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Coherent optical manipulation of triplet-singlet states in coupled quantum dots
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We show that spin-orbit coupling in a quantum dot molecule allows for coherent manipulation of two-
electron spin states using Raman transitions. Such two-electron spin states defined by the singlet and triplet
states of two exchange-coupled quantum dots can have favorable coherence properties. In addition, two of the
four metastable ground states in this system can be used as auxiliary states that could facilitate implementation
of tasks such as mapping of spin states to that of a single propagating photon. We find that even weak
spin-orbit effects—manifesting themselves as slightly different g factors for the electron and the hole—would
allow for the coherent Raman coupling of the singlet-triplet states. We also discuss the possibilities for
implementing quantum optical techniques for spin preparation and manipulation.
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I. INTRODUCTION

Over the past decade, semiconductor quantum optical sys-
tems, implemented in quantum wells and particularly quan-
tum dots, have been paradigmatic for the exploration of
novel quantum-mechanical effects in the solid state.! Poten-
tial applications as single-photon sources®> or as quantum
bits for quantum information storage and processing* have
driven investigations of single quantum dots with ground
states containing zero or a single electron charge. These sys-
tems bear marked resemblance to noble gas and alkali atoms.
However, systems similar to alkaline-earth atoms (with two
valence electrons) or homonuclear alkali molecules remain
largely unexplored. Such systems typically have a more
complex fine structure, leading to metastable spin states with
useful decoherence properties’ and have well-established
semiconductor realizations.®’

In this paper, we examine approaches for optically cou-
pling the four metastable ground (spin) states of a two-
electron double quantum dot system via optical Raman tran-
sitions. These states, split into a singlet and a triplet
manifold, have demonstrated useful properties with respect
to spin-related dephasing,3-! as seen in recent experiments
in electrically controlled double quantum dots.!" Our ap-
proach for coupling singlet and triplet states via optical fields
can lead to the integration of optical manipulation, measure-
ment, and entanglement techniques with demonstrated ap-
proaches to controlling fine-structure states in electrical
quantum dots.

While we focus on the case of zinc-blende (III-V) semi-
conductor quantum dots, we find that optical coupling of
ground-state spins can be realized even with weak spin-orbit
interaction, where a sufficient condition is that the electron
and hole states have differing g factors; this is believed to be
the case for small radius carbon nanotubes.!? Thus, our ap-
proach for working with fine-structure states can find wide
application in a variety of quantum dot systems.

II. COHERENT OPTICAL MANIPULATION OF COUPLED
QUANTUM DOTS WITH STRONG SPIN-ORBIT
EFFECTS

In this section, we develop an approach to coupling sin-
glet and triplet fine-structure states of a double quantum dot
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system via optical Raman transitions. We rely on the dra-
matic difference between exchange energies for two elec-
trons on the same quantum dot and two electrons in sepa-
rated quantum dots to provide a reliable means of using
single spin selection rules to develop controlled, two-spin
selection rules. We find that for doubly charged double quan-
tum dots with spin-orbit coupling, such as zinc-blende semi-
conductor quantum dots, polarization- and energy-selective
transitions between all fine-structure states are possible. This
allows techniques, such as stimulated Raman adiabatic pas-
sage (STIRAP), to be used to initialize arbitrary superposi-
tions of singlet and triplet spin states.

We consider here the optical transitions in a doubly
charged coupled quantum dot (CQD), a situation that can, for
instance, be realized with an asymmetric pair of stacked InAs
quantum dots embedded in a Schottky-diode structure’ in an
appropriate gate voltage regime. We assume that the left dot
(L) is blueshifted with respect to the right dot (R) and that
the lowest conduction level of the right dot is detuned by A
with respect to the left one (see Fig. 1, inset). Higher orbital
states can be neglected as the associated transitions are well
separated in energy in the gate voltage regime of interest. For
a range of gate voltages where the two dots contain a total of
two electrons, by fine tuning the voltage, it is possible to
convert between atomic and molecular orbital states,’ i.e.,
between charge states (0,2), (2,0), and (1,1). Labels (m,n)
here refer to the number of electrons confined in the (left,
right) dot. In the presence of finite interdot tunneling and in
the regime where (1,1) is the lowest-energy charge configu-
ration, the two resident electrons hybridize resulting in an
energetically isolated singlet-triplet subspace where the ef-
fective degree of freedom is the total spin of the two elec-
trons. This regime is denoted by II in Fig. 1 and in what
follows, we will work in this regime.

