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The energy levels of a quantum disk containing one or two electrons are calculated as a function of an
external magnetic field. The confinement potential is a hard wall of finite height. The cyclotron transition
energies are investigated and the effect of the finite width of the disk on the Coulomb energy is studied. Our
results are applied to the InxGa12xAs/GaAs dots and agree well with experiment.

I. INTRODUCTION

Quantum dots are structures in which the charge carriers
~electrons or holes! are confined in all three dimensions.1,2

Due to the singular nature (d-function-like! of their density
of states, they are interesting for optoelectronic device appli-
cations. From the fundamental physics point of view, they
are like artificial atoms in which the number of electrons can
be increased almost unlimited and in a controlled way.

Usually, those dot structures are created experimentally
by applying lithographic or etching techniques to impose a
lateral structure to an otherwise two-dimensional~2D! elec-
tron system. The dot structures2 in this manner are mainly
determined by surface effects, process induced damage, and
rough heterostructure interfaces. For optoelectronic applica-
tions, high quantum efficiency, strong confinement, and spa-
tial homogeneity are required. In search for defect-free struc-
tures of high optical quality, alternative techniques have been
developed, which form quantum sized structures directly
during the growth.

Self-organized growth is recognized to be a very promis-
ing technique for obtaining well defined high mobility nano-
structures, because it leads inherently to a low density of
defects, as compared to the density of defects introduced
usually with lithographic methods. Self-organized growth of
In xGa12xAs quantum dots has been reported using molecu-
lar beam epitaxy,3 metal-organic vapor-phase epitaxy,4 and
metal-organic chemical vapor deposition.5 The dots were
covered with GaAs. Dots of a diameter down to 12 nm have
been realized experimentally. Similar nanometer-scale quan-
tum dots have been realized6 with InAs on GaAs~001!, but in
this case, the dots are pyramid shaped.

It was found experimentally that the InxGa12xAs dots are
remarkably uniform in size, with their diameter fluctuating
by only about 10% and their thickness, which can be as thin
as a few monolayers, fluctuating by only a single
monolayer.7 Lateral diameters ofd520 nm~Ref. 8! down to
d513 nm~Ref. 7! have been realized with a dot thickness of
the order ofLz'2.5 nm. This resulted in large interlevel
spacings of 30–40 meV between the ground state and the
first excited state, which should be compared with only a few
meV for typical parabolic quantum dots.

In contrast to the electrostatically defined dots in which
the confinement potential can often be approximated by a
parabolic potential, these structures have a hard-wall con-
finement potential that is induced by the discontinuity of the

conduction band at the edge of the dot. This is similar to the
band discontinuity in quantum wells. Parabolic confinement
has the property that the magneto-optical response of the
system is solely due to the response of the center of mass
motion of the system. This is a consequence of a generalized
Kohn’s theorem.9 Coupling with the other degrees of free-
dom is possible by adding band nonparabolicity10 to the elec-
tron conduction band or adding a nonparabolic component to
the confinement.11 In the case of a hard-wall confinement,12

the center of mass motion can no longer be separated out and
radiation will couple to more degrees of freedom. As a con-
sequence, a much richer magneto-optical spectrum is ex-
pected.

In the present work, we have investigated the energy lev-
els of a quantum disk with a hard-wall~of finite height!
confinement in the presence of an external perpendicular
magnetic field. Previous work on hard-wall confinement was
restricted to the one-electron energy spectrum and to the ex-
treme case of an infinite height confinement wall. For ex-
ample, circular dots were considered in an arbitrary magnetic
field12 and square-shaped dots at a zero magnetic field.13

Here, we will study the Coulomb interaction between two
electrons, which are confined by a hard-wall circular poten-
tial of finite height and nonzero thickness. For our numerical
analysis of the problem, we have the InxGa12xAs/GaAs
quantum disks in mind.

The paper is organized as follows. In Sec. II, we present
the theoretical model and explain our method of solution.
The numerical results for the two-electron energy spectrum
are presented in Sec. III. In Sec. IV, we compare our results
with the cyclotron resonance data of Ref. 8 and investigate
the effect of the finite width of the quantum disk on the
contribution of the Coulomb energy to the position of the
transition energy.

