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It has been recently shown, that inhomogeneity of a multilayer structure leads to increasing of
sharpness of diffusion-junction (see, for example, [E.L. Pankratov, B. Spagnolo, Eur. Phys. J. B 46 (1)
(2005) 15; E.L. Pankratov, Phys. Rev. B 72 (7) (2005) 075201]) and implanted-junction (see, for example,
[E.L. Pankratov, Phys. Lett. A 372 (11) (2008) 1897]) rectifiers, which were formed in the multilayer
structure. It has been also shown, that together with increasing of the sharpness homogeneity of impurity
distribution in doped area increases. The both effect could be increased by formation an inhomogeneous
distribution of temperature (for example, by laser annealing). Some conditions on correlation between
inhomogeneities of the multilayer structure ant temperature distribution has been considered. Annealing
time has been optimized for laser pulse annealing.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Increasing of performance and reliability of microelectronic devices and integrated circuits, recently attracted great interest. One way
to increase performance of semiconductor devices is decreasing capacitance of (p–n)-junctions [1,2]. The increasing of homogeneity of
impurity distribution in doped areas of a semiconductor structure allows to operate with higher current densities and to decrease local
overheats or to decrease depth of (p–n)-junction [1–3]. Another actual problem is increasing of exactness of theoretical description of dy-
namics of technological process. The increasing leads to higher predictability of dopant dynamics and, as following, higher reproducibility
of parameters of solid state electronic devices.

Different types of technological processes could be used for production (p–n)-junctions (see, for example, [1–5]). One of them is dopant
diffusion into a semiconductor sample or in an epitaxial layer (E L). Another one is ion implantation in the same cases. In this Letter we
consider a multilayer structure (M S), which presented in Fig. 1. The M S consist of two layers. First of them is a substrate (a � x � L)
with diffusion coefficient D2, thickness L − a and known type of conductivity (n or p). The second layer of the M S is an E L (0 � x � a)
with diffusion coefficient D1 and thickness a. Let us consider a dopant, which was implanted across the boundary x = 0 into the E L
for production the second type of conductivity (p or n). At the time t = 0 annealing of radiation defects is started with continuance Θ .
The annealing of radiation defects after production of the implanted-junction rectifier leads to decrease of quantity of the defects and to
increase of depth of the (p–n)-junction. The increasing is unwanted, because the process leads to deviation of characteristics implanted-
junction rectifier from scheduled values. It has been recently shown, that inhomogeneity of a multilayer structure leads to increasing of
sharpness of diffusion-junction (see, for example, [6,7]) and implanted-junction (see, for example, [8]) rectifiers, which were formed in
the multilayer structure. It has been also shown, that together with increasing of the sharpness homogeneity of dopant distribution in
doped area increases. To increase the both effects heating of surficial region (the thickness of the heated surficial region is approximately
equal to the thickness E L) of the M S attracting an interest. One way to produce the inhomogeneous distribution of temperature is pulse
laser annealing (see, for example, [9–12]). Another advantage of this type of annealing is local heating of the surface of the M S . The
advantage is useful for production of elements of integrated circuits with decreasing spreading of dopant across the interface of the M S .
Some theoretical analysis of spatiotemporal distribution of temperature during laser annealing has been done in previous works. However,
the analysis has been done for simplified limiting cases.

The main aim of the present Letter is the determination of the conditions, which correspond to increasing of recently detected effect,
i.e. to increase of the sharpness of the (p–n)-junction and the homogeneity of impurity concentration in doped areas at one time. The
accompanying aim is development of mathematical approaches for analysis of dopant redistribution during annealing by laser pulses.
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Fig. 1. M S , which consist of an E L (x ∈ [0,a]) and a substrate (x ∈ [a, L]).

