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Experiments performed on droplets breaking up in microfluidic junctions of various angles are described. A
critical length is found that controls the breakup process. This quantity depends on the flow geometry only; it
is independent of the flow conditions and the fluid characteristics. A theory assuming small capillary numbers
describes well the conditions that govern the breakup process.
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In fluid dynamics, the phenomenon of droplet breakup
illustrates well the idea that a dynamical evolution may drive
a fluid system towards the breakdown of the Navier-Stokes
equations. This singular behavior has been studied by theo-
rists, numericists, and experimentalists over the last twenty
years and is now well documented �1,2�. The interest in the
subject was strengthened by practical motivations: in do-
mains producing and handling emulsions, such as the food
and cosmetic industries, the knowledge of the conditions un-
der which droplets undergo fragmention is obviously impor-
tant. For isolated droplets placed in pure shear or straining
flows in infinite media, it is known that the breakup process
is initiated by the loss of existence of a steady solution �3�; in
such systems, a stationary state exists as long as the shear or
the strain does not exceed some critical value. Above the
threshold, the droplet indefinitely elongates, and eventually
breaks up into two physically separate pieces. In the ultimate
stage of the process, a universal behavior develops that
drives the system to a point where Navier-Stokes equations
cease to be valid. Microfluidic technology offers an opportu-
nity to test some of these concepts in novel flow geometries,
interesting in their own right, and important for a growing
number of applications �4,5� �emulsion generation �6–8� and
particle production �9�, protein crystals in encapsulated con-
ditions �10�, chemical screening �11�, immunoassay �12��.
Descriptions of droplet emission processes �involving
breakup of liquid bridges� have recently been proposed for
small �13� and moderate capillary numbers �14�. More
closely linked to the work we present here, Link et al. �15�
analyzed droplets tearing apart in symmetric T junctions.
This study, which assumed that the droplets are substantially
distorted by the straining velocity field, addresses the range
of moderate and large capillary numbers. These studies
stimulated numerical contributions published in Refs. �16�
and �17�. Here we consider the other limit—small capillary
numbers—and investigate a broader range of junctions’ ge-
ometries. The conditions we address here are frequently en-
countered in microfluidic devices. We found that the breakup
conditions are not just mediated by the geometry, but fully
controlled by it. In particular we found a notion of critical
length, depending on the flow geometry only, which controls
the breakup conditions. The objective of this Rapid Commu-

nication is to introduce this concept, provide a quantitative
explanation for it, and use it for determining flow-rate con-
ditions under which droplet breakup occurs in junctions of
arbitrary angles.

The experimental system is shown in Fig. 1. The system
includes a main channel along which water droplets flow in
an oil stream; the droplets arrive at a � junction where a
fraction of the flow rate is sucked. The � junction is formed
by a main channel of width w, conveying the main stream
and a secondary channel forming an angle � with the main
canal. Throughout the paper we will concentrate on the case
where the secondary channel has a width wD smaller than the
main channel. The systems are made in poly�dimethyl silox-
ane� �PDMS�, using standard soft lithographic technique
�18�. The height of the main channel ranges between 30 and
70 �m and its width is 130 �m; the secondary channel has
the same height as the main channel, and its width was var-
ied from 30 to 75 �m. The droplets are formed in a T junc-
tion located in the left part of the system. The droplet sizes
along with their emission frequency was varied in the range
0.1–10 Hz by changing the inlet pressure of the two phases.
The droplets are made with aqueous solutions of fluorescein
and glycerin with various concentrations, with viscosities
ranging between 1 and 7 mPa s−1. The continuous phase is
hexadecane, to which various concentrations of SPAN80,
from 0 to 1 wt.%, were added. The interfacial tension be-
tween the two fluids thus range between 3 and 40 mN m−1.
The hydrostatic pressure which produces the flow in the
main stream, and which sucks the emulsion through the sec-
ondary channel was varied from 1 to 50 mBar. Under such
conditions, the flow velocities range between 0.5 mm s−1 and
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FIG. 1. Shown here is a sketch of the experimental system:
Droplets are formed in a T junction and move right. As they arrive
at a � junction, they may either break or not, depending on the flow
conditions. The experiment is pressure controlled.
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20 mm s−1 in the main channel, and between 5.10−2 and
5 mm s−1 in the secondary channel. Throughout the experi-
ments, the capillary numbers defined either with the inlet or
the secondary channel velocities lie in the range 10−6–10−2.
Droplets are visualized by epifluorescence microscopy, using
video �COHU� and fast cameras �MegaSpeed MS4K DHB,
150–300 fps�.

