid (pj, j=1,...Js) in order to solve Eq(4) numeri-

2
should also be altered. This was done by replacing the Cou- Al = — M Al ‘—1:AI'—1'
lomb repulsion byV.(p) = €?/4me\p?+\2, where in Ref. I 2hihj " =
16 it was found thah~0.2L, for a quantum well of width . .
L,. where we introduced the notation
Thus, the Hamiltonian describing our two-electron system
is given by the effective Hamiltonian, which describes mo- = 1 Pj n Pj-1
tion in 2D, Y 2(pj—pj-0) \mpj)  m(pj_1))’
, N - > - forj=2,... jsandu;=u; 1=0. The above scheme is ac-
H'=H(p1) +H(pz) +Vc(p1—p2), (2) > o

curate toO(h?). The condition,ujsﬂzo is equivalent to

— a2 (2102 i ; taking the first derivative of the wave function equal to zero
where V(p) =€ /4meyp"+\" is the Coulomb repulsion on the right boundary of the space grid, which is situated far

between the two electrons. Because of the cylinder sym: . ) =
metry of the problem, we use cylindrical coordinatesd) in the barrier regiorR,=(2-3)R. For the nonzero angular

and the vector potential will be taken in the symmetric gaugemomentum values, the boundary conditliam0)=.0 Is used .
., s . i on the left boundary of the space grid, which results in
A=3Bpe,. The Schrdinger equation for the one-electron

blem | : b A'lf():él‘i , where g j is the unit matrix. The matri)@\!.j is
probiem IS now given by symmetrical and positive defined. Using the commonly ac-
cepted Hausholder diagonalization technique for the matrix

_ﬁ_z Ei p_9J N 1 9? —i—h 9 A, we obtain the eigenvaluds, and eigenvectorg, ; of
2 pap\mip) ap| " mip)pZ ad?| 2" a¢ the matrixA' for different values of the angular momentum.

The two-electron wave functions with fixed total momen-
tum L are constructed as being linear combinations of these

1
- —mw§p2+V(p)}‘If(p,¢)=E‘If(p,¢), @ one-electron wave functions:

8
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FIG. 1. The one-electron levels of an,(Ba; _,As disk of thick-
nessL,=2.5 nm and radiu) R=10 nm andb) R=20 nm, which FIG. 2. The same as Fig. 1, but now for a disk containing two
is embedded in GaAs. The different energy levels are indicated bglectrons. The levels are labeled bly,§), wherel is the total
their corresponding quantum numbelsnj. angular momentum anfl is the total spin. Levels having the same

L are plotted using the same type of curve.

m
N
| Ckan,(L+|)/2(P1) lll. THE ENERGY SPECTRUM
“'m

k=kny n=Kpn,
V(prp)= 2 2
We calculated the energy spectra of the offiég. 1) and
X Ry L1y pp)€'Y/2 (17 ¢ TTLI2 (415 b2) the two- (Fig. 2) electron systems as a function of the mag-
©) netic field. Two different values of the radius of the quantum
dot, (a8 R=10 nm and(b) R=20 nm, are considered. The
single-electron energy levels are labeled by the quantum

where the subscripts andn correspond to the energy levels Numbers [,n). When we compare the energy spectra with
of the one-electron problem. The suBi denotes that only the one of a parabollc quantum dot, we notice the following:
even values of the angular momentrare taken whei is (1) the states withl(n) and (=1,n) are degenerate &=0,

even and odd values otherwise. The matrix elements 0§imilar to the parabolic dot problem, which is directly related

Hamiltonian(2) are found using the same space grid as forto the cylindrical symmetry of the dof2) for large magnetic

: : : : . fields, i.e.,B—, the energy levels approach{ 1/2)% w,
the radial func;Uons. Then eigenenergies and elge'nvectors als enl=0 and 01+ |1| — 1/2)fi 0, whenl <0, which is simi-
calculated using the Hausholder technique, for different val;