2. Method of solution

Spatiotemporal distribution of dopant concentration in the considered M S (see Fig. 1) is described by the second Fick’s law [1–3,5]

∂C(x, t)

∂t
= ∂

∂x

[
D

(
x, T , V , C(x, t)

) ∂C(x, t)

∂x

]
= −∂ JC (x, t)

∂x
, (1)

where C(x, t) is the spatiotemporal distribution of dopant concentration. J C (x, t) is the spatiotemporal distribution of dopant flow.
D(x, T , V , C(x, t)) is the diffusion coefficient of dopant in the M S . The diffusion coefficient depends on dynamical properties of dopant in
materials of the M S , on temperature T of annealing and on concentrations of radiation defects and dopant. It has been shown in Ref. [3],
that in high-doped materials interaction between dopant atoms and point defects increases. If the point defects have nonzero charge γ e
with e an elementary charge, then the interaction leads to concentrational dependence of the diffusion coefficient. The concentrational
dependence of the diffusion coefficient could be approximated by the following function (see, for example, [13,14] and [3])

D
(
x, T , V , C(x, t)

) = DL(x, T )

[
1 + ξ

V (x, t)

V ∗

][
1 + ζ

Cγ (x, t)

Pγ (x, t)

]
. (2)

Here V (x, t) and V ∗ are spatiotemporal and equilibrium distributions of concentrations of vacancies. P (x, T ) is the limit of solubility of
dopant in M S . The parameters ζ and γ depend on properties of layers of M S . Usually γ is equal to an integer value in the interval
γ ∈ [1,3] (see [3]). In the following let us consider the limiting case, when number of different complexes (for example, complexes of
defects) is negligible in comparison with number of point defects. Spatiotemporal distribution of vacancies concentration is described by
the following system of equation [15]

∂ I(x, t)

∂t
= ∂

∂x

[
D I (x, T )

∂ I(x, t)

∂x

]
= −∂ J I (x, t)

∂x
− kI,V (x, T )

[
I(x, t)V (x, t) − I∗V ∗],

∂V (x, t)

∂t
= ∂

∂x

[
D V (x, T )

∂V (x, t)

∂x

]
= −∂ J V (x, t)

∂x
− kI,V (x, T )

[
I(x, t)V (x, t) − I∗V ∗], (3)

where I(x, t) and I∗ are spatiotemporal and the equilibrium distributions of interstitials, respectively. J I (x, t) and J V (x, t) are spatiotem-
poral distributions of interstitials and vacancies, respectively. D V (x, T ) and D I (x, T ) are diffusion coefficients of vacancies and interstitials,
respectively. kI,V (x, T ) is the parameter of recombination. Spatiotemporal distribution of temperature can be estimate by using the second
Fourier’s law

c(T )
∂T (x, t)

∂t
= ∂

∂x

[
λ(x, T )

∂T (x, t)

∂x

]
+ p(x, t) = p(x, t) − ∂ J T (x, t)

∂x
, (4)

where c(T ) is heat capacitance. For the most interesting (for our aims) interval of values of temperature one can consider approximately
constant value of heat capacitance (c(T ) ≈ cass). λ(x, T ) is the heat conduction coefficient. Temperature dependence of the heat conduction
coefficient can be approximated by the following power low: λ(x, T ) = λass(x){1 + μ[Td/T (x, t)ϕ ]} (see appropriate figures in [16–18]), Td
is Debye temperature [16]. α(x, T ) = λ(x, T )/c(T ) is thermal diffusivity. p(x, t) is the bulk density of heat power, which was allocated
in M S . The power could be approximated by the function: p(x, t) = P0δ(x/L) sin(πt/Θ), t ∈ [0,Θ/2], Θ is the continuance of the laser
pulse, S is the lateral area of M S , P0 is the power of the laser pulse. J T (x, t) is spatiotemporal distributions of heat flow. The similar time
dependence of power have been considered in [19]. However, the considered in our work approximation leads to simplification of analysis
of mass- and heat transport.

Eqs. (1), (3) and (4) are complemented by boundary and initial conditions. The conditions can be written in the form

J V (0, t) = 0, V (L, t) = V ∗, V (x,0) = f V (x), J I (0, t) = 0, I(L, t) = V ∗, I(x,0) = f I (x),

JC (0, t) = 0, C(L, t) = 0, C(x,0) = fC (x), J T (0, t) = 0, T (L, t) = Tr, T (x,0) = f T (x), (5)
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where Tr is the equilibrium distributions of temperature, which coincide with room temperature. Dopant and radiation defects are not
achieved the boundary L = 0. This situation leads to simplification of boundary conditions (5).

