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Crossover Temperature of Bose-Einstein Condensation in an Atomic Fermi Gas
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We show that in an atomic Fermi gas near a Feshbach resonance the crossover between a Bose-
Einstein condensate of diatomic molecules and a Bose-Einstein condensate of Cooper pairs occurs at
positive detuning, i.e., when the molecular energy level lies in the two-atom continuum. We determine
the crossover temperature as a function of the applied magnetic field and find excellent agreement with
the experiment of C. A. Regal et al. [Phys. Rev. Lett. 92, 040403 (2004)] who has recently observed this
crossover temperature.
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have that Z��� ’ 0 and the spatial part of the pair wave
function equals the usual BCS wave function for atomic

energetically decay into two free atoms. In previous work
[15,22], however, we have shown that in the first instance
Introduction.—An atomic Fermi gas near a Feshbach
resonance is a fundamentally new superfluid system. The
reason is that near a Feshbach resonance the gas consists
not only of atoms but also of diatomic molecules. More-
over, the energy difference between the molecular level
and the threshold of the two-atom continuum, known as
the detuning �, can be experimentally tuned by a mag-
netic field [1,2]. In combination with the fact that for
fermionic atoms these molecules are very long lived
[3–6], such a gas thus offers the exciting opportunity to
study in detail the crossover between the Bose-Einstein
condensation (BEC) of diatomic molecules and the Bose-
Einstein condensation of atomic Cooper pairs, i.e., the
Bardeen-Cooper-Schrieffer (BCS) transition [7–10].
Indeed, a Bose-Einstein condensate of molecules has
recently been observed [11–13]. More recently, a claim
for Bose-Einstein condensation of atomic Cooper pairs
was made [14]. We show, however, that the data reported
in Ref. [14] can be understood in terms of a Bose-Einstein
condensation of molecules.

At zero temperature the physics of the BEC-BCS cross-
over occurring near a Feshbach resonance can be under-
stood as follows. The superfluid phase of the gas is always
associated with a Bose-Einstein condensate of pairs of
atoms, but the wave function of the pairs is given by����������
Z���

p
�m�x;x0�jclosedi �

�������������������
1� Z���

p
�aa�x;x0;��jopeni:

At large negative detuning the energy of the molecule lies
far below the threshold of the two-atom continuum, and
we have Z��� ’ 1. In this case we are dealing with a
Bose-Einstein condensate of diatomic molecules, and
the spatial part of the pair wave function is equal to the
(bare) molecular wave function �m�x;x0�. The spin part
of the pair wave function is then equal to jclosedi, i.e., the
spin state of the closed channel of the relevant Feshbach
problem [15]. At large positive detuning the molecular
energy level lies far above the threshold of the two-atom
continuum and can be (adiabatically) eliminated. We then
0031-9007=04=92(13)=130401(4)$22.50 
Cooper pairs �aa�x;x0;��. This Cooper-pair wave func-
tion depends on the detuning because the effective attrac-
tion between the atoms depends on the detuning. The spin
state of the Cooper pairs is, however, always equal to the
spin state of the open channel of the Feshbach problem,
denoted here by jopeni.

With this physical picture in mind, the point where the
crossover takes place is thus determined by the detuning
at which the amplitude Z��� relatively abruptly crosses
over from one to zero. Based on two-body physics [15–18]
we would expect the crossover to occur exactly on reso-
nance, i.e., at zero detuning. It is the main purpose of this
Letter, however, to point out that many-body physics
changes this result and shifts the crossover point to
positive detuning. Quantitatively, the crossover occurs,
for an incoherent mixture of two hyperfine states with
equal density n=2, at the detuning where the molecular
energy level becomes equal to twice the Fermi energy
�F 	 �h2�3
2n�2=3=2m. Using the theory presented below
we can also accurately determine the crossover point at
nonzero temperatures. The resulting (mean-field) phase
diagram for atomic 40K under the conditions of the ex-
periment of Regal et al. is shown in Fig. 1 and summa-
rizes the main conclusion of our work.

Note that in the usual BEC-BCS crossover problem,
studied in condensed-matter physics in the context of the
high-temperature superconductors, Z��� is always identi-
cally zero and the crossover is associated with a qualita-
tively different behavior of the Cooper-pair wave function
�aa�x;x0;�� [19–21]. This emphasizes the fundamentally
new nature of the superfluid state in an atomic Fermi gas
near a Feshbach resonance, which actually shows a mac-
roscopic coherence between atoms and molecules.

