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Abstract

Employing the Maxwell equations and conventional boundary conditions for the radiation field on the nanostructure interfaces, we compute
the radiative spontaneous decay rate of optical transitions in spherical semiconductor nanocrystals, core–shell nanocrystals and nanostructures
comprising more than one shell. We also show that the coupling between optical transitions localized in the shell of core–shell nanocrystals and
radiation field is determined by both conventional electro-multipole momenta and electro-multipole “inverse” momenta. The latter are proportional
to the core radius even for interband transitions that should result in very strong optical transitions.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction

The radiative spontaneous decay rate, Γ , of an optical transition of frequency ω and dipole momentum d in a point-like emitter,
such as an atom or a molecule, embedded into a dielectric host of permittivity ε is described by well-known expression [1] (speed
of light c = 1):

(1.1)Γ = 4

3
ω3d2√ε.

However, in the case of colloidal semiconductor nanocrystals experiments show an essential depression of the decay compared to
the value determined by Eq. (1.1).

To explain this depression, Wehrenberg, Wang, and Guyot-Sionnest [2] noted that the above expression, derived for point-like
emitters, does not take into account the local field effect, or the screening of the radiation field inside a nanocrystal of finite size. If
a spherical nanocrystal of permittivity ε1 is embedded into a dielectric host of permittivity ε2, the internal electric field (inside the
nanocrystal) Eint is weaker, if ε1 > ε2, in comparison with the external field Eext in the host [1]:

(1.2)Eint = 3

2 + ε1/ε2
Eext.

Therefore, the expression (1.1) should be replaced by:

(1.3)Γ = 4

3
ω3d2

(
3

2 + ε1/ε2

)2√
ε2.

The estimates of radiative lifetime done with Eq. (1.3) for PbSe and CdSe nanocrystals [2] show a good agreement with ex-
perimental data. However, the expression (1.2) is derived under assumption that the field variation is small on the nanocrystal size
scale, while the radiation field exhibits obviously a strong angular dependence [3]. For example, the intensity of light, I , emitted
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by an electric dipole polarized along the Z-axis is varied as I ∼ sin2 θ , where θ is the angle between the direction of emission and
the Z-axis. It is clear also that Eq. (1.3) should be essentially modified in the case of core–shell nanocrystals and nanostructures
comprising more than one shell.

Therefore, employing the Maxwell equations and conventional boundary conditions for the radiation field on nanostructure
interfaces, we compute in this Letter the radiative spontaneous decay rate of optical transitions in bare semiconductor nanocrystals,
core–shell nanocrystals and nanostructures comprising more than one shell. We also show that the coupling of optical transitions
localized in the shell of core–shell nanocrystals to the radiation field is determined by both conventional electro-multipole momenta
and electro-multipole “inverse” momenta. The latter are proportional to the core radius even for interband transitions that should
result in very strong optical transitions.

2. Maxwell equations

The Maxwell equations for the Fourier components of the electric, Eω(r), and magnetic, Hω(r), fields are written as:

(2.1)curl Eω(r) = iωHω(r),

(2.2)curl Hω(r) = −iωε(r)Eω(r),

(2.3)div Eω(r) = 0,

(2.4)div Hω(r) = 0.

In the simplest case of a bare nanocrystal of radius R1 and permittivity ε1 embedded in a host of permittivity ε2, the dielectric
function ε(r) in the above equations has obviously the form:

(2.5)ε(r) =
{

ε1, r < R1,

ε2, r > R1.

In more general problem of a core–shell nanocrystal with the core of radius R1 and permittivity ε1 and the shell of radius R2 and
permittivity ε2 embedded in a host of permittivity ε3, we obviously have:

(2.6)ε(r) =
⎧⎨
⎩

ε1, r < R1,

ε2, R1 < r < R2,

ε3, r > R2.

Finally, the dielectric function of the nanostructure comprising two shells is written as:

(2.7)ε(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε1, r < R1,

ε2, R1 < r < R2,

ε3, R2 < r < R3,

ε4, r > R4,

where ε1 is the core permittivity, ε2 and ε3 are the permittivities of the shells of the thicknesses �1 = R2 − R1 and �2 = R3 − R2,
respectively, while ε4 is the permittivity of the host.