First of all let as transform Eqs. (1), (3) and (4) in the following form

T (x, t) = Tr + 1

μT ϕ
d

x∫
L

T ϕ(v, t)

αass(v)

v∫
0

∂T (u, t)

∂t
du dv − T ϕ+1(x, t) − T ϕ+1

d

μ(ϕ + 1)T ϕ
d

− 1

μT ϕ
d

x∫
L

T ϕ(v, t)

αass(v)

v∫
0

p(u, t)

cass
du dv,

I(x, t) = I∗ +
x∫

L

1

D I (v, T )

v∫
0

kI,V (u, T )
[

I(u, t)V (u, t) − I∗V ∗]du dv +
x∫

L

1

D I (v, T )

v∫
0

∂ I(u, t)

∂t
du dv,

V (x, t) = V ∗ +
x∫

L

1

D V (v, T )

v∫
0

kI,V (u, T )
[

I(u, t)V (u, t) − I∗V ∗]du dv +
x∫

L

1

D V (v, T )

v∫
0

∂V (u, t)

∂t
du dv,

C(x, t) =
x∫

L

V ∗

DL(v, T )[V ∗ + ξ V (x, t)]
v∫

0

∂C(u, t)

∂t
du dv − μ

x∫
L

Cγ (v, t)

Pγ (v, T )

∂C(v, t)

∂v
dv, (6)

where αass(x) = λass(x)/cass is the thermal diffusivity of M S .
Let us determined the solution of the system (6) by the method of averaging of functional corrections (see, for example, [20]). Substi-

tuting of the average value of the functions ρ(x, t) (ρ = χ, T ; χ = I, V , L) and their partial derivatives in the right sites of Eqs. (6) instead
of the considered functions gives us possibility to obtained the first-order approximations ρ1(x, t) of the functions ρ(x, t). For decreasing
of number of steps of the iterative process let us consider more accurate initial-order approximation (see, for example, [21]). As such
approximation we consider the solutions of the equations of the system (6), which correspond to average values of thermal diffusivity
α0ass, diffusion coefficients D0χ and zero parameter of recombination. The solutions can be written in the form

Ĩ(x, t) = I∗ + 2

L

∞∑
n=0

cn(x)enI (t)FnI , Ṽ (x, t) = V ∗ + 2

L

∞∑
n=0

cn(x)enV (t)FnV ,

C̃(x, t) = 2

L

∞∑
n=0

cn(x)enC (t)FnC , T̃ (x, t) = Tr + 2

L

∞∑
n=0

cn(x)enT (t)FnT , (7)

where

cn(x) = cos

[
π(n + 0.5)x

L

]
, enχ (t) = exp

[
−π2(n + 0.5)2 D0χ t

L2

]
,

Fnρ =
L∫

0

cn(v) fρ(v)dv, enT (t) = exp

[
−π2(n + 0.5)2α0T t

L2

]
.

Substitution of Eq. (7) into the right side of the equations of the system (6) instead of the functions ρ(x, t) gives us possibility to obtain
the first-order approximation (at the modified method of averaging of function corrections) of the considered functions

T1(x, t) = Tr − 2πα0ass

μT ϕ
d L

∞∑
n=0

(n + 0.5)

Θ∫
0

en+0.5T (−τ )

L∫
0

cn+0.5(u)
p(u, τ )

cass
du dτ

x∫
L

sn+0.5(v)

αass(v)

×
[

2

L

∞∑
n=0

cn+0.5(v)en+0.5T (t)

Θ∫
0

en+0.5T (−τ )

L∫
0

cn+0.5(u)
p(u, τ )

cass
du dτ + Tr

]ϕ

dv

− 1

μT ϕ
d

x∫
L

1

αass(v)

[
Tr + 2

L

∞∑
n=0

cn+0.5(v)en+0.5T (t)