As an isolated droplet reaches the junction, we observed
three possibilities shown in Fig. 2

�a� In the first possibility �see Fig. 2�a��, the droplet de-
velops a long finger that penetrates into the secondary chan-
nel. As time runs, the bridge linking the finger to the main
part of the droplet thins out; it eventually breaks up, giving
rise to two separate droplets, the “mother” circulating in the
main channel, and the “daughter” moving in the secondary
channel. We call this process “direct breakup.”

�b� In the second possibility �see Fig. 2�b��. the drop starts
developing a short finger into the secondary channel. The
finger grows until a tunnel opens up, allowing the continuous
phase to flow into the secondary channel. In all cases, the
tunnel formation is immediately followed by the retreat of
the finger into the main channel. Eventually, the droplet re-
covers its original shape, moving steadily in the main chan-
nel.

�c� The third possibility shown in �Fig. 2�c�� is similar to
the second one: a short finger develops into the secondary
channel, a tunnel opens, and the finger moves backwards. In
this scenario, breakup occurs during the finger retreat. The
droplets formed by this process are eventually entrained
downstream into the secondary channel. We call this process
“retarded breakup.”

We will concentrate on these events, discarding a fourth
situation, observed at large velocities in the secondary chan-
nel, for which droplets are entirely sucked off through the
secondary channel. In order to map out the geometrical and
dynamical conditions under which the three precedent re-
gimes hold, we measured finger lengths as a function of the

velocity in the secondary channel VD for � junctions of vari-
ous angles � �� /2, � /4, and 3� /4�. The lengths that we
measured are the maximum lengths the fingers develop in the
various scenarios: for scenario �a� just before breakup occurs
and for scenario �b� and �c� just before they initiate their
retreat. The quantity VD is measured well before the droplet
arrives in the intersection. Figure 3 collects the measure-
ments we made. It shows that for each �, there exists a
critical finger length lc—signaled by vertical lines—which
define the lower boundary for scenario �a� independently of
the flow conditions. Above this critical length, the finger
keeps moving downstream and “direct” breakup occurs. The
critical length lc receives another interpretation: it determines
conditions under which a tunnel forms. Fingers shorter than
lc open a tunnel while those longer than lc keep spanning the
entire width of the secondary channel.

The existence of such a critical length can be justified in
the low capillary number range by theoretical considerations.
Let us consider a � junction forming an angle � between the
main and the secondary channel. At low capillary numbers,
the system is dominated by capillarity and consequently, ow-
ing to the wetting properties of our material, water-oil inter-
faces tend to adopt circular shapes matching tangentially the
channel side walls. In the junction, the rear part of the drop-
let can be assimilated to a circle that expands as the droplet
moves downstream. This important characteristic is demon-
strated by the series of pictures displayed in Figs. 4�a�–4�c�.
On Fig. 4�d�, we show measurements of the angle � formed
between the lower wall of the main channel and the line
joining the two tangential points of contact of the circle with
the channel walls, as the finger moves across the junction.
This angle is found equal to � /4±15% for all flow condi-
tions. It depends on � in a way well represented by the
geometrical relation �= ��−�� /2, a relation obtained by as-
suming interfaces with circular shapes.