For the scalar, Φω(r), and vector, Aω(r), potentials:

(2.8)Hω(r) = curl Aω(r),

(2.9)Eω(r) = −∇Φω(r) + iωAω(r),

related by the Lorenz gauge:

(2.10)−iωε(r)Φω(r) + div Aω(r) = 0

the Maxwell equations take the form:

(2.11)�Φω(r) + ω2ε(r)Φω(r) = 0,

(2.12)�Aω(r) + ω2ε(r)Aω(r) = 0,

where � stands for the Laplace operator.
The coupling of electronic transitions to the radiation field is expressed in terms of the potentials:

(2.13)V =
∫

d3r
[
ρ(r)Φω(r) + j · Aω(r)

]
,

where ρ and j are the densities of charge and current in the nanocrystal, respectively. The integration in the above equation is
performed over the volume of the electron localization.
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3. Radiation field

3.1. Field inside the core

Since the field inside the core, r < R1, must be nonsingular at the origin of the spherical polar coordinate system, r = 0, we can
solve Eqs. (2.11) and (2.12) employing the Fourier transform of the potentials:

Φω(k) =
∫

d3rΦω(r)e−ik·r, Aω(k) =
∫

d3r Aω(r)e−ik·r.

Then, these equations take the form:

(3.1)
[
k2 − ω2ε1(ω)

]
Φω(k) = 0,

(3.2)
[
k2 − ω2ε1(ω)

]
Aω(k) = 0.

There are two types of solutions of the above equations—electric and magnetic—with the quantum numbers: frequency ω,
angular momentum j , and projection thereof m. For the electric type the potentials are found to be:

(3.3)Φ
(e)
ωjm(k) = a

n1
δ(k − k1)CYjm(n),

(3.4)A(e)
ωjm(k) = aδ(k − k1)

[
Y(e)

jm(n) + CnYjm(n)
]
,

while for the magnetic type they are given by:

(3.5)Φ
(m)
ωjm(k) = 0,

(3.6)A(m)
ωjm(k) = aδ(k − k1)Y

(m)
jm (n).

Here,

k1(ω) = ω
√

ε1(ω) = ωn1(ω)

is the wavevector in the core, n1(ω) = √
ε1(ω) is the refractive index of the core, n = k/k is the unit vector along the wavevector

direction, a and C are arbitrary constants. The spherical harmonic functions Yjm(n) and the spherical vectors Y(α)
jm(n), where

α = e,m, l stands respectively for the electric, magnetic, and longitudinal types, are defined in Ref. [3]. The expressions (3.3)–(3.6)
generalize well-known vacuum solutions [3] to the case of a medium with the refractive index n �= 1.

In this Letter, we restrict our computations to the case of the electric multipole radiation. Therefore, hereafter we use the poten-
tials of the electric type (3.3) and (3.4) omitting the upper index (e). Making use of Eqs. (2.8) and (2.9) we find for the magnetic
and electric fields inside the core:

(3.7)Hωjm(k) = iak1δ(k − k1)Y
(m)
jm (n),

(3.8)Eωjm(k) = iaωδ(k − k1)Y
(e)
jm(n).

The fields in r-space are found by the inverse Fourier transform. For the scalar potential we have:

(3.9)Φωjm(r) = ij aC
ωk1

2π2
gj (k1r)Yjm

(
r
r

)
,

where the spherical Bessel functions are defined as:

gj (z) =
√

π

2z
Jj+1/2(z)

and Jj+1/2(z) are the Bessel functions of semi-integer order. The magnetic and electric fields are found to be:

(3.10)Hωjm(r) = ij+1a
k3

1

2π2
gj (k1r)Y

(m)
jm

(
r
r

)
,

(3.11)Eωjm(r) = E⊥
ωjm(r) + E‖

ωjm(r),

where

(3.12)E⊥
ωjm(r) = ij a

ωk2
1

2π2

1

2j + 1

[−jgj+1(k1r) + (j + 1)gj−1(k1r)
]
Y(e)

jm

(
r
r

)
,

(3.13)E‖
ωjm(r) = ij a

ωk1

2π2

√
j (j + 1)

gj (k1r)

r
Y(l)

jm

(
r
r

)
are respectively the transverse and longitudinal components.
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3.2. Field outside the nanocrystal core

Let us now find the solutions of the electric type outside the core, r > R1. The general solutions for the scalar potential and
magnetic field are convenient to write in the form:

(3.14)Φωjm(r) = ijC
ωk2

2π2

[
B1gj (k2r) + B2yj (k2r)

]
Yjm

(
r
r

)
,

(3.15)Hωjm(r) = ij+1 k3
2

2π2

[
B1gj (k2r) + B2yj (k2r)

]
Y(m)

jm

(
r
r

)
,

where k2 = ω
√

ε2 = ωn2, B1 and B2 are arbitrary coefficients to be found from boundary conditions, and yj (k2r) are the spherical
Neumann functions defined as:

yj (z) = (−1)n+1
√

π

2z
J−(j+1/2)(z).

In the core, the requirement of nonsingularity at the point r = 0 leads to B2 = 0, because the spherical Neumann functions yj (kr)

are singular at r = 0. Inserting the expression for the magnetic field (3.15) into the Maxwell equation (2.2) we find for the transverse
and longitudinal components of the electric field:

(3.16)

E⊥
ωjm(r) = ij

ωk2
2

2π2

1

2j + 1

{
B1

[−jgj+1(k2r) + (j + 1)gj−1(k2r)
] + B2

[−jyj+1(k2r) + (j + 1)yj−1(k2r)
]}

Y(e)
jm

(
r
r

)
,

(3.17)E‖
ωjm(r) = ij

ωk2

2π2

√
j (j + 1)

B1gj (k2r) + B2yj (k2r)

r
Y(l)

jm

(
r
r

)
.

For a bare nanocrystal in a host, the above expressions describe the radiation field inside the host, r > R. In the core–shell
geometry they describe the radiation field in the shell, R1 < r < R2. While the field in the host is obviously given by:

(3.18)Hωjm(r) = ij+1 k3
3

2π2

[
C1gj (k3r) + C2yj (k3r)

]
Y(m)

jm

(
r
r

)
,

(3.19)

E⊥
ωjm(r) = ij

ωk2
3

2π2

1

2j + 1

{
C1

[−jgj+1(k3r) + (j + 1)gj−1(k3r)
] + C2

[−jyj+1(k3r) + (j + 1)yj−1(k3r)
]}

Y(e)
jm

(
r
r

)
,

(3.20)E‖
ωjm(r) = ij

ωk3

2π2

√
j (j + 1)

C1gj (k3r) + C2yj (k3r)

r
Y(l)

jm

(
r
r

)
,

where k3 = ω
√

ε3 = ωn3, C1 and C2 are arbitrary coefficients to be found from boundary conditions on the shell–host interface.

4. Boundary conditions

To find arbitrary coefficients in the above expressions for the radiation field, one must employ conventional boundary conditions
derived from the Maxwell equations. The following field components must be continuous across the nanocrystal-host interface,
r = R, in bare nanocrystals:

(1) transverse component of the magnetic field: H(r = R − 0) = H(r = R + 0);
(2) transverse component of the electric field: E⊥(r = R − 0) = E⊥(r = R + 0); and
(3) longitudinal component of the electric displacement vector D = εE: ε1E‖(r = R − 0) = ε2E‖(r = R + 0);

or on the core–shell, r = R1, and shell–host, r = R2, interfaces in core–shell nanocrystals. Note that here we defined the trans-
verse and longitudinal components with respect to the direction of the radius-vector r. Since the vector r is perpendicular to the
nanocrystal surface, a vector transverse to r is tangential to the surface, and vise versa a longitudinal vector is normal to the
surface.

