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The question of how to deal with inefficient detectors in actual experiments of the Einstein-
Podolsky-Rosen type is studied. We derive the necessary and sufficient condition for compatibility
with local realism of data collected in experiments with two settings of each detector, without mak-
ing auxiliary assumptions about undetected events. For the conventional experiment with particles
in the singlet state (or its photon analogue), the data predicted by the quantum theory do not violate
this condition unless the quantum efficiency of the detectors exceeds 83%.

I. INTRODUCTION

The experiments of Aspect and co-workers! have drawn
considerable attention in the broader scientific literature,?
because they bear on whether or not a common-sense
description of the world, first proposed by Einstein, Po-
dolsky, and Rosen,? is valid. This description, sometimes
termed ‘“local realism,” assigns an independent and objec-
tive reality to physical properties of parts of a many-
component system when these parts are well separated
from one another. Local realism is in patent conflict with
the conceptual apparatus of quantum mechanics. Bell’s
inequality* and its generalizations®>~’ show that it is also
in conflict with the quantitative predictions of quantum
mechanics.

The experiments by Aspect et al. and by others®°® are
all variants of Bohm’s version'® of the Einstein-
Podolsky-Rosen experiment, and they entail the measure-
ment of the spin projections (or polarizations) of two spa-
tially well-separated spin- particles (or photons) in a
highly correlated state such as the singlet state, along in-
dependently chosen directions. Loosely speaking, local
realism implies an upper limit on the spin correlations
which is exceeded by quantum-mechanical predictions. In
all the experiments that have been performed so far, not
all the particles are detected, and so the correlations are
measured using only those events in which both members
of a pair are observed, and it is these correlations which
exceed the upper limit. In defense of local realism, how-
ever, one could argue that the excessive correlations might
be possessed only by those particles actually detected in
pairs. If the detected particles were not representative of
the whole ensemble, then the experiments could not be re-
garded as having conclusively refuted local realism.

This loophole for local realism has, in fact, long been
noted®~"!! and various auxiliary assumptions have been
proposed, whose conjunction with local realism can be
tested in a real experiment. Lo and Shimony'? have stud-
ied how efficient the detectors must be in order not to
make such assumptions and still permit a discriminating
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experiment to be carried out, assuming that the pairs that
are observed obey quantum mechanics. The necessary
condition for local realism that they derive can be shown
to require a minimum detector quantum efficiency of
86% (more precisely 85.97%) to be violated in the most
favorable ideal case,!* and a particular experiment they
propose requires an efficiency of 90% in order to reveal a
violation.

Our point of view in this paper is very similar to that of
Lo and Shimony. We shall improve upon their analysis
and obtain the strongest possible inequality implied by lo-
cal realism for the standard experiment where there are
two choices for the direction along which each particle’s
spin can be measured. (We shall call such an experiment
a “2X2 experiment.”) In practical terms, alas, this does
not help very much: the limit on the detectors’ efficiency
is lowered to 83% (more precisely 82.84%) in the ideal
case.

The condition that we obtain is, in fact, contained in a
somewhat disguised form in Ref. 5, although it appears
there only as a necessary condition for local realism, and
the authors do not use it to discuss the question we are
asking in this paper, namely, how efficient must the
detectors be in order to test local realism without invoking
subsidiary assumptions. Our demonstration of its suffi-
ciency for a local realistic model of data obtained from
2 X 2 experiments implies that such experiments done with
detectors less than 83% efficient will always be explicable
in terms of some hidden-variable model exploiting detec-
tor inefficiencies. It is possible that n Xn experiments
with n larger than 2 can refute local realism with lower
detector efficiencies, but the generalization of the analysis
we describe below even to the 3X 3 case has not yet been
done, and promises to be an exceedingly cumbersome exer-
cise.!* Until 3x3 or higher-order experiments can be
shown to refute local realism with lower efficiencies, the
critical efficiency will have to remain at 83%.

To formulate the question more precisely, consider an
experiment with ideal detectors. Two spin-% particles in
the singlet state fly apart toward Stern-Gerlach appara-
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tuses, and through repeated runs of the experiment, we
measure the probability p; (m,m’) for the first particle to
have a spin projection m along a direction a,, i=1,2, and
for the second particle to have a spin projection m’ along
a direction 4, k=3,4. It is convenient to rescale the m’s
to take on values +1 rather than ++. The data are said
to be compatible with local realism if they can be
represented in the form

palm,m")= [ drp(R)p(m | Mpi(m' | 1) . (1.1)

Here, A is a set of hidden variables with distribution p(A),
and p;(m | A) and pg(m'|A) are conditional probabilities
for m and m’, respectively, given a particular choice for
the hidden variable A. The representation (1.1) implies the
inequality>’

|EztEy | + |EuTEwn| <2, (1.2)

where E;; is the correlation function

Eyp= > mm'pyp(m,m'). (1.3)

m,m’

Fine!® subsequently showed that these inequalities are in
fact sufficient for a representation (1.1) of the data in a
2 X 2 experiment.