II. THEORETICAL MODEL

The Hamiltonian describing our system is given by
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where V(r,z)50 (r,R,uzu,Lz), V0 ~otherwise! is the
confinement potential withR the radius of the quantum disk
and Lz its thickness, rW5(r,z) with r5Ax21y2, and
Vc(rW)5e2/4peurWu is the Coulomb potential between the two
electrons. We allow for a difference in electron mass between
the dot region and the region outside the dot:m(rW)5mw
inside the disk andmb outside the disk.

For the experimental system of InxGa12xAs/GaAs disks,
one hasx'0.5. For InxGa12xAs, we took the physical pa-
rameters for an indium concentration ofx50.53, which are
well known, due to the fact that this material has the same
lattice parameter as InP and has been investigated very in-
tensively for possible optical applications. In GaAs, the elec-
trons have an effective massm* /m050.067, the static di-
electric constant ise0512.5 and the band gap isEg51.519
eV at helium temperature. For In0.53Ga0.47As, we have
m* /m050.041,e0513.8, and a band gap ofEg50.813 eV.
This results in a band gap difference ofDEg5706 meV be-
tween GaAs and InxGa12xAs, which leads to a conduction-
band offset14 of aboutDEc5500 meV5V0 . In the numeri-
cal calculation, we included the mass difference between the
two materials, but we assumede0513.8 thoughout the
whole system, which is expected to be a reasonable approxi-
mation.

We assume that only the lowest electronic subband in the
z direction is occupied and that there is no coupling between
thez direction and the (x,y) plane,15 which is satisfied in the
systems under investigation, because of the much stronger
confinement along thez direction as compared to the (x,y)
direction. In the Appendix we argue that the above 3D prob-
lem for the system under consideration withLz'2.5 nm and
R>10 nm can accurately be approximated by a 2D problem
in which the effective mass in the InxGa12xAs region is
replaced bym* /m0'0.0465 and the barrier height by
V0'245 meV. This renormalization of the parameters is a
consequence of the finite penetration of the electron wave
function into the GaAs region. In fact, the Coulomb potential
should also be altered. This was done by replacing the Cou-
lomb repulsion byVc(r)5e2/4peAr21l2, where in Ref.
16 it was found thatl'0.2Lz for a quantum well of width
Lz .

Thus, the Hamiltonian describing our two-electron system
is given by the effective Hamiltonian, which describes mo-
tion in 2D,

H85H~rW 1!1H~rW 2!1Vc~rW 12rW 2!, ~2!

where Vc(r)5e2/4peAr21l2 is the Coulomb repulsion
between the two electrons. Because of the cylinder sym-
metry of the problem, we use cylindrical coordinates (r,f)
and the vector potential will be taken in the symmetric gauge
AW 5 1

2BreWf . The Schro¨dinger equation for the one-electron
problem is now given by
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where vc5eB/mc is the cyclotron frequency. The one-
electron wave function is separable,C(r,f)5
(1/A2p) eilfRl(r), where l50,61,62, . . . is the angular
momentum, and the radial part of the wave functionRl(r) is
described by the following equation:
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For the hard-wall problem withV05`, the energy spectrum
of the single-electron problem was solved in Ref. 12 where it
was found that the radial part of the wave function is a linear
combination of confluent hypergeometric functions. Here,
we found it more convenient to use the nonuniform space
grid (r j , j51, . . . ,j s) in order to solve Eq.~4! numeri-
cally. Let z j

l5hjRl(r j ), where hj5A(r j11/2
2 2r j21/2

2 )/2,
r j11/25(r j111r j )/2 for j51, . . . ,j s21, r1/25r1 ,
r j s11/25r j s

5Rs , Rs is the right boundary of the considered
region, which is larger thanR. Within this finite difference
scheme, Eq.~4! can be written in the following form:

(
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where all the matrix elementsAi , j are equal to zero, except
the diagonal and off-diagonal components,
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for j52, . . . ,j s andm15m j s1150. The above scheme is ac-

curate toO(h2). The conditionm j s1150 is equivalent to
taking the first derivative of the wave function equal to zero
on the right boundary of the space grid, which is situated far
in the barrier regionRs5(2–3)R. For the nonzero angular
momentum values, the boundary conditionRl(0)50 is used
on the left boundary of the space grid, which results in
A1,i
lÞ05d1,i , whered i , j is the unit matrix. The matrixAi . j

l is
symmetrical and positive defined. Using the commonly ac-
cepted Hausholder diagonalization technique for the matrix
A, we obtain the eigenvaluesEnl and eigenvectorsznl, j of
the matrixAl for different values of the angular momentum.

The two-electron wave functions with fixed total momen-
tum L are constructed as being linear combinations of these
one-electron wave functions:
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where the subscriptsk andn correspond to the energy levels
of the one-electron problem. The sum(8 denotes that only
even values of the angular momentuml are taken whenL is
even and odd values otherwise. The matrix elements of
Hamiltonian~2! are found using the same space grid as for
the radial functions. Then eigenenergies and eigenvectors are
calculated using the Hausholder technique, for different val-
ues of the total momentumL. We checked the accuracy of
our method by comparing our results with those of Ref. 11
for parabolic confinement. For most of our numerical results,
we usedkm510, l m510 in Eq.~6!, which leads to an accu-
racy for the ground state energy better than 1%. Further-
more, our numerical results also satisfy the following exact
symmetry, relationCkn

l 56Ckn
2 l , where the plus sign corre-

sponds to the singlet state with total spinS50, and the minus
sign to the triplet state withS51. Because the spatial and
spin parts of the wave function decouple, the value of the
total spin of the system will determine the symmetry of the
spatial wave function under particle permutation. Further-
more, the system has rotational symmetry, which implies that
the total angular momentumL is a conserved quantity. The
two-electron states are indicated by the quantum numbers
(L,S,N), which correspond to theNth energy state with total
angular momentumL and total spinS.

III. THE ENERGY SPECTRUM

We calculated the energy spectra of the one-~Fig. 1! and
the two- ~Fig. 2! electron systems as a function of the mag-
netic field. Two different values of the radius of the quantum
dot, ~a! R510 nm and~b! R520 nm, are considered. The
single-electron energy levels are labeled by the quantum
numbers (l ,n). When we compare the energy spectra with
the one of a parabolic quantum dot, we notice the following:
~1! the states with (l ,n) and (2 l ,n) are degenerate atB50,
similar to the parabolic dot problem, which is directly related
to the cylindrical symmetry of the dot;~2! for large magnetic
fields, i.e.,B→`, the energy levels approach (n21/2)\vc
when l>0 and (n1u l u21/2)\vc when l<0, which is simi-
lar to the parabolic dot system. For a smaller radius of the
dot @Fig. 1~b!#, a larger magnetic field is needed to reach
these limits. In fact, the quantity\vc /(\

2/mR2) is the one
that we should consider when comparing the magnetic field
dependence of dots with different radii;~3! the separation
between the different energy levels forB50 is not equidis-
tant as in the parabolic dot problem.

The energy levels for the two-electron hard-wall dot are
shown in Fig. 2, where we labeled them by (L,S), with L the
total angular momentum andS the total spin. Energy levels
with the same total angular momentum are drawn using the
same type of curve. Note that as a function of the magnetic
field, the ground state exhibits a transition from the singlet to
the triplet state. This is similar to the case for parabolic con-
fined dots. For disks with a small radius, a much larger mag-
netic field is needed for such a transition. It occurs at
B'10,19,24 T forR520 nm andB'43 T for R510 nm.
The latter is a factor of 4 larger than the one forR520 nm,

FIG. 1. The one-electron levels of an InxGa12xAs disk of thick-
nessLz52.5 nm and radius~a! R510 nm and~b! R520 nm, which
is embedded in GaAs. The different energy levels are indicated by
their corresponding quantum numbers (l ,n).