‘‘Poor man’s’’ approach.—Before discussing the theory
that incorporates the resonant interactions between
atoms, we first consider the case of an ideal mixture of
molecules and atoms to establish the physical picture of
the crossover most clearly. At positive detuning a stable
molecular state does not exist, because the molecule can
2004 The American Physical Society 130401-1
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FIG. 2 (color online). Molecular condensate fraction nmc=nm
in an atomic 40K gas as a function of magnetic field and
temperature for a Fermi temperature of the gas of TF 	
0:35 �K. This figure should be compared with Fig. 4 of
Ref. [14].
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FIG. 1. Phase diagram of atomic 40K as a function of mag-
netic field and temperature for a Fermi temperature of the gas
of TF 	 0:35 �K. The solid line gives the critical temperature
for either a Bose-Einstein condensation of molecules or a Bose-
Einstein condensation of atomic Cooper pairs. The critical
temperature for the latter is calculated by simultaneously solv-
ing the BCS gap equation and the equation of state of an ideal
mixture of atoms and molecules. In this equation of state, we
use the energy of the molecules given by Eq. (4). For compari-
son, the upper dashed curve is the analytical BCS result
T=TF 	 �8e��2=
�e�
=2kFjaj, where � ’ 0:5772 is Euler’s con-
stant [7,19]. The lower dashed line is the crossover between the
two Bose-Einstein condensed phases, which is the main topic
of this Letter.
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it is reasonably accurate to neglect the finite lifetime of
the molecule. Close to the Feshbach resonance, the inter-
action with the atomic continuum shifts the molecular
energy level downward from the detuning � to �m ’
�h2=ma2. Here a�B� 	 abg
1� �B=�B� B0�� is the full
atomic s-wave scattering length of the Feshbach reso-
nance, which is experimentally characterized by its lo-
cation at magnetic field B0, its magnetic field width �B,
and the background scattering length abg.

If the molecules are Bose-Einstein condensed, the
chemical potential of the atoms is equal to �m=2 ’
�h2=2ma2. If we take the atoms to be noninteracting, we
can thus at zero temperature immediately determine the
density of atoms in the Fermi sea below the chemical
potential. Subtracting this result from the total density n,
and dividing by two, we find that at zero temperature the
density of molecules in the Bose-Einstein condensate is
equal to

nmc ’
n
2

�
1�

1

�kFjaj�3

�
; (1)

where kF 	 �3
2n�1=3 is the Fermi momentum of the gas.
Note that this estimate is valid only for positive detuning,
where a < 0. So at resonance the density of condensed
molecules is just n=2, i.e., half the total density of atoms
in the gas. Moreover, the density of condensed molecules
130401-2
vanishes at kFjaj 	 1. Physically, this situation occurs
when the energy level of the molecule is exactly equal
to twice the Fermi energy of the gas. This result is
sensible, since, if the energy level of the molecule is
higher, there are no molecules at zero temperature. The
whole gas then consists of atoms. In the experiment of
Regal et al., this condition gives a magnetic field of 0.5 G
above the resonance, in excellent agreement with the data
shown in their Fig. 2.

Finding the same criterion at nonzero temperatures is
also possible. We know that for temperatures below the
Fermi temperature the density of fermionic atoms is
hardly influenced by temperature. Not too close to reso-
nance the molecular condensate density is just depleted
by thermal fluctuations; i.e., a thermal cloud of molecules
forms with increasing temperature. Calculating the criti-
cal temperature for a density of ideal Bose molecules
given by Eq. (1) gives us the result

T
TF

’ 2

�

1

6
2��3=2�

�
1�

1

�kFjaj�
3

��
2=3
; (2)

with TF 	 �F=kB the Fermi temperature and ��3=2� ’
2:612. This result can be directly compared with the
data of Regal et al. presented in the x-y plane of their
Fig. 4. In view of the simplicity of the approach, the
agreement is remarkable [23].

Molecular Bose-Einstein condensate.—To properly in-
corporate the resonant interactions between the atoms, a
more involved treatment of the gas is necessary.
Introducing creation and annihilation operators for the
molecules and atoms, the grand-canonical Hamiltonian
of the gas becomes [24]
130401-2
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H 	
Z
dx y

m�x�
�
�

�h2r2

4m
� �m � 2�

�
 m�x� �

X
�	";#

Z
dx y

��x�
�
�

�h2r2

2m
��

�
 ��x� �

Z
dxg
 y

m�x� "�x� #�x�

�  y
# �x� 

y
" �x� m�x��; (3)
where the two hyperfine state of the atoms are denoted by
j"i and j#i, the atom-molecule coupling constant g 	