lar to the parabolic dot system. For a smaller radius of the
ues of the total momer_ltum. We Checke_d the accuracy of dot [Fig. 1(b)], a larger magnetic field is needed to reach
our methoq by comparing our results with those_ of Ref. 1]1hese limits. In fact, the quantityw./(A2mR) is the one
for parabolic conflnement. For most qf our numerical resultsy, ot we should consider when comparing the magnetic field
we useky=10,1,=10 in Eq.(6), which leads to an accu- dependence of dots with different radiB) the separation
racy for the ground state energy better than 1%. Furthemetween the different energy levels Be=0 is not equidis-
more, our numerical results also satisfy the following exackant as in the parabolic dot problem.
symmetry, relatiorCy,= = C,,1, where the plus sign corre-  The energy levels for the two-electron hard-wall dot are
sponds to the singlet state with total s@# 0, and the minus  shown in Fig. 2, where we labeled them hy, §), with L the
sign to the triplet state witls=1. Because the spatial and total angular momentum arfél the total spin. Energy levels
spin parts of the wave function decouple, the value of thewith the same total angular momentum are drawn using the
total spin of the system will determine the symmetry of thesame type of curve. Note that as a function of the magnetic
spatial wave function under particle permutation. Furtherfield, the ground state exhibits a transition from the singlet to
more, the system has rotational symmetry, which implies thathe triplet state. This is similar to the case for parabolic con-
the total angular momentumn is a conserved quantity. The fined dots. For disks with a small radius, a much larger mag-
two-electron states are indicated by the quantum numbenmsetic field is needed for such a transition. It occurs at
(L,S,N), which correspond to thlth energy state with total B~10,19,24 T forR=20 nm andB~43 T for R=10 nm.
angular momentunh and total spinS. The latter is a factor of 4 larger than the one R+ 20 nm,
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FIG. 3. The radial electron density for the disks of Fig. 1 con- e . )
taining two electrons. We give results for the following three states: 0 10 20 30 40 50
(@) the singlet [,S)=(0,0), (b) the triplet (1,0), andc) the singlet p (nm)

(2,0), and for three values of the magnetic fi&¢0, 10, 20 T.

FIG. 4. The same as Fig. 3, but now for the pair correlation

which is due to the fact that the confinement energyRf) function.

is 4 times larger. At this transition, the total angular momen- L . . -

tum of the ground state changes, i.e., it increases. These aP@'er, WE'Ch is due to the large tIJarfrler T\elght\Qj‘”— 245(’1. ‘
the so-calledmagic numbeground state transitions, which M€V In the pr:esent system. Only for the smallest dis ]
are a result of the competition between the single-electroff~ 10 M, is there some penetration into the GaAs material;
confinement energy and the many body electron-electro ) the effect of the_magnetlc field on the elegtron density is
interactions” Such magnetic field induced angular momen-Vvery small for the disk witfR=10 nm; and3) with increas-
tum (and spin transitons have been observed N9 magnetic field the electrons are pulled closer towards the

experimentally? for dots with paraboliclike confinement. ~ center of the disk.

The electron density, which is defined by The pair correlation functiog(r) defined by
2 9(p)=(8(p—p1+p2)) (7)
n(p):; (8(p=pi)). indicates the correlation between the electrons and gives the

probability to find two electrons at a distanpe=|p| from
is shown in Fig. 3 for disks containing two electrons and foreach other. This function is shown in Fig. 4 for our disk
two values of the radius of the disk=20 nm andR=10  system containing two electrons and for the same parameters
nm (insets of figures and three values of the external mag- as in Fig. 3. Note that this function depends very strongly on
netic fieldB=0, 10, and 20 T, and for three different statesthe state of the system; the-0 behavior is most sensitive.
of the system:(a) singlet L=0, S=0, (b) triplet L=1,  With increasing magnetic field, the electrons can approach
S=1, and(c) singletL=2, S=0. Notice that(1) for p>R  each other much more closely, which is consistent with the
there is almost no leakage of the wave function into theelectron density behavior of Fig. 3. Notice that in the
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singlet state the pair correlation function for tRe=10 nm — Re10nm
dot is p independent fofp|<5 nm while for the largerdot | R=20 nm
of R=20 nm, the electron repulsion leads to a maximum 100}
nearp~8 nm (B=10 T), which indicates that the electron
probability distribution is barbell shaped.

