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common—and how far we all are from solutions! But it is also pleasant simply to relax among
those who share our view of the importance of mathematics. The social events are designed to give
the maximum opportunity for informal, unrestricted contact.

Probably for many participants this may be the most vivid impression they carry away with
them from the Congress— this sense of belonging to a community which transcends all barriers of
nationhood, of politics, of race and religion—this sense that a common love of mathematics is a
stronger force in uniting our profession than any other force could be which seeks to pull us apart.
And we do not believe that there is any better way to create this wonderful sense of genuine
comradeship than participation in an International Congress.

A CONJECTURED ANALOGUE OF ROLLE’S THEOREM FOR
POLYNOMIALS WITH REAL OR COMPLEX COEFFICIENTS

I. J. SCHOENBERG
Mathematics Research Center, University of Wisconsin, Madison, WI 53705

1. Introduction. We assume that n > 2 and let
n
(1.1 P(z)=z"+a,z"" %+ --- +an=]:I(z—zj)

be a polynomial with a; = 0; hence its zeros z; satisfy
(1.2) zn+z,+ - +z,=0.

n

We also consider its derivative
n—1
(1.3) P(z)=nz""'4+(n—-2ayz" 3+ - +a, , = n]:I (z—w),

having the zeros w, satisfying
(1.4 w+w,+ - +w,_ =0.

Evidently, the origin O of the complex plane C is the centroid of the set z; and also the centroid
of the w,.
The set of 2n — 1 points

(1.5) R={z;w}

we call the complex Rolle set of P,(z). If we turn the set R about the origin O by the angle 8, the
new set R(0) is also a complex Rolle set.
Indeed, by (1.1) and (1.3) we have

Pz ) =1z = ) = 11 (2 - 3¢).
1 1

n—1

(d/dz) P,,(Ze—io)= e_an'(ze”w) = ne ' l_[ (Ze-ia _ Wk)
1

I. J. Schoenberg: 1 would very much like to know if our easy derivation of Theorem 2 from van den Berg’s
Theorem 1 generalizes so that Conjecture 1 can be derived from Theorem (4.2), on page 11, of Morris Marden’s
book [2, Theorem (4.2), page 11, for p = n and m; = my = --- = m, = 1]. The w, appear there as the foci of an
algebraic curve of class n — 1 which touches all segments z,z, (r # 5) in their midpoints. A short biography of mine
appears on the back cover of the paper edition of my little book [3). I may add to it that I played the violin and
made chamber music most of my life, and that I have been a vegetarian since the age of ten.
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n—1
=ne " TT(z - we).
1
These equations show that the rotated set
(1.6) R(0) = {zjeio,wke"’}

is the complex Rolle set of P,(ze™"?).

We say that the Rolle set R is rectilinear, provided that all its 2n — 1 points z; and w) are on
a straight line which must contain the centroid O of all these points. If all z, are real, then by the
usual Rolle theorem also all w, are real. The invariance of the Rolle set by rotation implies that if
all z; are on a line L through O, then all w; are on L, and so R is rectilinear.

From (1.2) and (1.4) we obtain the equations

(1.7) YzP=-23 zz,= —2a,,
! AT
n—2
(1.8) wi=— Y ww, = -2 ——ay,
k<K’

whence, by eliminating a,, we obtain the identity
n—1 n
(1.9 Y wi= n-—2 DI
1 1

n
Thus the 2n — 1 points of any complex Rolle set R satisfy the important identity (1.9).
The invariance of R by rotation around O has the following consequence:

THEOREM 0. If the Rolle set R = {z;;w, } is rectilinear, then we have the equation
n—1 n—2J20
(1.10) L bl === Ll

Indeed, the rectilinearity of R implies that there is an angle ¢ such that
z;= *|z;|e® forall j, and w, = £|w|e” forall k.

Substituting these into (1.9), and canceling the factor e?'®, we obtain the equation (1.10). We may
therefore state

COROLLARY 1. The equation (1.10) is a necessary condition for the rectilinearity of the Rolle set
R={z5w}.

These results suggest the following

CONJECTURE 1. For any complex Rolle set R = {z;; w, } we have the inequality
-9 )

. n
(1.11) w2 + -+, < (Izo)> + -+ +lza1?),

with the equality sign if and only if R is rectilinear.