An example of a subsidiary assumption that is often
made in order to analyze realistic experiments is the no-
enhancement assumption of Clauser and Horne.> This as-
sumption is formulated in the context of photon experi-
ments with polarizers for detectors in which only one
value of the polarization is detected. (In the spin
language, this corresponds to shutting off one of the
beams in which particles can emerge from the Stern-
Gerlach magnets.) The assumption states that for each
value of A, the probability of detecting a photon when the
polarizer is in place is not more than the probability of
detecting it when the polarizer is absent. Although quan-
tum theory asserts (and experiments will almost surely
confirm) that this is true of the ensemble of photons as a
whole, there is no reason to impose it pointwise with
respect to A in an acceptable hidden-variable representa-
tion of the data. In principle there is no reason why the
probability of triggering a counter might not be correlated
with the value of the hidden variable carried by the pho-
ton and the orientation of the polarizer it has just passed
through.

It should be noted that the inequality we derive is ap-
plicable only to an experiment in which particles are
detected in both spin (or polarization) channels. Such a
two-channel experiment has in fact been done with
photons.!®

To exclude hidden-variable representations that exploit
detector inefficiencies without untestable subsidiary con-
ditions, we require a generalization of the necessary and
sufficient conditions (1.2) to the case in which nondetec-
tion of a particle is treated as an outcome on the same
footing as finding the values m =1 or m=—1. We as-
sign to such nondetection the value m =0, so that for any
pair of axes @; and a; for which the experiment is per-
formed, the data consist of the numbers of runs
ng(m,m’) in which the outcomes (m,m’) are obtained.

(Note that there are eight possible outcomes, correspond-
ing to each m being + 1, —1, or 0, except m=m'=0.)
We can now ask if it is possible to supplement these data
by numbers 7n;(0,0) in such a way that the resulting prob-
abilities py (m,m’) (which now have nine possible values
for their argument) can be represented in the form (1.1).
In this paper, we treat only the 22 case, deriving the
necessary and sufficient condition for the existence of a
representation (1.1) when there are four such probability
distributions (corresponding to two choices for each of the
magnets’ orientation), subject only to certain symmetry re-
quirements discussed below. The problem thus posed is
formally identical to a spin-1 problem where all the parti-
cles are detected. A slightly simpler version of it, contain-
ing somewhat different symmetry restrictions, has already
been solved by Mermin and Schwarz,!® and we summarize
in Sec. II the requisite extension of their analysis.

The symmetries that we shall impose on the extended
distributions are

(i) pu(m,m’)=py(—m,—m’),

(ii) pi(0,1)=p;(1,0)=p(1,0) independent of i,k ,
(1.4)
(iii) ¥ pi(0,m)=7F pix(m,0) independent of i,k .
m m

Note that if one assumes (or verifies by some other means)
that the source in an actual experiment produces pairs at a
steady, fixed rate, all these relations can be subjected to
direct experimental test. Since they also follow from
quantum mechanics when the pairs are in a singlet state,
we expect that they will be satisfied in reality, within ex-
perimental error. Note also that assumptions (ii) and (iii)
imply that the (unmeasurable) rate or probability with
which both members of a pair escape detection [denoted
p(0,0)] is independent of the magnet orientations.

The inequalities that follow from the analysis of Sec. II
can be written in a form superficially similar to the in-
equality (1.2) above:

leisten|+[enten| <2, (1.5)
where e;;, is defined as

€ik '—'E:Ik/[l"P(O,O)] ’ (1.6a)

with

Ej= 3 mm'py(m,m’) . (1.6b)

m,m’

Note that the correlation function E;,—distinct from the
ideal case function Ej, defined in Eq. (1.3)—is defined in
terms of the extended distribution including probabilities
for nondetection, which cannot be determined absolutely
since p(0,0), the probability of neither particle being
detected, is unknown. This unknown probability drops
out of the condition (1.5) entirely, however, since e; is
normalized by the total number of events in which at least
one particle is detected, and so can be expressed solely in
terms of the observed counting rates for single and double
events as
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ex= 3 mm’nik(m,m')/ > ng(m,m’), (1.7)
m,m’ m,m’

where the unmeasurable case m =m'=0 is omitted from
the sums.