In the (1,1) regime (II), the ground-state manifold is given
by the states |(1,1)S)=7(ej er —ef er)|0), [(1,1)Tp)
=5(ej ep +el ep)|0), [(1.1)T,)=e] e},[0), and |(1,1)T_)
=¢; ep|0) with energies ESO:A+ECR—1 ETO,T+:A+EC4R,
where J=~T2/(EXR—ELR). The typical energies for an InAs
self-assembled quantum dot are given by E¢"~Eg =V;;
~20meV,  EFf=V{ pe=10meV,  where Vi,
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FIG. 1. (Color online) The energy-level structure of the coupled
dot system as a function of the detuning A. The charge state of the
ground state follows the sequence (0,2), (1,1), (2,0) from left to
right. A=Vf (i=1,2) denote the anticrossing points at which the
system undergoes a charge transition. The dashed lines show the
triplet states |(1,1)7,) and |(1,1)T.). The ground state is always in
the singlet configuration at low magnetic fields. In the inset, we
show the single-particle level structure of the coupled quantum
dots. The detuning A <0 for the configuration shown.

=ffdrdr’goj.‘(r)go;?(r)VC(|r—r’|)<p£(r )¢l (r') and ¢}(r) are the
single-particle envelope wave functions on dot j=L,R for
conduction-band electrons (a=e) or holes (a=h). The tun-
neling matrix element 7, appearing in the exchange splitting
J is given by T,=¢ +V2LLR te+ Vg g =1 meV and con-
nects |(1,1)S) to |(2 0)S) and |(0 2)S). Here, 1, is the bare
interdot electron tunneling matrix element.

Consider now a right-hand circularly polarized (o) opti-
cal excitation with its optical axis along the heterostructure
growth direction (z axis). This axis is defined with respect to
the crystal axes of the quantum well structure on which the
dots are grown, which typically defines the axis of shape
asymmetry of the quantum dots (see Fig. 2). The light-matter
interaction Hamiltonian in the dipole, rotating wave, and en-
velope function approximations is given by

V,= %QJ,(MRRe;lh;ﬂ + MLRezlh;ﬂ)e_i“’+’ +He. (1)

Here, OCL(Le—O L°=0lx+iy|L"=1,L"=+1), where |L
=0,L{=0) is the periodic part of the conduction-band Bloch
wave functlon which has s character, and |L"=1 Lh +1) is
that of the valence-band electrons (or holes) Wthh has p
character, while My and M, are the overlaps of the elec-
tron and hole envelope wave functions ,(R|R), and ,(L|R),,
respectively. The implicit assumption here is that the light-
hole levels and the spin-orbit split-off hole band are energeti-
cally well separated from the heavy-hole band denoted by
|My=|"=3/2,71=3/2), [V)=|s"=3/2,/"=-3/2) (J"=L"
+8") so that their optical coupling can be neglected, a well-
justified approximation in zinc-blende (III-V) semiconductor
quantum dots.'3 Note that it is the correlation between the
spin and spatial parts of the heavy-hole states (|T)=|L"
=|Li' =—1; | )) which enables us to use selection
rules based on pseudospin conservation. The excited-state
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FIG. 2. (Color online) Schematics showing the optical excitation
of the CQD system embedded in a Schottky-diode structure. The
light pulse Q,(¢) is incident along the crystal-growth direction (z
axis).

manifold of doubly charged excitons (X?7) is eight dimen-
sional

[(2,11)0) = eZTeLe}ThzTea,,IOX E,=EM"R,

12,1 a) = eZTeLehhfeahIOX E,=EMR,

|(11.2)03,) = ezTe;Te;?lh;ah|0>’ E;=ELRR 4 A,

|(1l,2)0'h> = ezle;Te}ilh;ah|0>, E4=ELRR+A’

where o,=T,l. We assume that because of the particular
structure of the dots and the bias of choice, the optically
generated hole always resides on the right dot within its life-
time. Here, E“*=Vi5 ) +2Vi§ pe=Vik 1r=2ViLrr—Vikar:
for instance, and ELLR> ELRR because of the e-h attraction.
An additional electron tunneling matrix element connects
states |(2,17)T) and [(17,2)T) as well as [(2,1])T) and
|(1],2)T), which gives rise to an anticrossing at around the
bias A~ EMR— ELRR~15_20 meV. If we operate in the (1,1)
regime (IT) close to V=V, (Fig. 1), we can safely neglect any
mixing of these X* states.