4.1. Bare nanocrystals

For bare nanocrystals the boundary conditions on the nanocrystal–host interface result in the following equations:

(4.1)ak3
1gj (k1R) = k3

2

[
B1gj (k2R) + B2yj (k2R)

]
,
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ak2
1

[−jgj+1(k1R) + (j + 1)gj−1(k1R)
] = k2

2

{
B1

[−jgj+1(k2R) + (j + 1)gj−1(k2R)
]

(4.2)+ B2
[−jyj+1(k2R) + (j + 1)yj−1(k2R)

]}
.

It is easy to see that the third boundary condition is equivalent to the first one. The above equations provide us two relations between
three unknown coefficients a,B1 and B2. The third relation will be derived from the normalization condition of the radiation field.
Thus, the boundary conditions (4.1) and (4.2) together with the normalization condition completely determine the field inside and
outside a bare nanocrystal.

The above equations are valid at an arbitrary nanocrystal radius R. In what follows, we assume that k1R � 1 and k2R � 1. Even
for nanocrystals of large radius, R ∼ 10 nm, and the refractive index n1 ∼ 5, as in lead salt semiconductors, the factor k1R � 1
in the visible and near-IR frequency ranges. Thus, one can use the above inequalities practically for all nanocrystals and optical
transitions.

At k1R � 1 and k2R � 1, the functions gj+1 � gj−1 and yj−1 � yj+1 and can be omitted. Then, Eqs. (4.1) and (4.2) are
reduced to:

(4.3)gj (k2R)B1 + yj (k2R)B2 = a

(
ε1

ε2

)3/2

gj (k1R),

(4.4)(j + 1)gj−1(k2R)B1 − jyj+1(k2R)B2 = a(j + 1)
ε1

ε2
gj−1(k1R).

Making use of the asymptotic expressions for the spherical Bessel and Neumann functions at small distances:

(4.5)gn(z) = zn

(2n + 1)!! , z � 1,

(4.6)yn(z) = − (2n − 1)!!
zn+1

, z � 1,

we find the following relations between the coefficients B1 and B2 outside the nanocrystal and the coefficient a inside the nanocrys-
tal:

(4.7)B1 = a

2j + 1

[
(j + 1) + j

ε1

ε2

](
n1

n2

)j+1

,

(4.8)B2 = j + 1

2j + 1

a

(2j − 1)!!(2j + 1)!!
ε1

ε2

(
1 − ε1

ε2

)
(k1R)j−1(k2R)j+2.

As it must be expected, at ε1 = ε2 the coefficient B2 vanishes, B2 = 0, while the coefficient B1 becomes equal to a, B1 = a.
The expression (4.7) is convenient to rewrite as:

(4.9)a =
(

n2

n1

)j+1

SjB1,

where we introduced the screening factor for the field harmonic with the angular momentum j :

(4.10)Sj = 2j + 1

(j + 1) + jε1/ε2

describing the local field effect inside the nanocrystal. Despite the radiation field is strongly nonuniform, the screening factor for
the dipole and only for the dipole harmonic:

(4.11)S1 = 3

2 + ε1/ε2

coincides with the screening factor for a uniform electric field as assumed in Eq. (1.2).
Although B2 is much smaller than B1, in the boundary equations it stands at the spherical Neumann functions growing up at

small distances as (k2r)
−(j+1). But, at large distances from the nanocrystal (k2r 	 1), the spherical Bessel and Neumann functions

are of the same order. Therefore, at large distances one can neglect the terms with the Neumann functions in the expressions
(3.15)–(3.17). Then they take the form:

(4.12)Hωjm(r) = ij+1B1
k2

2

2π2

sin(k2r − πj/2)

r
Y(m)

jm

(
r
r

)
,

(4.13)E⊥
ωjm(r) = −ijB1

ωk2

2π2

cos(k2r − πj/2)

r
Y(e)

jm

(
r
r

)
,

while the longitudinal component of the electric field vanishes as 1/r2.
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4.2. Core–shell nanocrystals

In the case of core–shell nanocrystals, Eqs. (4.7) and (4.8) relate the coefficients B1 and B2 inside the nanocrystal shell, R1 <

r < R2, and the coefficient a inside the core, r < R1. The boundary conditions on the shell–host interface, r = R2, result in the
following equations:

(4.14)k3
2

[
B1gj (k2R2) + B2yj (k2R2)

] = k3
3

[
C1gj (k3R2) + C2yj (k3R2)

]
,

k2
2

{
B1

[−jgj+1(k2R2) + (j + 1)gj−1(k2R2)
] + B2

[−jyj+1(k2R2) + (j + 1)yj−1(k2R2)
]}

(4.15)= k2
3

{
C1

[−jgj+1(k3R2) + (j + 1)gj−1(k3R2)
] + C2

[−jyj+1(k3R2) + (j + 1)yj−1(k3R2)
]}

.

Together with the boundary conditions (4.1) and (4.2) on the core–shell interface (r = R1) the above equation compose the full
system of the boundary conditions for core–shell nanocrystals.

Since k3R2 � 1, we find:

(4.16)gj (k3R2)C1 + yj (k3R2)C2 =
(

ε2

ε3

)3/2[
gj (k2R2)B1 + yj (k2R2)B2

]
,

(4.17)(j + 1)gj−1(k3R2)C1 − jyj+1(k3R2)C2 = ε2

ε3

[
(j + 1)gj−1(k2R2)B1 − jyj+1(k2R2)B2

]
.

Employing again the asymptotic expressions for spherical Bessel and Neumann functions we then derive the following relations
between the coefficients B1 and B2 inside the shell and the coefficients C1 and C2 in the host:

(4.18)C1 = 1

2j + 1

ε2

ε3

[
(j + 1)

(
n2

n3

)j−1

+ j

(
n2

n3

)j+1]
B1 + j

2j + 1

ε2

ε3

(
1 − ε2

ε3

)
(2j − 1)!!(2j + 1)!!
(k2R2)j+2(k3R2)j−1

B2,

(4.19)C2 = j + 1

2j + 1

(
1 − ε2

ε3

)
ε2

ε3

(k3R2)
j+2(k2R2)

j−1

(2j − 1)!!(2j + 1)!! B1 + 1

2j + 1

(
n3

n2

)j[
(j + 1)

ε2

ε3
+ j

]
B2.

Inserting now the expressions (4.7) and (4.8), we find the relation between the coefficients C1 and a:

(4.20)a =
(

n3

n1

)j+1

WjC1,

where we introduced the screening factor:

(4.21)Wj = (2j + 1)2(
j + 1 + j ε1

ε2

)(
j + 1 + j ε2

ε3

) + j (j + 1)
(
1 − ε1

ε2

)(
1 − ε2

ε3

)(
R1
R2

)2j+1

describing the screening of the radiation field in the core of a core–shell nanocrystal. For the dipole harmonic the above expression
is slightly simplified:

(4.22)W1 = 9(
2 + ε1

ε2

)(
2 + ε2

ε3

) + 2
(
1 − ε1

ε2

)(
1 − ε2

ε3

)(
R1
R2

)3
.

Again, despite the radiation field is strongly nonuniform, the screening for the dipole harmonic is the same as in the case of the
uniform field. The latter was derived in Ref. [1] for the particular case ε1 = ε3 = 1.

Finally, inserting Eq. (4.20) into Eqs. (4.7), (4.8) we find the relations between the coefficients B1, B2 and C1:

(4.23)B1 =
(

n3

n2

)j+1 Wj

Sj

C1,

(4.24)B2 = j + 1

2j + 1

Wj

(2j − 1)!!(2j + 1)!!
(

n3

n1

)j+1
ε1

ε2

(
1 − ε1

ε2

)
(k1R1)

j−1(k2R1)
j+2C1.