FIG. 2. There are three different behaviors or scenarios shown
here. �a� VI=700 �m s−1 and VD=551 �m s−1 are direct breakups;
the droplet breaks into two droplets, one “mother” and one “daugh-
ter.” Throughout the process the fingers or droplets move down-
stream. �b� VI=957 �m s−1, VD=599 �m s−1 finger formation, tun-
nel opening, and retreat of the finger into the main channel. �c� VI

=1415 �m s−1 and VD=849 �m s−1 finger formation, tunnel open-
ing, finger retreat, and retarded breakup.

FIG. 3. Shown is VD as a function of ld for different flow con-
ditions and three angles �=� /2 �resp. � /4, and 3� /4�. The �

represents the droplets’ breakup at the � junction according to sce-
nario �a� �direct breakup�, the • represents scenario �b� �retreat with-
out breakup�, and the � represents scenario �c� �retarded breakup�.
The vertical lines are obtained by using the theory described in the
text �Eq. �1��, with R=10 �m, w=145 �m, wd=55 �m �resp. 53
and 49 �m�, b=50 �m �resp. 43 and 43 �m�, and �=0.83b. The
dashed lines are obtained by using Eq. �2�, with �=0.44 �resp. 0.59
and 0.63� and A=1.1�10−1 mm2 s−1 �resp. 4.5�10−1 and 8.6
�10−2 mm2 s−1�.
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In this problem, breakup is initiated by the Rayleigh-
Plateau instability. Owing to the nature of the instability, the
breakup conditions are determined by a geometrical crite-
rium. We may thus assume that the Rayleigh-Plateau insta-
bility arises as the rear of the droplet approaches the upper
right corner within a critical distance �, a quantity that will
be independent of the flow conditions when the rear of the
droplet is assimilated to a circular arc. As the rear of the
droplet reaches the critical conditions, one may show, by
carrying out geometrical calculations, that the finger length lc
has the following expression:

lc = 2�r cos2 �

2
− � sin2 �

2
� + 2 sin

�

2
	�� − w��� − wd�

+
wd

2
�3 − cos �� �1�

where r is the minimum radius achievable in our fabrication
technique. As lc depends on �, �, w, and wD only, it is an
intrinsic geometrical quantity independent of the flow condi-
tions. Fingers longer than lc break up and produce daughter
droplets. Fingers shorter than lc undergo a different dynam-
ics: the precedent geometrical construction reveals that these
fingers cannot maintain a tangential contact with the side
walls as the droplet moves downstream. This indicates that a
tunnel should form and, in search of a lower energy state, the
finger moves backwards into the main channel. These con-
siderations explain that scenario �a� is bounded by a vertical
line located at lc, a quantity independent of the flow condi-
tions. The length � is a priori a function of the depth b �since
Rayleigh-Plateau instability is three dimensional�, wD and
wI. By taking �=0.8b, an expression underlying the role of
three-dimensionality and consistent with the observations,
we find that the evolution of the critical finger length lc with

the junction angle � is well represented by the above expres-
sion: the corresponding values are displayed on Fig. 3. The
conditions under which a retarded breakup occurs can be
modeled—albeit in a rougher way—using a kinematical ap-
proach. The approach consists in calculating the trajectories
of the finger tip and that of the finger right flank, and deter-
mine the conditions for which Rayleigh-Plateau instability
initiates before the finger tip has returned into the main chan-
nel. By this approach, we obtained the following formula:

VD =
A

lR
ln� w

�lR
� �2�

where lR is the maximum length adopted by fingers under-
going secondary breakup. � and A are two empirical param-
eters that depend on the geometry of the system and the
properties of the two fluids �viscosity and surface tension�.
Within a two-parameter fit, the rough theory is found consis-
tent with the experiment �Fig. 3�.