FIG. 2. The same as Fig. 1, but now for a disk containing two
electrons. The levels are labeled by (L,S), whereL is the total
angular momentum andS is the total spin. Levels having the same
L are plotted using the same type of curve.
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which is due to the fact that the confinement energy (;R2)
is 4 times larger. At this transition, the total angular momen-
tum of the ground state changes, i.e., it increases. These are
the so-calledmagic numberground state transitions, which
are a result of the competition between the single-electron
confinement energy and the many body electron-electron
interactions.17 Such magnetic field induced angular momen-
tum ~and spin! transitions have been observed
experimentally,18 for dots with paraboliclike confinement.

The electron density, which is defined by

n~r!5(
i51

2

^d~rW 2rW i !&,

is shown in Fig. 3 for disks containing two electrons and for
two values of the radius of the disk,R520 nm andR510
nm ~insets of figures!, and three values of the external mag-
netic fieldB50, 10, and 20 T, and for three different states
of the system:~a! singlet L50, S50, ~b! triplet L51,
S51, and~c! singlet L52, S50. Notice that~1! for r.R
there is almost no leakage of the wave function into the

barrier, which is due to the large barrier height ofV05245
meV in the present system. Only for the smallest disk,
R510 nm, is there some penetration into the GaAs material;
~2! the effect of the magnetic field on the electron density is
very small for the disk withR510 nm; and~3! with increas-
ing magnetic field the electrons are pulled closer towards the
center of the disk.

The pair correlation functiong(rW) defined by

g~rW !5^d~rW 2rW 11rW 2!& ~7!

indicates the correlation between the electrons and gives the
probability to find two electrons at a distancer5uru from
each other. This function is shown in Fig. 4 for our disk
system containing two electrons and for the same parameters
as in Fig. 3. Note that this function depends very strongly on
the state of the system; ther;0 behavior is most sensitive.
With increasing magnetic field, the electrons can approach
each other much more closely, which is consistent with the
electron density behavior of Fig. 3. Notice that in the

FIG. 3. The radial electron density for the disks of Fig. 1 con-
taining two electrons. We give results for the following three states:
~a! the singlet (L,S)5(0,0), ~b! the triplet (1,0), and~c! the singlet
(2,0), and for three values of the magnetic fieldB50, 10, 20 T.

FIG. 4. The same as Fig. 3, but now for the pair correlation
function.
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singlet state the pair correlation function for theR510 nm
dot is r independent foruru<5 nm while for the larger dot
of R520 nm, the electron repulsion leads to a maximum
nearr;8 nm (B510 T!, which indicates that the electron
probability distribution is barbell shaped.

IV. CYCLOTRON RESONANCE TRANSITIONS

In cyclotron resonance experiments, transitions are in-
voked between the ground state and excited states. In the
present case of hard-wall confinement the selection rule on
the change of angular momentumDL561 is still fulfilled,
but there are no other selection rules. For parabolic quantum
dots, we know that the other quantum number must satisfy
the selection rule:DN50,1. The selection rules onDL and
DN for parabolic quantum dots are responsible for the fact
that only two transition energies are possible:19 DE65
1
2\v6 1

2\vc with v5Avc
214v0

2, wherev0 is the confine-
ment frequency. In the present system under study, more
transitions are possible.20 This is apparent when we calculate
the oscillator strength for dipole transitions, which is defined
by

Fi , f5
2m

\2 ~Ef2Ei !U K C iU(
j51

2
1

2
r je

6 if jUC f L U2, ~8!

whereC i is the initial state with energyEi andC f the final
state after the transition with energyEf . The f -sum rule tells
us that we must have( fFi , f51.

Some of the possible transition energiesDE5Ef2Ei for
a quantum disk with one electron and radiusR510 nm~full
curves! and R520 nm ~dashed curves! are shown in Fig.
5~a!. The corresponding oscillator strengths are given in Fig.
5~b!. Although more transitions are possible, we still find that
the Dn51 transitions have the largest oscillator strength.
The next transition hasDn52 and exhibits an oscillator
strength which is about a factor of 50 smaller.