How hard will it be to violate condition (1.5) in an actu-
al experiment if the results of such experiments are con-
sistent with current theoretical expectations? If particle
detection depends solely on the quantum efficiency 7 of
the detectors, which operate independently of each other,
then it is easy to show that e; and the ideal correlation
function E;; pertaining to the underlying distribution are
related by

i = (1.8)

2_7]_?Eik )
so that the condition (1.5) can be written as
| EyztEy |+ |E\yFEyu| <4n~'—2. (1.9)

If, in addition, the underlying distributions are those given
by quantum mechanics for pairs in a singlet state, then

Ey =2;-8 . (1.10)

The left-hand side of (1.9) then has a maximum value of
2372, which exceeds the right-hand side if 7 >2(V2—1)
~0.83.

The close similarity between conditions (1.5) and (1.2)
suggests that the latter ought to follow from a straightfor-
ward generalization of the arguments leading to the form-
er or that it ought to be possible to map the case with
inefficient detectors back on to the ideal case before carry-
ing out the analysis. We know of no simpler way to es-
tablish that (1.5) is a sufficient condition for a representa-
tion (1.1) (which is the basis for the somewhat demanding
implications for subsequent experimental tests), other than
by going through the rather elaborate analysis described in
Sec. II. The necessity is considerably easier to show. A
proof (suggested by Appendix B of Ref. 5) is as follows.

Let us define the function f(m) to be 1 if m equals 1,
and to be —1 otherwise. Denoting f(m;) by f;, we have
the obvious inequality

f1+2)f3+U—f2)fa<2.

If we now multiply this inequality by the conditional
probabilities p;(m;|A), pi(m,|A), P3(msz]|A), and
Palmy | A), sum over all the m’s, and average over the dis-
tribution p(A), we get

Ej+En+E|y—Ej;+2p(0,0)<2,

(1.11)

(1.12)

which via Eq. (1.6) is easily seen to be one of the eight in-
equalities encapsulated in (1.5). Three others are similarly
obtained by appropriate changes of signs in Eq. (1.11),
and the remaining four are obtained by averaging inequal-
ities such as

(fi+f28:3+(f1—f2)84<2,

where g; =f(—m;).

The above proof that if the data are compatible with lo-
cal realism then the inequality (1.5) must hold, does not
require the data to satisfy any of the symmetries (1.4).

(1.13)

These are needed only to establish the rather more diffi-
cult converse: that if the inequality does hold then the
data are compatible with local realism.

II. DERIVATION OF THE NECESSARY
AND SUFFICIENT CONDITION

The inequality (1.5) can be derived by a straightforward
generalization of the analysis of Sec. 5 of Mermin and
Schwarz.!® We refer the reader to their paper for a dis-
cussion of how to formulate the solution and we shall use
their notation throughout, referring to their equations by
prefacing the equation numbers by the letters MS.

If local realism holds, then just as the measured distri-
butions (or “two-axis” functions) are written in Eq. (1.1)
as averages over A of a product of two conditional proba-
bilities, we can construct three-axis functions p,,; and
D12,4 by averaging products of three conditional probabili-
ties. These functions will be non-negative, and, respec-
tively, return p; ; and p; 4, i=1,2, when summed over the
appropriate variable. In addition, summing p;,; over
variable number 3 will give the same function as summing
P12,4 over variable number 4. Conversely, if two three-
axis functions with all these properties can be found, then
one can easily construct'*!® a four-axis function P12,34>
which is non-negative and returns all four pair distribu-
tions as marginals. This in turn can be shown!>!? to be
equivalent to the existence of a representation (1.1) for the
data in a 2X2 experiment. The existence of two such
three-axis functions is therefore necessary and sufficient
for the existence of a representation (1.1) for the data in
the 2 X2 case.

Very briefly, the method of Mermin and Schwarz
derives necessary and sufficient conditions for the ex-
istence of a pair of three-axis functions as follows. The
most general functions with these properties can be ex-
pressed as linear combinations of the specified correlation
coefficients such as the Ej, and a finite number of un-
known quantities which drop out of all observable quanti-
ties. The requirement that the three-axis functions be
non-negative leads to a set of linear inequalities in these
unknowns. One picks any one of the unknowns and
rewrites the inequalities as a set of upper and lower
bounds for it. By demanding that every upper bound
exceed every lower bound one obtains a new set of in-
equalities in one fewer unknown. Repeating this process,
one finally arrives at inequalities in the known coefficients
alone, which are the desired necessary and sufficient con-
ditions for the existence of three-axis functions, and there-
fore, for the compatibility of the data at hand with local
realism. (They are clearly necessary, and they are also
sufficient, since if they hold, the method of their deriva-
tion shows how to construct the three-axis functions.)