In the sequel we first establish Conjecture 1 for the special case when n = 3; we actually settle
this case in two different ways. For n = 3 the two points w;, and w, are evidently on a line L
through O. In Theorem 3 we prove Conjecture 1 for any complex Rolle set such that all w, points
are on a line L. In spite of the simple proof of Theorem 3 we have included the more complicated
direct proof of Conjecture 1 for the case n = 3, because its approach might possibly generalize for
arbitrary n (see the generalization for all n of our Theorem 1 to Theorem (2,3) in Morris
Marden’s book [2, p. 11]. We also establish Conjecture 1 for the special case when P,(z) is a
binomial polynomial.
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Fred Sauer, of the MRC Computing Staff, has verified the inequality (1.11) for some 25
numerically given complex P,(z), for n = 4 and n = 5. For this help I am much obliged to Fred.
I am also impressed by the speed and precision of the Jenkins-Traub algorithm used in solving the
equations P,(z) = 0 and P/(z) = 0.

2. A first proof of Conjecture 1 for n = 3. Let
(2.1) T=(z,12,,2)

be a non-degenerate triangle in the complex plane having the zeros of P;(z) as vertices. By (1.2)
the centroid of T is in the origin O. We shall use the following theorem of van den Berg ([1], or [3,
Chapter 7)).

THEOREM 1 (van den Berg). Let E be the Steiner ellipse of the triangle. This is the ellipse which is
inscribed in T such that E is tangent to the sides of T in their midpoints. Then the zeros of Pj(z) are
identical with the focii w, and w, of the ellipse E (see Fig. 1).

Z-plane

FiG. 1

With z = x + iy and z, = x; + iy, we place T U E so that the major axis v,0, of E is on the
2

real axis, its center being at the origin. Let a and b be the semi-axes of E and a? — b? = ¢ = w!
= w7. We now subject the plane to the affine transformation

x(1) =x

() =y, (0<1<1),

which contracts E toward the x-axis. As the semi-axes of the new ellipse E(¢) = 4,E are a and
bt, we find that the foci of E(t), which we denote by w,(¢) and w, (¢), have the abscissae

wi (1) =Va* - b** and w,(t) = —Va® - b*r>.

As t > 0 + we see
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1. That the foci of E(?) converge to the endpoints v; and v, of the major axis of E.
2. Thatlimz, = x, (j = 1,2,3).

By continuity we conclude that (x;, x,, x5, 0y, ,) is a complex Rolle set composed of five real
points, so that by (1.9) we have v? + v = (1/3)(x} + x? + x?) and therefore

1 3
(2.2) E?Z,P >

W =

3

2_ 2, 2 2 2
Ex, =01+ 03 2 |w|” + wmy]".
1

A comparison of the extreme members proves the inequality (1.11).

Moreover, if the extreme members of (2.2) are equal, then we must have X3 |z;|> = £}x?. This
clearly implies that |z |> = x} for all j, and therefore that z, = x; for all j. We have therefore
established

THEOREM 2. Conjecture 1 holds for n = 3.

3. A generalization. We shall now generalize Theorem 2 in a certain direction and at the same
time simplify its proof, as Theorem 1 will not be used. However, we add the new assumption that

(3.1) All w, are on a line L through O.
We may as well assume that all w; are real. This allows us to state

THEOREM 3. If all w; are real, then we have the inequality

n—1 n—2 n
(3.2) X wis——Xlzl%
1 1

with the equality sign if and only if all z; are real.
Proof. By (1.9) we have

n—1 n
n-—2
Lowp =" 2L,

and therefore

n—1 n—2
(33) X owi=

n
Xz

n—2¢
< gl
no

This proves (3.2).
If we have the equality sign in (3.2), then it surely holds also in (3.3), and this implies that

n n
Yz =Xz
1 1

This last equation implies that all » complex numbers zf have the same argument. But this means

that there is an angle @ so that z? = |z,|¢”’. This, however, implies that

z, = *|z,|e/? forall j,

and it follows that all points z, are on a line L through O.

By the Gauss-Lucas theorem the convex hull of the z; must contain the convex hull of the w,.
As the w, are all real by assumption, it follows that we must have § = 0, hence all z; are real.
This completes our proof of Theorem 3.

4. Verifying Conjecture 1 for binomial polynomials. We say that our polynomial is binomial
provided that it is of the form P,(z) = z" + a,z"~*, where we may as well assume that a, = 1;
hence

(4.1) P(z)=z"+z""k=7"%(z"+1), (2<k<n),



12 1. J. SCHOENBERG [January

and
(4.2) P(z)=n""'+(n—k)zr k1= nz"_k_l(zk 2= ; k).