Since C2 is much smaller C1, at large distances one can neglect the terms with the Neumann functions in the expressions (3.18)
and (3.19). Then, these expressions take the form:

(4.25)Hωjm(r) = ij+1C1
k2

3

2π2

sin(k3r − πj/2)

r
Y(m)

jm

(
r
r

)
,

(4.26)E⊥
ωjm(r) = −ijC1

ωk3

2π2

cos(k3r − πj/2)

r
Y(e)

jm

(
r
r

)
,

while the longitudinal component of the electric field vanishes as 1/r2.
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5. Normalization condition

In radiation problems, the field harmonics are normalized by the condition [3]:

(5.1)
1

4π

∫
d3r

[
ε(r)E∗

ω′j ′m′(r) · Eωjm(r) + H∗
ω′j ′m′(r) · Hωjm(r)

] = ωδ(ω − ω′)δjj ′δmm′,

where the dielectric function ε(r) is defined by Eqs. (2.5), (2.6) or (2.7). Here, we do not account for dissipation of radiation energy
assuming that imaginary parts of all permittivities are sufficiently small, and therefore, the dissipation terms can be omitted in the
normalization condition.

Since the field harmonics are normalized to the δ-function, the integral on the left side is determined only by the asymptotic
behavior of the field harmonics at large distances r → ∞ [4], and does not depend on the field behavior inside the nanocrystal.
Therefore, to compute the above integral, one can employ the asymptotic expressions for the filed at large distances in the host and,
correspondingly the host permittivity.

Using Eqs. (4.12) and (4.13) for the case of a bare nanocrystal, we find:

(5.2)B1 = 4π2

(ωn2)3/2
.

Inserting this expression into Eq. (4.8), we finally derive for the coefficient a:

(5.3)a = 4π2

(ωn2)3/2

(
n2

n1

)j+1

Sj .

In the case of a core–shell nanocrystal, employing Eqs. (4.25) and (4.26) we derived:

(5.4)C1 = 4π2

(ωn3)3/2
.

This expression together with Eqs. (4.20), (4.23) and (4.24) completely determine the radiation filed inside the core:

(5.5)a = 4π2

(ωn3)3/2

(
n3

n1

)j+1

Wj

and inside the shell of core–shell nanocrystal:

(5.6)B1 = 4π2

(ωn3)3/2

(
n3

n2

)j+1 Wj

Sj

,

(5.7)B2 = 4π2

(ωn3)3/2

j + 1

2j + 1

Wj

(2j − 1)!!(2j + 1)!!
(

n3

n1

)j+1
ε1

ε2

(
1 − ε1

ε2

)
(k1R1)

j−1(k2R1)
j+2.

6. Coupling to optical transitions

Although the field gauge is already fixed by Eq. (2.8), the potentials of the electric type still contain an arbitrary constant C. If
one chooses

(6.1)C = −
√

j + 1

j
,

then the vector potential of the field harmonic with the angular momentum j contains only the spherical Bessel functions of the
order j + 1 [3], and hence, it falls down at small distances as gj+1(k1r) ∼ (k1r)

j+1. Therefore, in nanocrystals of radius R � 1/k1,
the contribution of the second (current) term into the nanocrystal–field coupling (2.11) is smaller than the first (charge) term by the
factor k1R � 1, while its contribution into the decay rate is obviously smaller by the factor (k1R)2 � 1. Even for nanocrystals of
large radius, R ∼ 10 nm, and the refractive index, n1 ∼ 5, as in lead salt semiconductors, the factor (k1R)2 ∼ 10−2–10−3. Thus, as
well for point-like emitters, practically for all nanocrystals, the exact expression (2.12) for the nanocrystal–field coupling is reduced
to:

(6.2)V =
∫

d3rρ(r)Φωjm(r).
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6.1. Coupling to optical transitions in the core

In Eq. (6.2) the integration is performed over the vicinity of the electron localization. Coupling to optical transitions in bare
nanocrystals or to transitions localized in the core of core–shell nanocrystals is obviously determined by the scalar potential inside
the core and the integration in Eq. (6.2) is extended over the nanocrystal core only.

Inserting the expression (3.3) for the scalar potential into Eq. (6.2) and employing the asymptotic expression (4.5) for the
spherical Bessel functions at small distances, we find:

(6.3)V = −ij

√
(2j + 1)(j + 1)

πj

ωj+ 1
2 n

j− 1
2

2

(2j + 1)!! SjQjm,

where:

(6.4)Qjm =
√

4π

2j + 1

∫
d3rρ(r)rjYjm

(
r
r

)

are 2j -pole electrical momenta [3].
In the case of core–shell nanocrystals, analogous computations result in:

(6.5)V = −ij

√
(2j + 1)(j + 1)

πj

ωj+ 1
2 n

j− 1
2

3

(2j + 1)!! WjQjm.