The most general observed distributions compatible
with the symmetries (1.4) can be written as'®

pu(mm')=+[1+3k(B3m2+3m'?—4)+ 3¢ mm’

++Bep2—1)(3m?—=2)3m"?=2)]. (2.1

To extend the analysis of Ref. 16, we need only to in-
troduce one more b coefficient, namely, b,00 =00 ="0002,



3834

since the probability of detection of one particle (irrespec-
tive of what happens to the other) will not in general be
twice the probability of nondetection. Further, the as-
sumption that p;;(0,0) does not depend on the choice of
axes means that c;,?=c;3? but it is convenient not to ex-
ploit this fact immediately. With the definition

k=V2boy/3 ,

qus9 (MS5.4)—(MS5.7) are thus replaced, respectively,
by

(2.2)

p=3h+mymyd+mmsd3s+mymsd,;)

(no m; are zero), (2.3)
p=T7[1+c1’ —h+4k +(2C, —dp)m m;]
(only mj is zero), etc. , (2.4)
p=<(h—5k—c;32—cy?)
(only m3 not zero), etc. , (2.5)

3+2(Cp+C13+Cy3)+2k

342(E1,—C13—Ca3) 4+ 2k

min |342(—Cp+C3—C3)+2k

342(—Cp—C13+Cp3)+2k
1—k

> max

One must also retain the conditions that the unobservable
two-axis distribution be positive: namely,

(2.9a)
(2.9b)

1i2c_‘12 +C122+4k 20 N
1—k2€12222k .

Finally, we get one more inequality which has no ana-
logue in Ref. 16 since it is an automatic consequence of
the positivity of the observed distributions and the condi-
tion (2.9b) when k =0:

et +ei e +3k>0. (2.10)

The next step consists of eliminating the coefficients ¢,
and c¢;,2. They cannot be related to observed quantities,
but we do know that they must not depend on the choice
of the axis a3 We also set c32=c,32=c? at this stage.
The inequalities (2.8)—(2.10) can then be written more
compactly as

2k
l—k>cpp?>max{—1+k+2c%}, (2.11)
—3k —2¢?
Ce=3+42k—2|Cip—Cox | >€122+2C12 (2.12)
€122 +2C, > —3—2k+2c*+ | Ty +Cox | =Dy, (2.13)
E =342k —2|Cx+Cox | >¢122—2C15 » (2.14)
€122 —2C1, > —3—2k+2c*+ |C1x—Cox | =F% , (2.15)
122126, > —(14+4k) (2.16)
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PZ%(C122+6‘132+C232+3k——h) (all m; are zero) .
(2.6)

Note that these differ from the corresponding equations
in Mermin and Schwarz only by the additional terms in k.
[See Eq. (MS5.9) for the definitions of 4, d,, etc.]

The conditions for the three-axis distribution to be non-
negative are then given by (MS5.10)—(MS5.13) with the
following replacements:

h—h—4k in (MS5.11)
h—h—5k in (MS5.12)
h—h—3k in (MS5.13) ,

(2.7

Eq. (MS5.10) is unchanged.

We now proceed to eliminate the unknowns A, d,, di3,
and d,; in the same order as in Appendix C of 16 (Ref.
20). This leads to the following generalization of
(MSS5.14):

2 2 2
Cp"+C13"—c3

2 2 2
Cr2"—C13"+¢y;3 . (2.8)

2 2 2
—Cp " t+c3"+c3

I

where the indices k,!/ can take on values 3,4 independent-

ly.
If we now eliminate ¢, from the last five inequalities
we get four inequalities that do not contain ¢,

Ce>Dy, Ex>F;, Ci>—(1+4k), E, > —(1+4k),
2.17)

and five more that do:

2¢12%> { D+ F, Dy — (1+-4k),Fy —(1+4k), —2(1+4k)} ,
(2.18)

Cir+E;>2¢15° . (2.19)

Similarly eliminating c;,?> we get 14 more inequalities
all of which can be shown to be consequences either of the
positivity of the observed distributions or of (2.17), as can
the last two inequalities in (2.17) themselves. The remain-
ing inequalities, i.e., the first two in (2.17), can be written
concisely as

| CietCor | + |CuFca| <3+2k—c?. (2.20)

From Egq. (2.1) we can relate ¢;; to Ej;, and k and c? to
p(0,0) and p(0,1) and thus write this inequality as
|EwtEx |+ |Eu+Ey| <2[1-p(0,0)], (21

which is nothing but (1.5).
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