IV. CYCLOTRON RESONANCE TRANSITIONS

In cyclotron resonance experiments, transitions are in-
voked between the ground state and excited states. In the
present case of hard-wall confinement the selection rule on
the change of angular momentull = =1 is still fulfilled,
but there are no other selection rules. For parabolic quantum
dots, we know that the other quantum number must satisfy
the selection ruleAN=0,1. The selection rules cAL and
AN for parabolic quantum dots are responsible for the fact

transition energy (meV)

that only two transition energies are possibleAE. =
o+ o with 0= o2+405, wherew, is the confine-
ment frequency. In the present system under study, more £
transitions are possibf@This is apparent when we calculate %
the oscillator strength for dipole transitions, which is defined 501
by S
, , % ——R=10nm
2m 1 ) o [ R=20 nm
Fir=7z(Ei—E) <‘1’i lezrjei“/’j \Iff> , (8 ° e An=2_(0)
= S
whereV; is the initial state with energf; and¥; the final NS , LN
state after the transition with ener§y. Thef-sum rule tells 0 5 10 15 20 25
us that we must havgF; ;=1. magnetic field (T)
Some of the possible transition energie& = E;— E; for
a quantum disk with one electron and radRis 10 nm (full FIG. 5. (a) The allowed one-electron transition energies as func-

curve$ and R=20 nm (dashed curvésare shown in Fig. tion of the magne_tic field,_ andb) the corresponding oscillator
5(a). The corresponding oscillator strengths are given in FigStrengths for the disks of Fig. 1.

5(b). Although more transitions are possible, we still find that
the An=1 transitions have the largest oscillator strength
The next transition haj\n=2 and exhibits an oscillator
strength which is about a factor of 50 smaller.

The results for the two-electron system are depicted i
Fig. 6 for (@ R=10 nm and(b) R=20 nm. The possible
transitions are labeled by the final statés$,N). The dis-
continuities in the two-electron spectrum Bt=10 T and

plies zero width of the disk for the Coulomb interaction, and
‘includes the finite width of the disk in the Coulomb repulsion
potential (full curve). Here we used =0.4 nm. Notice that
the finite width of the disk has practically no influence on the
"'Eoulomb contribution to the transition energy. It slighty de-
creases it. Drexleet al® fitted their transition energies to a
parabolic confinement potential withwy=41 meV and used

a mass oin*/my=0.07, which is that of GaAs. The agree-
B~19 T forR=ZQ nm and 3'.3“43 T for_R= 10 nm are due ment with the gxperimental data was as good as shown in
FO the smgle'tg triplet tra}n5|t|ons(seg Fig. 2 Becagse dur- Fig. 7. The reason for this can be traced back to the strong
ing the transitions there is conservation of total spin, we mus{:onfinement, which results in an almost pure linear depen-

haveAS=0, which ”T‘p"es that the allowed final states also dence of the transition energy on the magnetic field strength.
phange When the spin §tate Qf t.h.e gfound statelghanges. .Trii%r the experimental magnetic field range this is the case and
is responsible for the discontinuities in the transition energies ,ch a behavior does not depend on the type of confinement
as a function of the magnetic field. Such discontinuities ar otential. Only for higher magnetic fieldsee Fig. 6 are

not predicted in the case of parabolic quantum dots. Therjt;ifferences iNAE between the two types of confinement ex-

fore, this would be a clear signature of the hard-wall naturepected, like jumps i\ E when the system makes a transition

of the confinement potential in a cyclotron resonance eXperifrom a singlet to a triplet state. Furthermore, in the hard-wall
ment. '

confinement case, it should also be possible to observe more
In Ref. 8, the cyclotron resonance energy was measur

for In,Ga _,As/GaAs quantum disks of a diameter about ansitions(see Figs. 5 and)
20 nm and a thickness of about 4.5 ML. We have applied
our theoretical results to this experimental system and found
that good agreement could be obtain@sge Fig. 7 for a The energy levels, the electron density, the pair correla-
radius of R=12 nm, where we assumed a thickness oftion function, the cyclotron transition energies, and the cor-
L,=2.5 nm. In Fig. 7 we show the results for one electronresponding oscillator strengths were calculated for quantum
(dashed curveand two electrons with =0 (dotted curvein disks containing one or two electrons. The quantum disk
the electron-electron interaction potentigl(p), which im-  with radiusR has a nonzero thickneds, and the confine-

V. CONCLUSIONS
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ment potential is of the hard-wall type with finite height. We APPENDIX

showed that fot ,<R, the adiabatic approximation is appli-

cable and the three-dimensional quantum problem can be Let us consider the three-dimensional one-electron prob-
reduced to an effective two-dimensional one. lem without magnetic field,