Consider the action of o, optical excitation on the (1,1)
ground-state manifold

V.[S) == Mpgl(11,2) T) = Mgl(2,1) Ty,
V+|T()> :_MRR|(U,2) m ) +MLR|(2,1U ) ),
VT, = Meel(11,2) Ty = Mgl 2, 171) T,

V.|T)=0. 2)

Here, we have discarded the common factor (i%/2)(),. Note
that there is no optical transition from |7_) under o, circular
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FIG. 3. Diagram showing the optical selection rules from the
singlet-triplet ground state of the CQD to the intermediate excited
states in a Raman spin-flip scheme. While |(1,1)S) and |(1,1)Ty)
couple to the |M|=1 excited-state manifold, |(1,1)7,) and |(1,1)7_)
couple to the [M|=2 subspace. Here, M refers to the spin projection
of the total pseudospin of the left electron and the right hole.

polarization (and similarly, for o_ and T,). The following
table illustrates the optical selection rules for transitions from
|(1,1)S) and |(1,1)T,) (Fig. 3).

o | o |
aL2afiand
@1pmfind

MRR
MLR

E,.
Es

Since Myzgr> Mg, the upper row transitions are strongest,
while the lower row may be neglected.

The e-h exchange interaction in the relevant optically ex-
cited states would be negligibly small since the unpaired
electron is exchange coupled to the hole that resides in a
different dot. Starting with |(1,1)S,Tp), the states |(1],2)T)
and |(17,2)4) will form the “bright” excitons X>~, whereas
the states [(17,2)T) and |(1],2){) will form the bright ex-
citons for the |(1,1)7.) subspace.

Ideally, one would like to be able to connect all the mem-
bers of the (1,1) singlet-triplet space through a common op-
tically excited state. In Eq. (2), however, the strong transi-
tions under o, circular polarization connect (S,7,) and
(T,,T.) to different excited states [|(1] 2 and
[(17,2)T), respectively]. One can envision manipulating the
system with a combination of a static external magnetic field
and optical fields to overcome this problem.

Consider applying an in-plane magnetic field B=Bx. This
will mix both the ground-state and the excited-state mani-
folds. Noting that the in-plane hole g factor is negligible,
instead of rewriting the new states in the z representation, we
will just rewrite the interaction Hamiltonian in the new elec-
tron spin-basis

ifh
V+— +[MRR(6RT eRl)hRﬂ"'MLR(eLT eLl)h e+

+H.c. (3)

Here, e,} now creates an electron with S¢=+1/2 (|7,)). The
strong transitions now take the form

V+|S>: —/\/1RR(|TLﬂ > - HLTT >),
V,|Ty) = _MRR(|TLﬂ>+ |lLﬂ .,

V+|T+> == MRRHL l >,
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FIG. 4. Diagram showing the selection rules in the presence of
an in-plane magnetic field. The previously derived selection rules
for B=0 are no longer valid in this case, allowing for either |T,) or
|T_) state to be coupled to the same intermediate state as that of |T;)
and |S). The two sets of ground-state manifolds can be accessed by

using either left- or right-hand circularly polarized fields.
V,|T)=0,

V—|T—> == MRRHL U )

Thus, one can couple either the submanifold (S,7,,T,) by o,
light to [1,T) or (S,7y,7-) by o_ to |1, ) (we drop the
explicit reference to the doubly-occupied orbital here). The
excitation scheme for the circular polarization case is shown
in Fig. 4.

Note that o, polarized light couples |(1,1)S) and
|(1,1)T,) to ||, ) as well. In this regard, it is important to
have a Zeeman splitting €, (€,=g°ugB is the single electron
Zeeman splitting) that is sufficiently large so that coupling of
a single spin state to a single intermediate excited optical
state may be possible.

Having an auxiliary state at disposal for optical manipu-
lation is important in the implementation of robust qubit ro-
tations based on STIRAP.!* The qubits in our CQD scheme
above are formed by (1,1)S and (1,1)T,, which is a sub-
space that can be protected from hyperfine induced dephas-
ing by spin-echo techniques.!! Combined with the immunity
to dephasing of the intermediate state that can be achieved
by STIRAP, the above-described scheme seems to be well
suited for generation and manipulation of qubit states for
quantum information protocols in zinc-blende (ITI-V) semi-
conductor quantum dots.

III. OPTICAL MAPPING OF SPIN STATES

In this section, we discuss a scheme to efficiently prepare,
manipulate, and map spin states of a doubly charged CQD
into photon polarization for long-distance quantum state
transfer.!