The multipole momenta Qjm, as they are defined in Eq. (6.4), are controlled by the power behavior of the spherical Bessel
functions on small distances, gj ∼ (kr)j , and by the absence of the term with the singular Neumann functions yj ∼ (kr)−(j+1) in
the expression (3.9) for the scalar potential inside the core. In the shell, radiation field contains also the Neumann functions that
significantly modify the coupling the radiation field to electronic transitions localized in the shell.

6.2. Coupling to optical transitions in the shell

In the case of electronic transitions localized in the shell of core–shell nanocrystals, the integration in the general expression
(6.2) is performed over the volume of the shell, while the scalar potential is given by Eq. (3.14). Inserting the expression (3.14),
(5.6) and (5.7) into Eq. (6.2), we then derive:

(6.6)V = −ij

√
(2j + 1)(j + 1)

πj

ωj+ 1
2 n

j− 1
2

3

(2j + 1)!!
[
Wj

Sj

Qjm + j + 1

2j + 1

(
ε1

ε2
− 1

)
WjPjm

]
,

where the “inverse” electro-multipole momenta Pjm are found to be:

(6.7)Pjm =
√

4π

2j + 1
R

2j+1
1

∫
d3rρ(r)

1

rj+1
Yjm

(
r
r

)
.

The inverse momenta describe the coupling of an optical transition localized in the shell to the radiation field component propor-
tional to the spherical Neumann function in the general expression (3.14). They are obviously absent in the expression (6.3) for the
coupling in the core, because the field in the core contains only the spherical Bessel function with the power asymptotic behavior
at small distances.

7. Radiative decay rate

In the second order of the perturbation theory, the radiative decay rate of an optical transition is given by the expression [3]:

(7.1)Γ = 2π |V |2
provided that the field harmonics are normalized to the δ-function as in Eq. (5.1).

As well as in the case of atomic optical transitions [3], due to the small factor (kR)2 � 1 the decay rate of electro-dipole
transition, if it is not forbidden by selection rules, essentially exceeds the decay rates of multipole (j � 2) transitions. For the same
reason, we do not consider here coupling to the radiation field of the magnetic type. Therefore, here we consider the decay rate
due to coupling to the electro-dipole harmonic of the radiation field, j = 1, only. It should be also emphasized that for intraband
transitions between the electron states with the angular momenta l = 0 and l = 1 (SP transitions), all electric and magnetic momenta,
except the electro-dipole one, vanish due to selection rules. Therefore, for SP transitions, our computations for the electro-dipole
radiation are exact and complete.
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7.1. Optical transitions in the core

For the transitions localized in the core, the coupling is determined by the momenta Qjm only. At j = 1, they are related to the
dipole momentum [3] of electronic system in the core:

(7.2)Q10 = idz; Q1,±1 = ∓ i√
2
(dx ± idy).

Therefore, the decay rate, is found to be:

(7.3)Γ = 2π |V |2 = 4

3
ω3d2

(
3

2 + ε1/ε2

)2√
ε2.

Correspondingly, the decay rate of a transition with the dipole momentum d in the core of a core–shell nanocrystal is given by:

(7.4)Γ = 4

3
ω3d2

[
9(

2 + ε1
ε2

)(
2 + ε2

ε3

) + 2
(
1 − ε1

ε2

)(
1 − ε2

ε3

)(
R1
R2

)3

]2√
ε3,

where the expression in the square brackets is the screening factor W1 for the field in the core of a core–shell nanocrystal.
In core–shell nanostructures with a relatively thick shell, � = R2 −R1 > R1, the geometry factor σ = (R1/R2)

3 � 1. Therefore,
the term in the denominator of the expression (4.22) proportional to σ can be omitted. Then, the screening factor W1 is reduces to
the product of two screening factors S1:

(7.5)W1 ∼ S1(ε1/ε2)S1(ε2/ε3) = 3

2 + ε1
ε2

3

2 + ε2
ε3

describing “subsequent” screening of the field in the shell and then in the core of a core–shell nanocrystals. In the opposite limiting
case of a relatively thin shell, � � R1, the contribution of the shell becomes small, and the screening factor W1 is reduced, as it
must be expected, to the factor S1:

(7.6)W1 ∼ S1(ε1/ε3) = 3

2 + ε1
ε3

describing the screening of the radiation field in a bare nanocrystal in a host of permittivity ε3.
Finally, we present here the expression for the decay rate of an optical dipole transition in a semiconductor core of a nanostructure

having two shells. The dielectric function of the structure is given in Eq. (2.7). Solving the Maxwell equation with the boundary
condition on three interfaces r = R1, r = R2 and r = R3, we find:

(7.7)Γ = 4

3
ω3d2|G|2√ε4,

where the screening factor G is given by:

G = 27

[(
2 + ε1

ε2

)(
2 + ε2

ε3

)(
2 + ε3

ε4

)
+ 2

(
1 − ε1

ε2

)(
1 − ε2

ε3

)(
2 + ε3

ε4

)(
R1

R2

)3

(7.8)+ 2

(
2 + ε1

ε2

)(
1 − ε2

ε3

)(
1 − ε3

ε4

)(
R2

R3

)3

+ 2

(
1 − ε1

ε2

)(
1 + 2

ε2

ε3

)(
1 − ε3

ε4

)(
R1

R3

)3]−1

.

Again, in nanostructures with relatively thick shells, so that (R1/R2)
3 � 1 and (R2/R3)

3 � 1, the factor G is reduced to the product
of three S-factors:

(7.9)G ∼ S(ε1/ε2)S(ε2/ε3)S(ε3/ε4) = 3

2 + ε1
ε2

3

2 + ε2
ε3

3

2 + ε3
ε4

.

While, in nanostructures with thin shells, the screening factor G is reduced to the S-factor:

(7.10)G ∼ S(ε1/ε4) = 3

2 + ε1
ε4

.
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7.2. Optical transitions in the shell

The radiative decay rate of electronic transition localized in the shell of core–shell nanocrystals is found from Eq. (7.1), where
the coupling V is given by Eq. (6.6):

(7.11)Γ = 4

3
ω3

[
Wj

Sj

Qjm + j + 1

2j + 1

(
ε1

ε2
− 1

)
WjPjm

]2√
ε3.

The appearance of the multipole momenta Qjm in the expression (6.3) for the coupling to optical transitions localized in the
core is quite obvious. The density of the coupling in Eq. (6.2) is the product of the density of charge and the scalar potential. In
the core, due to the requirement of nonsingularity at the point r = 0, the scalar potential (3.9) contains only the spherical Bessel
functions with the power behavior at small distances, gj (k1r) ∼ (k1r)

j . Therefore, the momenta Qjm have the form:

(7.12)Qjm ∼ e
〈
rj

〉
,

where 〈rj 〉 is the average value of the powers rj with the distribution function ρ(r). In this sense, Qjm are really the momenta of
the electron density in the core.

The situation is drastically changed for electrons localized in the shell. In the shell, the scalar potential (3.14) contains both
Bessel and Neumann functions. The latter grow up at small distances, yj ∼ −rj+1, therefore, besides the momenta of the electron
density in the shell Qjm, the coupling (6.6) contains also the inverse momenta Pjm (6.7), which have the form:

(7.13)Pjm ∼ eR
2j+1
1

〈
1

rj+1

〉

and can be treated as inverse momenta of the electron density in the shell. They obviously have the same dimension (charge × cmj )
as the momenta Qjm, but proportional to the power of core radius R1 even in the case of interband transitions, which are basically
determined by the Bloch functions of an electron in the valence and conduction bands insensitive to the geometry of a nanocrystal.
That can obviously result to very strong optical transitions in shells of core–shell nanocrystals.
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