Thus far, we built a geometrical description of the
breakup process �either direct or retarded�. From a practical
point of view, it is desirable to derive a criterium in terms of
the flow conditions. This section is dedicated to this task:
assuming small capillary and Reynolds numbers �when iner-
tia and acceleration forces are omitted�, one has the follow-
ing relations:

Pd + RdQd + 	Cd = Po + RoQo + 	Co = Pi − RiQi + 	Ci

Qi = Qo + Qd

in which Ri, Rd, and Ro are the hydrodynamic resistances of
the inlet, secondary, and outlet channels, respectively. Qi, Qd,
Qo, Pi, Pd, and Po are the corresponding flow rates and pres-
sures, 	 the interfacial tension between the two fluids and
Cx=b−1+wx

−1. By using mass conservation, the length ld of a
finger penetrating in the secondary channel can be estimated

ld 
 li
wQd

wdQi
. �3�

The condition for the occurrence of direct breakup is further
obtained by stipulating that the actual finger length ld equals
the critical length lc. Here, we consider the case where pres-
sures Pi, Pd, and Po are imposed. After some manipulations,
we obtain the following condition governing the onset of
direct breakup:

Qd
* =

Qcap

1 − lc/ld
* �4�

in which we have

Qd
* =

P − Pd

Rd
, Qcap =

	R

Rd
� Ci

Ri
+

Co

Ro
+

Cd

Rd
� ,

ld
* = li

Qd
*w

Qiwd
, R = � 1

Ri
+

1

Ro
+

1

Rd
�−1

,

FIG. 4. The circular assumption: �a� The rear part of the droplet
can be assimilated into a circle that expands as it moves down-
stream. This assumption is qualitatively valid for angle from �b�
3� /4 to �c� � /4. The angle � formed by the direction of the main
channel and the line joining the two tangential points between the
droplet and the walls are constant as the droplet moves downstream,
in a large range of �d� flow conditions.
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Qi =
Pi − P

Ri
, P = R�Pi

Ri
+

Po

Ro
+

Pd

Rd
� . �5�

Equation �4� establishes a relation that pressures must satisfy
to achieve direct breakup. In view of working with dimen-
sionless quantities, the relation �4� can be reformulated with
the following variables:

X = ld
*/lc and Ca =

Qd
*

Qcap
. �6�

With such variables, the condition for direct breakup reads,

Ca =
1

1 − 1/X
. �7�

Similarly, the conditions for the occurrence of retarded
breakup can be determined by stipulating that the actual fin-
ger length ld equals lr�Vd� �see Relation �2��. The result,
which cannot be expressed in a compact form, is displayed in
Fig. 5 �dashed line�.

The comparison between the theoretical formula govern-
ing direct and retarded breakups and the experiment is shown
in Fig. 5 for �=� /2. In the experiments, we fixed the pres-
sure conditions and measured Qd*, Qi, and li, and therefore
X. The plot of Fig. 5 shows good agreement between theory
and experiment, with flow rates varying by a factor of 30,
droplet sizes by a factor of approximately three, viscosities
of the dispersed phase by a factor of 5, interfacial tension by
a factor of 10, and secondary channel widths by a factor of 3.

To conclude, we have shown that in � junctions of arbi-
trary angles, the breakup process can be classified in two
categories: direct and retarded. Direct breakup is fully con-

trolled �not just mediated� by the channel geometry. We may
infer that it can be efficiently modified by changing the detail
of the geometry of the junction. This presentation basically
differs from the work of Ref. �15�, in the sense that this work
bears on hydrodynamic effects that are negligible in our ex-
periments, owing to the small capillary numbers at hand. We
may thus consider that the two theoretical descriptions
complement each other.
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FIG. 5. Experimental data are expressed in terms of dimension-
less control parameters X and Ca �Eq. �6��. The � represent droplets
which undergo breakup, � no breakup. The lines are given by the
theory explained in the paper; the full line represents the frontier
between a retarded breakup and direct breakup �see Eq. �7��. The
dashed line comes from Eq. �2� as explained in the text.
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