Θ∫
0

en+0.5T (−τ )

L∫
0

cn+0.5(u)
p(u, τ )

cass
du dτ

] v∫
0

p(u, t)

cass
du dv

− 1

μ(ϕ + 1)T ϕ
d

[
2

L

∞∑
n=0

cn+0.5(v)en+0.5T (t)

Θ∫
0

en+0.5T (−τ )

L∫
0

cn+0.5(u)
p(u, τ )

cass
du dτ + Tr

]ϕ+1

+ Td/μ(ϕ + 1),

I1(x, t) = I∗ −
x∫

L

1

D I (v, T )

v∫
0

kI,V (u, T )

{[
I∗ + 2

L

∞∑
n=0

FnI cn+0.5(u)en+0.5I (t)

][
V ∗ + 2

L

∞∑
n=0

FnV cn+0.5(u)en+0.5V (t)

]
− I∗V ∗

}

− 2π
D0I

L2

∞∑
n=0

(n + 0.5)FnI

x∫
sn+0.5(v)

D I (v, T )
dv,
L
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V 1(x, t) = V ∗ −
x∫

L

1

D V (v, T )

v∫
0

kI,V (u, T )

{[
I∗ + 2

L

∞∑
n=0

FnI cn+0.5(u)en+0.5I (t)

][
V ∗ + 2

L

∞∑
n=0

FnV cn+0.5(u)en+0.5V (t)

]
− I∗V ∗

}

− 2π
D0V

L2

∞∑
n=0

(n + 0.5)FnV

x∫
L

sn+0.5(v)

D V (v, T )
dv,

C1(x, t) = μ
2γ +1π

Lγ +2

∞∑
n=0

Fn+0.5(n + 0.5)

x∫
L

sn+0.5(v)

Pγ (v, T )

[ ∞∑
n=0

Fn+0.5C cn+0.5en+0.5C (t)

]γ

dv

− 2π
D0C

L2

∞∑
n=0

Fn+0.5C

x∫
L

V ∗sn+0.5(v)

Dc(v, T )[V ∗ + ξ V 2(v, t)dv] ,

where sn(x) = sin[π(n+0.5)x
L ]. The second-order approximations of the functions ρ(x, t), by using the method of averaging of function

corrections can be determined by using the standard procedure (see, for example, [20]), i.e. one shall substitute the sums α2ρ + ρ1(x, t)
instead of the functions ρ(x, t) in the right side of the equations of the system (6). The substitution gives us possibility to obtained the
second-order approximation of the functions ρ2(x, t) in the following form

T2(x, t) = Tr + 1

μT ϕ+1
d

x∫
L

[α2T + T1(v, t)]ϕ
αass(v)

v∫
0

∂T1(u, t)

∂t
du dv − 1

μT ϕ+1
d

x∫
L

[α2T + T1(v, t)]ϕ
αass(v)

v∫
0

p(u, t)

cass
du dv

− [α2T + T1(v, t)]ϕ+1 − T ϕ+1
r

μ(ϕ + 1)T ϕ
d

,

I2(x, t) = I∗ +
x∫

L

1

D I (v, T )

v∫
0

∂ I1(u, t)

∂t
du dv +

x∫
L

1

D I (v, T )

v∫
0

kI,V (v, T )
{[

α2I + I1(u, t)
][

α2V + V 1(u, t)
] − I∗V ∗}du dv,

V 2(x, t) = V ∗ +
x∫

L

1

D V (v, T )

v∫
0

∂V 1(u, t)

∂t
du dv +

x∫
L

1

D V (v, T )

v∫
0

kI,V (v, T )
{[

α2I + I1(u, t)
][

α2V + V 1(u, t)
] − I∗V ∗}du dv,

C2(x, t) =
x∫

L

V ∗

DL(v, T )[V ∗ + ξ V (v, t)]
v∫

0

∂C1(u, t)

∂t
du dv − μ

x∫
L

[α2C + C1(v, t)]γ
Pγ (v, T )

∂C1(v, t)

∂v
dv.