Consider the CQD system placed inside a high-Q cavity
and the gate voltage tuned such that the system is in regime
I, but close to the anticrossing at V=V,. We furthermore
apply an in-plane magnetic field. This will ensure that the
states S, Ty, and T, are well separated in energy. Let us
assume that the system is initialized to the superposition state

|¥) = a|S) + B Tp) (4)

state into the state
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FIG. 5. (Color online) The cavity-assisted Raman scheme for
spin-to-polarization mapping. The o_ polarized laser at frequency
w, and pulse shape ,(7) results in cavity-assisted Raman transition
to |S) when the two-photon resonance condition w_—w,=E; —Eg
=0, is satisfied. Similarly, the o, polarized laser at frequency wy,
and pulse shape (),(¢) results in cavity-assisted Raman transition to
|S) when w+—wb=ETO—ES=52. Note that the energy splitting be-
tween the excited states is negligible due to the small in-plane hole
g factors.

(W) =o|T") + BITy) )

by a STIRAP sequence using o_ polarized light as described,
for example, in Ref. 16. The Raman nature of the scattering
will ensure a robust state mapping.

We next turn on lasers with frequencies w,, w,, polariza-
tions o_, o,, and time-dependent Rabi frequencies (,(z) and
Q,(1), which are detuned by 8, and &, from |7_)—|7,{) and
|To)—|1, T transitions, respectively. The detunings &, and &,
are carefully chosen so that the transitions |7, {)—|S) and
[1,Ty—|S) are resonant with a pair of degenerate cavity
modes w_ and w, with orthogonal polarizations (see Fig. 5).
Such cavities can be engineered using photonic band-gap
structures where the cavity-mode splitting can be precisely
tuned by atomic force microscopy oxidation so as to enforce
the degeneracy condition required.!” The two-photon reso-
nance condition for both polarizations will result in cavity-
assisted Raman transition down to |S) and a transfer of the
original spin state (4) to the polarization of the emitted single
photon via

(C(|T_> + B|TO>)|O>ph - |S>(a| 1 0_>ph + :8| 1 0+>ph) . (6)

The resulting photons can then be used for long-range quan-
tum communication in a distributed network of nodes con-
taining CQD-cavity systems. For this to work reliably, we
require the Purcell-enhanced decay rate to be faster than spin
dephasing rates. Experimental parameters'® suggest this can
be achieved by a factor of 100.

We now briefly discuss the potential practical difficulties
for implementing these ideas in GaAs/InGaAs quantum dot
systems. First, we remark that reliable creation of tunnel
coupled double quantum dot systems has been established in
experiment.%’ Specifically, for strain-induced quantum dots,
dots created in one layer will naturally create a strain field in
a subsequent layer, leading to preferential formation of
paired quantum dots with a distance well specified by the
heterostructure growth process. Second, techniques for cou-
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pling pillars of many quantum dots in a semiconductor
membrane-based photonic crystal cavity have also been
demonstrated,'® making the CQD-cavity systems a reason-
able assumption for future devices. Finally, the quantum con-
trol techniques necessary for STIRAP and other such com-
posite pulse sequences are well established, and, in principle,
the speed and accuracy of these operations are limited only
by the achievable laser power and stability.

IV. COHERENT OPTICAL MANIPULATION OF COUPLED
QUANTUM DOTS WITH QUASIDEGENERATE
VALENCE BANDS

We now show that coherent optical coupling between
fine-structure states of doubly-charged double quantum dots
could be achieved even when the intrinsic spin-orbit cou-
pling of the semiconductor material is weak. We will rely on
an external magnetic field and weak electron-hole symmetry
breaking (differing electron and hole g factors) to show that
all relevant Raman transitions are accessible.

Consider the possibility of optical manipulation of quan-
tum dots where the spin-orbit effects are weak. The weak-
ened selection rules result in the following optical interaction
Hamiltonian

i 1
_ T il T T
V.= 5 Q+/\/1RR(}113,3/2,3/2e1re,1/2,—1/2 + Ehm/z,l/zek,l/z,l/z
\!