Denoting, as before, their zeros by z; and w,, we now find that

n—1 n—k 2/k n
il =k(2E) T and Ti -k,
1 1

n

so that (1.11) amounts to the inequality

k(n—k)z/" n—2
n n

k.

N

This being evident if k = 2 or if k = n, there remains to prove
LEMMA 1. We have the inequality
(4.3) (n=2)*>n*2(n—k) if 2<k<n

This we derive from the more general

LEMMA 2. If the reals x,, ..., x,, not all equal to each other, have the arithmetic mean
1k
(4.9 a=;;%,
then
(4.5) (x—a)">ﬁ(x—x) it x>x (j=1,...,k)
. . 3 7 ,eeesr k).

Proof of Lemma 2. Taking logarithms, we see that (4.5) is equivalent to
k
(4.6) log(x—a)>%21:log(x—xj) if x> maxx;.
From (4.4) we have
1k
x—a=zzl‘,(x—xj)
and (4.6) amounts to
1& 1

(4.7) IOg(Z;(x - xj)) >4 21:108(" - Xx;),
which follows from the strict concavity of logx in 0 < x < co. Indeed, for any strictly concave

function f(x) in (0, ), and for positive quantities p; = x — x,, not all equal to each other, we
have the well-known inequality

1& 1
f(z;Pj) > ;Zﬁf(l’,)-
For f(x) = log x this amounts to (4.7).
We now specialize Lemma 2 by choosing
X, =X,= +++ =X,_,=0, Xe_1=x,=k, and x=n.

For the mean value (4.4) we find
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while

k=2
Gr-x) = (= xe)(x =m0 = (0= &)
Now (4.5) goes over into the desired inequality (4.3).
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THE INTERVAL OF CONVERGENCE AND LIMITING FUNCTIONS OF A
HYPERPOWER SEQUENCE

J.M. DE VILLIERS AND P. N. ROBINSON
Department of Applied Mathematics, University of Stellenbosch, 7600 Stellenbosch, South Africa
1. Introduction. In this article we study the convergence of the infinitely iterated exponential
(1.1) x=h(z)=2z"

for real positive z. We prove that h(z) exists for z € [e™¢, €!/¢] by showing that x = h(z) is the
unique solution of the first auxiliary equation

(1.2) f(z,x)=x—2z"=0
for (z,x) € (1, €/°] X [0, e], and also the unique solution of the second auxiliary equation
(1.3) glz,x)=x—-2z"=0

for (z,x) € [e™%,1) X [0, 00). In addition we prove that the sequence of hyperpowers implied by
the right hand side of (1.1) diverges for z & [e~¢, €'/¢]. For (z,x) € (0, e ) X [0, c0) it turns out
that the second auxiliary equation g(z, x) = 0 has exactly three solutions s,(z), s(z) and s,(z)
satisfying

0<s(z) <s(z) <s5(z) <1,

where x = s(z) also solves f(z, x) = 0, and we show here that the subsequences of odd and even
hyperpowers converge to s,(z) and s,(z), respectively, hence the divergence of the original
hyperpower sequence. For z € (€'/¢, 00) we prove that divergence is a direct consequence of the
non-existence of solutions of the first auxiliary equation f(z,x) = 0.

The same interval of convergence was established in an article by Khoebel [2], where the
implicit function theorem was also employed, but where a proof by contradiction was used to
prove the divergence of the hyperpower sequence for z € (0, e~ ¢). Our more direct approach leads
to estimates that are sharper than some of those obtained there, and yields in addition some
interesting properties of the limiting functions of the hyperpower sequence (1.1).

J. M. de Villiers: 1 obtained a Ph.D. degree at Cambridge University in 1974 and was then appointed to the
Department of Applied Mathematics at the University of Stellenbosch (about 50 kilometers from Cape Town),
where I now hold the position of associate professor. The courses I teach, as well as my research interests, are mainly
in the fields of applied functional analysis, differential equations and numerical analysis. The second author, P. N.
Robinson, was a graduate student under my supervision at this department. For the last eight years I have been, in
addition to my mathematical teaching duties, full-time conductor of the Stellenbosch University Choir. At the end of
1984 I laid down my post as choral conductor in order to devote more time to mathematical teaching and research.
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