The parameters α2ρ are determined by the following relation [20]

αi jρ = Mijρ − Mi−1 jρ

LΘ
, (8)

where Mijρ = ∫ Θ

0

∫ L
0 ρ

j
i (x, t)dx dt . The final relations for the parameters α2ρ takes the form

α2T = Tr + T ϕ+1
r

μ(ϕ + 1)T ϕ
d

+ 1

μT ϕ
d LΘ

Θ∫
0

L∫
0

x
[α2T + T1(x, t)]ϕ

αass(x)

x∫
0

∂T1(v, t)

∂t
dv dx dt − MT 11

LΘ

+ 1

μT ϕ
d LΘ

Θ∫
0

L∫
0

x
[α2T + T1(x, t)]ϕ

αass(x)

x∫
0

p(v, t)

cass
dv dx dt − 1

μT ϕ
d LΘ(ϕ + 1)

Θ∫
0

L∫
0

[
α2T + T1(x, t)

]ϕ+1
dx dt,

α2V = − 1

2

[
(LΘ + S I01)

(
1 + S I10

LΘ

)
+ S I00

LΘ

(
W V + S V 11 − I∗V ∗ S V 00 + MV 11 − I∗LΘ

)
+ S I00

LΘ

(
S V 11 − I∗V ∗ S V 00 + W V + MV 11 − I∗LΘ

) + S V 00

LΘ

(
I∗LΘ − S I11 + I∗V ∗ S I00 − W I − MI11

)
− S I10 S V 01

LΘ

][
S I00

(
1 + S V 10

LΘ

)
− S I10 S V 00

]−1

+
{[(

S V 11 − I∗V ∗ S V 00 + W V + MV 11 − I∗LΘ
) S I00

LΘ

+ S I00

LΘ

(
S V 11 − I∗V ∗ S V 00 + W V + MV 11 − I∗LΘ

) + (LΘ + S I01)

(
1 + S I10

LΘ

)

+ S V 00

LΘ

(
I∗LΘ − S I11 − W I − MI11 + I∗V ∗ S I00

) − S V 01
S I10

LΘ

]2[
S I00

(
1 + S V 10

LΘ

)]−2

− 4

[
S V 01

LΘ

(
I∗LΘ − W I + I∗V ∗ S I00 − S I11 − MI11

) + (
S V 11 − I∗LΘ − I∗V ∗ S V 00 + W V + MV 11

)

×
(

1 + S I01

LΘ

)][
S I00

(
1 + S V 10

LΘ

)
− S I10 S V 00

]−1} 1
2

,
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α2I = I∗LΘ − Q I − S I11 + I∗V ∗ S I00 − MI 11 − α2V S I10

LΘ + α2V S I00 + S I01
,

α2C = μ

LΘ

Θ∫
0

L∫
0

x
[α2C + C1(x, t)]γ

Pγ (x, T )

∂C1(x, t)

∂x
dx dt − 1

LΘ

Θ∫
0

L∫
0

xV ∗

DL(x, T )[V ∗ + ξ V (x, t)]
x∫

0

∂C1(v, t)

∂t
dv dx dt − MC11

LΘ
,

where

Sρi j =
Θ∫

0

L∫
0

x

Dρ(x, T )

x∫
0

kI,V (v, T )I i
1(v, t)V j

1(v, t)dv dx dt, Wρ =
Θ∫

0

L∫
0

x

Dρ(x, T )

x∫
0

∂C1(v, t)

∂t
dv dx dt.