�h
�����������������������������������������
4
abg�B��mag=m

q
, and the magnetic moment differ-

ence ��mag between the hyperfine states jopeni � �j"#i �

j#"i�=
���
2

p
and jclosedi gives the detuning � 	 ��mag�B�

B0� [25]. Finally, the molecular energy is approximated
by the energy where the molecular density of states has a
maximum. To find this maximum we use that in the two-
body T-matrix approximation the frequency-dependent
self-energy of the molecules is �i�

�������
�h!

p
[15,24]. In gen-

eral, this gives [26]

�m 	
1

3



��

�2

2
�

�����������������������������������
�4

4
� �2�� 4�2

s �
; (4)

where �2 	 g4m3=16
2 �h6 is the energy scale associated
with the width of the Feshbach resonance. This energy
scale is, in fact, of fundamental importance, because it
shows that at zero temperature the thermodynamic prop-
erties of a resonant atomic Fermi gas are not solely
determined by the Fermi energy. This is particularly
true for the experiment of Regal et al., for which �2 �
�F, since for the Feshbach resonance of interest �2 ’
7:7 mK. Close to resonance, where �� �2, the molecu-
lar energy reduces to �2=�2, which can be shown to be
equivalent to �h2=ma2 as expected. Note that the omission
of the background scattering length in the Hamiltonian is
justified because the region of interest takes place rela-
tively close to resonance.

To find the crossover temperature for positive detuning,
we consider the gas to have a Bose-Einstein condensate of
molecules, and perform a quadratic expansion of the
Hamiltonian around the nonzero expectation value
h m�x�i �

��������
nmc

p
. This leads to the ideal gas expression

for the molecular density

nm 	 nmc �
1

V

X
k

1

e�k=2kBT � 1
; (5)

where V is the volume of the gas and �k 	 �h2k2=2m.
However, for atoms with momentum k, the resulting
Hamiltonian leads to a fluctuation matrix"

�k � �m=2 g
��������
nmc

p

g
��������
nmc

p
���k � �m=2�

#
;

which can easily be diagonalized by means of a
Bogoliubov transformation. Performing the calculation,
we ultimately find for the total atomic density
130401-3
na 	
2

V

X
k



�k � �m=2

�h!k

1

e �h!k=kBT � 1

�
�h!k � �k � �m=2

2 �h!k

�
; (6)

where the dispersion for the atoms obeys �h!k 	�����������������������������������������������
��k � �m=2�2 � g2nmc

p
.

For fixed positive detuning and temperature, the equa-
tion for the total atomic density n 	 2nm � na deter-
mines the molecular condensate nmc. The result of these
calculations for the experiment of Regal et al. is shown in
Fig. 2. This figure can be directly compared with the data
in their Fig. 4. Again the agreement is remarkable. Having
said that, it is important to realize that the experiment is
performed in an optical trap, whereas we have considered
the homogeneous situation. Generalizing our poor man’s
approach to the trapped situation shows, however, that
this does not affect the position of the crossover line,
because in that case the homogeneous criterion is satisfied
in the center of the trap. The inhomogeneous analysis can
be carried out in the local-density (or Thomas-Fermi)
approximation, but this is beyond the scope of this Letter
and is left for future work. Such an analysis is certainly
needed to obtain a full quantitative agreement between
theory and experiment. With this objective in mind, we
should also mention that in the above calculations we have
not included the mean-field effects of the resonant inter-
actions between the atoms. These mean-field effects are,
however, unitarity limited [27] and are, therefore, ex-
pected to lead to only relatively small shifts in the posi-
tion of the crossover line.

The most important approximation that we have made
in our calculation of the crossover temperature is to
neglect the finite lifetime of the molecules. Including
this finite lifetime is not an easy task, because a consistent
approach requires that the self-energy of the molecules is
calculated at least in the many-body T-matrix approxi-
mation, just as we have done in our recent work on the
observation of molecular Kondo resonances in an atomic
Fermi gas near a Feshbach resonance [24]. The physical
reason for this complication is that the decay of the
molecules can be Pauli blocked by the presence of the
atomic Fermi sea. It is this Pauli blocking that is ulti-
mately responsible for the molecular Kondo resonances,
and it will, therefore, also play an important role in a
quantitative analysis of the molecular lifetime effects.
Qualitatively, we expect that a broadening of the molecu-
lar energy level will not have a substantial effect on the
location of the crossover line. It will, however, lead to an
increase of the molecular condensate fraction, because of
130401-3
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the presence of molecular states with energies below �m.
We believe that these lifetime effects may also have a
bearing on the considerable narrowing of the molecular
thermal cloud that was also observed by Regal et al. [14].
Work in this direction is presently being completed and
will be reported elsewhere.

We thank Randy Hulet for numerous stimulating
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