The results for the two-electron system are depicted in
Fig. 6 for ~a! R510 nm and~b! R520 nm. The possible
transitions are labeled by the final states (L,S,N). The dis-
continuities in the two-electron spectrum atB'10 T and
B'19 T forR520 nm and atB'43 T forR510 nm are due
to the singlet↔ triplet transitions~see Fig. 2!. Because dur-
ing the transitions there is conservation of total spin, we must
haveDS50, which implies that the allowed final states also
change when the spin state of the ground state changes. This
is responsible for the discontinuities in the transition energies
as a function of the magnetic field. Such discontinuities are
not predicted in the case of parabolic quantum dots. There-
fore, this would be a clear signature of the hard-wall nature
of the confinement potential in a cyclotron resonance experi-
ment.

In Ref. 8, the cyclotron resonance energy was measured
for InxGa12xAs/GaAs quantum disks of a diameter about
20 nm and a thickness of about 4.5 ML. We have applied
our theoretical results to this experimental system and found
that good agreement could be obtained~see Fig. 7! for a
radius of R'12 nm, where we assumed a thickness of
Lz52.5 nm. In Fig. 7 we show the results for one electron
~dashed curve! and two electrons withl50 ~dotted curve! in
the electron-electron interaction potentialVc(r), which im-

plies zero width of the disk for the Coulomb interaction, and
includes the finite width of the disk in the Coulomb repulsion
potential~full curve!. Here we usedl50.4 nm. Notice that
the finite width of the disk has practically no influence on the
Coulomb contribution to the transition energy. It slighty de-
creases it. Drexleret al.8 fitted their transition energies to a
parabolic confinement potential with\v0541 meV and used
a mass ofm* /m050.07, which is that of GaAs. The agree-
ment with the experimental data was as good as shown in
Fig. 7. The reason for this can be traced back to the strong
confinement, which results in an almost pure linear depen-
dence of the transition energy on the magnetic field strength.
For the experimental magnetic field range this is the case and
such a behavior does not depend on the type of confinement
potential. Only for higher magnetic fields~see Fig. 6! are
differences inDE between the two types of confinement ex-
pected, like jumps inDE when the system makes a transition
from a singlet to a triplet state. Furthermore, in the hard-wall
confinement case, it should also be possible to observe more
transitions~see Figs. 5 and 6!.

V. CONCLUSIONS

The energy levels, the electron density, the pair correla-
tion function, the cyclotron transition energies, and the cor-
responding oscillator strengths were calculated for quantum
disks containing one or two electrons. The quantum disk
with radiusR has a nonzero thicknessLz and the confine-

FIG. 5. ~a! The allowed one-electron transition energies as func-
tion of the magnetic field, and~b! the corresponding oscillator
strengths for the disks of Fig. 1.
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ment potential is of the hard-wall type with finite height. We
showed that forLz!R, the adiabatic approximation is appli-
cable and the three-dimensional quantum problem can be
reduced to an effective two-dimensional one.

We are able to describe the cyclotron resonance data of
Ref. 8 reasonably well, without using any fitting parameters.
In the present hard-wall situation, we predict that the cyclo-
tron resonance transition energy exhibits jumps each time the
ground state energy undergoes a singlet↔ triplet transition.
Futhermore, more transitions are possible~although with
small oscillator strength! than in the case of parabolic con-
finement, due to the lifting of theDN51 selection rule. The
latter is a consequence of the fact that in the present system,

radiation is also able to couple with other degrees of freedom
than the center of mass motion of the electrons.
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APPENDIX

Let us consider the three-dimensional one-electron prob-
lem without magnetic field,

F2¹W
\2

2m~rW !
¹W 1V~rW !GC~rW !5EC~rW !, ~A1!

where the confining potentialV(rW) is equal to zero inside the
disk (r,R,uzu,Lz/2), withR the radius of the quantum disk
andLz its thickness. Outside the disk the confining potential
is V(rW)5V0 . Because of the finite value of the barrier
height,V0 , the eigenvalue problem~A1! cannot be solved
exactly.