Some examples of the parameters α2T and α2C are presented below for several values of γ and ϕ . For ϕ = 1

α2T = − 1

2LΘ

(
μTd LΘ − Q 100 − Q 010 + 2MT 11

ϕ + 1

)
+

[
1

L2Θ2

(
μTd LΘ − Q 100 − Q 010 + 2MT 11

ϕ + 1

)2

− 4
ϕ + 1

LΘ

(
μTd Tr LΘ + Q 101 + Q 011 − MT 21

ϕ + 1
− μTd MT 11 + LΘT 2

r

ϕ + 1

)] 1
2

,

for ϕ = 2

α2T = 3

√√
q2 + p3 − q − 3

√√
q2 + p3 + q − ϕ + 1

3LΘ

(
Q 100 + Q 010 − 3MT 11

ϕ + 1

)
,

for ϕ = 3

α2T = 1

2

√(
b +

√
8y + b2 − 4c

)2 − 16y − 16(by − d)√
8y + b2 − 4c

− 1

2

(
b +

√
8y + b2 − 4c

)
,

for γ = 1

α2c = 1

LΘ − μR01

[
μR11

Θ∫
0

L∫
0

xV ∗

Dc(x, T )[V ∗ + ξ V (x, t)]
x∫

0

∂C1(v, t)

∂t
dv dx dt − MC11

]
,

for γ = 2

α2c = − 1

2R02

(
2R12 − LΘ

μ

)
+

{
1

R2
02

(
2R12 − LΘ

μ

)2

−
[

R22

R02
− 1

μ

Θ∫
0

L∫
0

xV ∗

Dc(x, T )[V ∗ + ξ V (x, t)]
x∫

0

∂C1(v, t)

∂t
dv dx dt − MC1

μ

]}
,

for γ = 3

α2c = 3

√√
q̂2 + p̂3 − q̂ − 3

√√
q̂2 + p̂3 + q̂ − R13

R03
,

where

Q ijk =
Θ∫

0

L∫
0

xT k
1(x, t)

αass(x)

x∫
0

∂T1(v, t)

∂t

[
p(v, t)

cass

] j

dv dx dt,

q =
(

Q 100 + Q 010 − 3MT 11

ϕ + 1

)3
(ϕ + 1)3

27L3Θ3
−

(
Q 100 + Q 010 − 3MT 11

ϕ + 1

)
(ϕ + 1)2

3L2Θ2

(
μT 2

d LΘ − 2Q 110 − 2Q 011 + 3MT 12

ϕ + 1

)

− (ϕ + 1)

(
μT 2

d Tr LΘ + Q 102 + T 3
r LΘ

ϕ + 1
+ Q 012 − μT 2

d MT 11 − MT 13

ϕ + 1

)
,

p = −ϕ + 1

3LΘ

(
Q 100 + Q 010 − 3MT 11
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Fig. 2. Calculated distribution of dopant after annealing with continuance
Θ = 0.0025D0L/L2 (curves 1 and 3) and Θ = 0.005D0L/L2 (curves 2 and 4). Curves
1 and 2 are correspond to spatial of distribution of dopant in homogeneous material.
Curves 3 and 4 are correspond to spatial distribution of dopant in M S for D2 < D1

and D1/D2 = 4. Solid lines are analytical results. Dashed lines are numerical results.
Coordinate of interface is equal to a = L/2.

Fig. 3. Solid line is calculated distribution of dopant. Squares are experimental distri-
bution of boron concentration in silicon (see [11]) for dose F = 2 × 1015 cm−2. The
boron distribution has been annealed by 20 laser pulses with continuance 23 ns,
repetition rate 1 hertz and power of density 0.5 J/cm2.

q̂ = R3
13

R3
03

− R13

R03

(
3μR23 − LΘ

μR03

)
+ R33

R03
− MC1

μR03
−

Θ∫
0

L∫
0

xV ∗

Dc(x, T )[V ∗ + V (x, t)]
x∫

0

∂C1(v, t)

∂t
dv dx dt,

q̂ = 3μR23 − LΘ

3μR03
, p̃ = 1

3

(
bd

4
− e

)
− c2

36
, Rij =

Θ∫
0

L∫
0

x
C i

1(x, t)

P j(x, T )

∂C1(x, t)

∂x
dx dt.

Farther let us analyzed the dynamics of redistribution of dopant in the considered M S (see Fig. 1). The obtained analytical relations
give us possibility to analyzed the redistribution during annealing of dopant demonstratively. Using numerical approaches of Eqs. (1), (3)
and (4) leads to increase the exactness of the spatiotemporal distribution of dopant concentration.