We are able to describe the cyclotron resonance data of
Ref. 8 reasonably well, without using any fitting parameters.
In the present hard-wall situation, we predict that the cyclo-
tron resonance transition energy exhibits jumps each time the

ground state energy undergoes a singletriplet transition.  where the confining potentiad(r) is equal to zero inside the
Futhermore, more transitions are possiliggthough with  disk (p<R,|z|<L,/2), with R the radius of the quantum disk

small oscillator strengfhthan in the case of parabolic con- andL, its thickness. Outside the disk the confining potential
finement, due to the lifting of th&N=1 selection rule. The ¢ V(r)=V,. Because of the finite value of the barrier

latter is a consequence of the fact that in the present SySterﬂeight V,, the eigenvalue problerfAl) cannot be solved

exactly.
60 We consider the ground state, which does not depend on
the axial angle,‘l’o(F)=\If0(z,p), and, consequently, the
problem is reduced to a 2D one. Equati@l) was put on a
space grid and we used the inverse iteration technique in
order to obtain the ground state enef§y and the ground
state wave functionVy(z,p). Figure 8 shows the one-
electron density distributiofi o(z,p)|? for the ground state
along (z=0, p) and perpendicularz{p=0) to the disk for a
In,Ga; _,As disk with radiusR=12 nm, which is imbedded
in GaAs. The width of the quantum disk was=2.5 nm,
with m;=0.041(In,Ga; _,As), m,=0.067(GaAs, and bar-
NI S N rier heightV,=500 meV. We found for the energy of the
2 éagﬁeﬁgﬁe}g (})2 4 ground state 277.9 meV. . . o
Due to the large difference in the radial and longitudinal
FIG. 7. The cyclotron transition energy for an®a; _,As disk  dimensions of the disk, one can use an adiabatic approach
of radiusR= 12 nm and thicknesk,=2.5 nm, which is embedded and assume that there is no coupling between the electron
in GaAs. We show the one-electron residashed curve the two- ~ motion in the &,y) plane and in the direction. First, we
electron result includingfull curve) and excluding(dotted curveé  consider the motion in the direction, where we have the
the finite width of the disk in the Coulomb energy. strongest confinement. This is a one-dimensional quantum

2
{—ﬁ i _ §+V(F)}T(F)=EW(F), (A1)
2m(r)

transition energy (meV)
[ B Py [4)) (%))
[3,] o [4,] o [5;]

w
o
T

n
5]

o
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well problem. The wave function of the ground state has gyherep=i#V, V'(p)=V(p)—ELP, my=m,, and
simple form insidepq(z) = ¢1(|z| <L ,/2)=cos(k;2) and out-

side ¢o(2) = ¢o(|z|>LJ2)=exp(— k) the well, where i:if'ﬂ’z 2 +if“ 2
k1=V2mEy/h, k,=+2m(Vo—Eg)/#. Using the condi- m; mgyJo $o(2)dz m, LZ/2¢0(Z)dZ' (A3)

tions for continuity of the wave function and its first deriva-
tive, 1(|2=L,2)=pa(l2|=L,/2), K1¢1(2=L,12)/m,
=k,¢,(|2|=L/2)/m,, we obtain the transcendental equa-
tion tan(x,L,/2)=mk5/mykq, which determines the en-
ergy of the ground state in the 1D well. Far=2.5 nm,

For L,=2.5 nm, we obtainm;=0.0465, withV’'=245.2
meV. Thus, incorporating the motion of the electron leads
to an effective increase of the electron mass inside the disk
and an effective lowering of the potential barrier. The energy
of the ground state of the Hamiltoniai2) is E3°=22.6

m; =0.041,m,= %3067' and/o =500 meV, the energy of the o\ for R=12 nm. Thus, using the adiabatic approximation
ground state i€; =254.8 meV. Now we assume that the we add the zero-point energies in thelirection E*°) with
wave functionﬁ for the thrge-dimensional problem can b&ne gne in the %y) plane €2°) and find that the ground
written as W(r)=¢o(2)W(p), Where ¢o(2) is the wave state energy of the 3D problem B,=EP°+E?’=277.4
function of the above 1D well ang=(x,y). Substituting meV. We stress that the 2IX,fy) problem is not independent
this expression in the Schiimger equation and integrating from the 1Dz problem, because it contairf$) the barrier
out the z coordinates by taking the average lowering, V—V’ and (i) the effective mass increase,
(po(2)|H|po(2))=H?®, we obtain the effective one- m—mj, because of the-motion penetration of the electron
electron Hamiltonian, into the barrier. This result compares very well with the re-
sult 277.9 meV obtained from our pure numerical solution of

- 1. Eq. (Al). The binding energy is thus\E=500 meV
2D_ +V! q. (Al). g aqy
R =P PV (), (A2) 577 4 mev=222.6 meV.
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