We consider the ground state, which does not depend on
the axial angle,C0(rW)5C0(z,r), and, consequently, the
problem is reduced to a 2D one. Equation~A1! was put on a
space grid and we used the inverse iteration technique in
order to obtain the ground state energyE0 and the ground
state wave functionC0(z,r). Figure 8 shows the one-
electron density distributionuC0(z,r)u2 for the ground state
along (z50, r) and perpendicular (z,r50) to the disk for a
In xGa12xAs disk with radiusR512 nm, which is imbedded
in GaAs. The width of the quantum disk wasLz52.5 nm,
with m150.041~In xGa12xAs!, m250.067~GaAs!, and bar-
rier heightV05500 meV. We found for the energy of the
ground state 277.9 meV.

Due to the large difference in the radial and longitudinal
dimensions of the disk, one can use an adiabatic approach
and assume that there is no coupling between the electron
motion in the (x,y) plane and in thez direction. First, we
consider the motion in thez direction, where we have the
strongest confinement. This is a one-dimensional quantum

FIG. 6. The cyclotron transition energies for a two-electron disk
of radius~a! R510 nm and~b! R520 nm. The transition energies
are labeled by their final states (L,S,N).

FIG. 7. The cyclotron transition energy for an InxGa12xAs disk
of radiusR512 nm and thicknessLz52.5 nm, which is embedded
in GaAs. We show the one-electron result~dashed curve!, the two-
electron result including~full curve! and excluding~dotted curve!
the finite width of the disk in the Coulomb energy.

FIG. 8. Side view of the disk together with the electron prob-
ability distribution along the (r,z50) and the (r50,z) directions.
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well problem. The wave function of the ground state has a
simple form insidef0(z)5f1(uzu,Lz/2)5cos(k1z) and out-
side f0(z)5f2(uzu.Lz/2)5exp(2k1uzu) the well, where
k15A2m1E0/\, k25A2m1(V02E0)/\. Using the condi-
tions for continuity of the wave function and its first deriva-
tive, f1(uzu5Lz/2)5f2(uzu5Lz/2), k1f1(uzu5Lz/2)/m1
5k2f2(uzu5Lz/2)/m2 , we obtain the transcendental equa-
tion tan(k1Lz/2)5m1k2 /m2k1 , which determines the en-
ergy of the ground state in the 1D well. ForLz52.5 nm,
m150.041,m250.067, andV05500 meV, the energy of the
ground state isE0

1D5254.8 meV. Now we assume that the
wave function for the three-dimensional problem can be
written asC(rW)5f0(z)C(rW ), where f0(z) is the wave
function of the above 1D well andrW 5(x,y). Substituting
this expression in the Schro¨dinger equation and integrating
out the z coordinates by taking the average
^f0(z)uHuf0(z)&5H2D, we obtain the effective one-
electron Hamiltonian,

H2D5pW
1

2m8~r !
pW 1V8~r!, ~A2!

wherepW 5 i\¹W , V8(r)5V(r)2E0
1D, m285m2 , and

1

m18
5

1

m1
E
0

Lz/2

f0
2~z!dz1

1

m2
E
Lz/2

`

f0
2~z!dz. ~A3!

For Lz52.5 nm, we obtainm1850.0465, withV85245.2
meV. Thus, incorporating thez motion of the electron leads
to an effective increase of the electron mass inside the disk
and an effective lowering of the potential barrier. The energy
of the ground state of the Hamiltonian~A2! is E0

2D522.6
meV forR512 nm. Thus, using the adiabatic approximation
we add the zero-point energies in thez direction (E1D) with
the one in the (x,y) plane (E2D) and find that the ground
state energy of the 3D problem isE05E1D1E2D5277.4
meV. We stress that the 2D (x,y) problem is not independent
from the 1Dz problem, because it contains~1! the barrier
lowering, V→V8 and ~ii ! the effective mass increase,
m→m18 , because of thez-motion penetration of the electron
into the barrier. This result compares very well with the re-
sult 277.9 meV obtained from our pure numerical solution of
Eq. ~A1!. The binding energy is thusDE5500 meV
2277.4 meV5222.6 meV.
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