3. Discussion

Let us to analyse the dynamics of redistribution of dopant in the M S (Fig. 1) for step-wise approximations of spatial distribu-
tion of diffusion coefficients of radiations defects and dopant and thermal diffusivity. In the case the approximations can be written
as αass(x) = αass1[1(x) − 1(x − a)] + αass21(x − a) and Dχ (x) = Dχ1[1(x) − 1(x − a)] + Dχ21(x − a), where 1(x) is the unit function; Dχ1,
Dχ2, αass1 and αass2 are diffusion coefficient and thermal diffusivity of the E L and substrate, respectively. Spatial distributions of dopant
concentration for some values of annealing time and difference between diffusion coefficients of E L and substrate are presented in Fig. 2.
For simplification of analysis we consider the following normalization:

∫ L
0 C(x, t)dx = 1. The figure shows, that interface between layers

of M S gives us possibility to increase the sharpness of (p–n)-junction (if the junction was formed near the interface) and homogeneity
of dopant distribution in doped area. The increasing of the sharpness leads to decreasing of diffusion capacitance of the junction. The
increasing of the homogeneity leads to decreasing of local heating in (p–n)-junction or to decrease the depth of the junction for fixed
value of local heating. Calculated spatial distribution of dopant and experimental one has been compared in Fig. 3.

Increasing of annealing time leads to increase of the homogeneity of dopant distribution and to decrease of sharpness of the (p–n)-
junction. To increase of the effects at one time the annealing time should be optimized. It should be noted, that two limiting cases of
annealing of radiation defects can be considered. The first of them is the limiting case of large time of annealing of defects (spreading
of distribution of dopant is larger, than thickness of E L). The second of them is the limiting case of small time of annealing of defects
(spreading of distribution of dopant is smaller, than thickness of E L). Optimization of annealing time for the second limiting case is
necessary, because the increasing of the annealing time leads to shifting the (p–n)-junction to the interface of the M S . Let us to use
the earlier introduced criterion (see, for example, [6–8,21,22]) for optimization of annealing time. To use the criterion spatiotemporal
distribution of dopant concentration is approximated by the step-wise function (see Fig. 4).

To estimate the optimal annealing time the mean squared error between the real spatiotemporal distribution of dopant concentration
and step-wise approximation function should be minimized. Dependences of optimal annealing time on several parameters are presented
in Fig. 5. The figure shows, that increasing of the thickness of the E L leads to increasing of the compromise annealing time. Increasing of
the ratio D1L/D2L and the parameter ζ leads to decreasing of the annealing time. It should be noted, that annealing by laser pulse with
optimal continuance could be substituted by some laser pulses with smaller continuance, but with high frequency.

4. Conclusion

Analysis of dopant redistribution in a multilayer structure during annealing by laser pulses for production an implanted-junction
rectifiers have been done. The analysis shows, that heating of surficial region of the multilayer structure leads to increasing of previously
described effect of simultaneously increasing of sharpness of implanted-junction rectifier and homogeneity of dopant distribution in
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Fig. 4. Spatial distribution of dopant in M S for implanted-junction rectifier. Curve 1
is idealized spatial distribution of dopant. Curves 2–4 are spatial distributions of
dopant for different values of annealing time (increasing of number of curves corre-
sponds to increasing of value of annealing time).

Fig. 5. Dependences of dimentionless compromise annealing time ϑ = Θ D0L/L2 on
some parameters of M S . Curve 1 is the dependence of ϑ on the ratio D1L/D2L

for ζ = 0 and a = L/2. Curve 2 is the dependence of ϑ on the parameter ζ for
D1L/D2L = 1 and a = L/2. Curve 3 is the dependency of the ϑ on the ration a/L for
D1L/D2L = 1 and ζ = 0.

doped area. Based on recently introduced criterion optimal annealing time, which corresponds to compromise between increasing of the
sharpness of (p–n)-junction and homogeneity of dopant in doped area for this type of annealing, has been estimated. Dependences of
optimal annealing time on several parameters have been considered.
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