2 i
- \/;h;,l/Z,llze;i’,l/Z,l/Z)e “+'+H.c. (7)

Here, h; 7. creates a hole on the right dot with total angular

momentum J"=L"+S" and magnetic quantum number J,,
while e'};’l 1.0 Creates an electron in the conduction band with
spin projection o==+1/2. We only keep the strong, direct
transition terms of the optical Hamiltonian. Considering now
the action of ¢, optical excitation on the (1, 1) ground-state
manifold, we obtain

1
V.|S) = MRR[ (11,2)3/2,3/2) + ,—§|(1T,2)3/2, 1/2)
\“!

- \E|(1T,2)1/2,1/2>],

1
V.|Ty) = MR,{— (11,2)3/2,3/2) + ,—§|(1T,2)3/2,1/2>
\‘J

- \/%(”’2)”2’””]

VT, == Mgel(17,2)372,3/2),

V+|T_>=MRR{%|(11,2)3/2,1/2>— \/g|(1l,2)1/2,1/2>].
AY

In principle, the degeneracy in the excited-state manifold
presents a problem for coherent optical protocols due to po-
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FIG. 6. The energy-level structure of the excited-state manifold.
On the left, the energies are given in units of ugB,. The additional
smaller splittings are due to the possibly different g factors of elec-
trons and holes, i.e., nonzero €"¢. The states are written out explic-
itly in the format |L",$")[S¢) where the electron spin refers to the
left electron and the hole is on the right. The doubly occupied
singlet electrons in the right quantum dot are not shown.

tential destructive quantum interference between different
pathways. To overcome this difficulty, we consider the effect
of a magnetic field. For simplicity, we assume a Voigt con-
figuration (B=BZ%, say). The Zeeman Hamiltonian is given
by

Hy=pgB (L +g"S" + ¢°S?), (8)

where L" and S" are the x components of the hole orbital and
spin angular momentum, respectively. Let us take g"¢=2
+€"¢ with the hindsight that the spin-orbit interaction is
weak. Then, one can easily see that the total angular momen-
tum is not conserved. Thus, we have to use the
(L",L",$",5",S°) basis. The energy-level structure is given
in Fig. 6. In this basis, the optical interaction Hamiltonian is
given by

ih . .
V,= EQ+/\/1RR(H1e,ET +Hle ) +Hec., 9)
where
1 1 1 .
H£= Eh;,—l,zr_ EhL’O’G_EhR’+I’G U=T’l' (10)

The optical ground state is still given as above with the mag-
netic quantum numbers measured along x and with addi-
tional Zeeman energy contributions. The Zeeman contribu-
tions also split up the excited-state manifold, as shown in
Fig. 6. Consider, for in§tance, the transitions to the final state
|f>=|—>1 , l>h|T¢>e=€zT€; e;ﬁh;{:l,l' We  get V.[S,To)
= +(62T612Li€ILLeRT)=eRTe}€l(e£THIIeilHD’ which imply

AV,IS) =172,
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VT =172,
<f|V+|T+> =0,
(V.IT)=0.

However, if one is to consider a spin-flip Raman scattering
from S to T, there are two available paths via intermediate
states [fy)=|-1, | ),| 1), and |[f)=|~1,7)/1),. Only when
the electron and hole g factors are different would these con-
tributions allow a nonzero transition amplitude; otherwise,
the two available paths will interfere destructively. Hence, it
should, in principle, be possible to couple the states S, T, to
each other via two-photon processes if the electron and hole
g factors are different. In practice, the g factors should be
sufficiently different to ensure |ugB,(g"—g¢)|> v, where vy is
the broadening of the optically excited states.

V. CONCLUSION

We have presented a scheme for optical manipulation of
the metastable singlet-triplet subspace of a doubly charged
CQD. We find that with strong as well as weak spin-orbit
interactions, it is possible to implement Raman spin-flip tran-
sitions between a singlet and a triplet fine-structure-split
ground state. Such Raman transitions enable the implemen-
tation of arbitrary coherent rotations robustly via quantum
optical techniques previously proposed for single atoms or
ions.

A key issue is the identification of the conditions that need
to be satisfied in order to generate a spin-flip Raman scatter-
ing within a singlet-triplet space. In the absence of spin-orbit
coupling and a degenerate p-like valence band, the optical
Hamiltonian is a spin-0 operator. Thus, unless the spin-
conservation law is broken in the intermediate state, it will
not be possible to flip S to 7y. In the strong spin-orbit case,
the optical interaction Hamiltonian, however, is a reducible
spin operator with nonzero projections on spin-1 and spin-0
subspaces (where spin is actually a pseudospin due to the
restriction to the heavy-hole band). This particular property
makes it possible to optically connect S and T,

We expect that our findings will stimulate experimental
research aimed at combining electrical and optical manipu-
lations of confined spin states. The fact that optical manipu-
lation is possible even for quantum dot structures with weak
spin-orbit interaction enhances the prospects for pursuing
experimental realization in a larger variety of solid-state
systems.
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