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Truth-table degrees and the
Boone groups

By DonNALD J. COLLINS

In [2, 3] Boone proved that for every recursively enumerable Turing degree
of unsolvability D, there exists a finitely presented group G, whose word
problem is of degree D. While primarily concerned with Turing degrees,
Boone remarks in two footnotes ([2, p. 523, note 8] and [3, p. 50, note 4])
that at all times the reducibility involved in his argument is truth-table
reducibility and hence that the theorem remains true for truth-table degrees.
Later, however, he withdrew this assertion and speculated that it might even
be false (see J. C. Shepherdson’s review [8]). We show here that Boone’s claim
is in fact correct, but that the verification requires argument additional to
that given in [2, 8]. (See Boone’s corrective note [4] for an indication of where
his argument is lacking.) In this connection we should also mention the work
of A. A. Fridman on the same theorem. In this original announcement [6],
Fridman claimed that the theorem was true for truth-table degrees but did
not repeat this claim in the complete version [7] of his work and indeed his
argument breaks down in much the same way as does Boone’s. However, as
will be apparent, we shall make use of some of Fridman’s ideas.

We shall assume throughout that the reader is familiar with [2, 3], in
particular with the notation used there. We begin by considering the situa-
tion in [3] and then examine [2] later.

LEMMA 1. ?W)W =,1 is truth-table reducible to (?V k-free)(3D)V =, D.

Proof. Let W be a word of G. If Wis Wk~ Vk:W,, where ¢ = +1 and
V is k-free, and 3D)V =, D, then we call W, VW, a primitive k-reduction
of W of standard type. Also we write 7,[W] (3.[W]) for the word obtained
from W by deleting all symbols of W except k-symbols (by deleting all
k-symbols). Then it follows that

W =41l if and only if T [W] =1 in F(k), the free group on k, and
() there exists a sequence of primitive k-reductions of standard type
which terminates in 0,[ W], and 6,[W] =4, 1.

To show that the reduction is by truth-tables, we must show that there
exists a recursive procedure to compute for each word W of G an m-tuple
(Vy, Vs +++, V..), where m depends on W, and a truth-table with m “question
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columns” and an “answer column” from which it may be determined whether
or not W =,1 when the answers to the questions “does there exist D such
that V,=DinG?’ (1 =1,2, ---, m) are given. We denote (V,, V,, -++,V,)
by par(W) and the truth-table by ¢t(W). It is convenient, at this point, to
note that in prescribing how to obtain the truth-tables for words of G, we
may give a case by case description provided that there is a recursive pro-
cedure to determine which case holds.

If either m,[W] + 1 in F(k) or 6,[ W] #¢, 1, then by (x) W #,;1. In this
case we may take par(W) to be arbitrary and ¢¢(W) to have “No” in every
entry in the answer column.

Now suppose that 7,[W] = 1 in F(k) and 6,[W] =, 1. For brevity we
shall consider a specific example and then give a general description rather
than give a detailed proof by induction. So let W be

Uk V. kEV, k7 V,EV, BV kU,

and suppose that U,V,V,V,V,V,U, =, 1. Then it follows from (+) that W =,;1
if and only if
either i) @D)V, =4, D, A3D)V, =4, D, and @D)V, =, D
or (i) @D)V,=q D, @D)V,V,V, =4 D, and @D)V; =, D
or (iiiy @D)V,=4 D, @D)V,V,V, =4 D, and @D)V, =, D
or (ivy @D)V, =4 D, @D)V, =4, D, and @D)V,V,V,V,V; =, D
or (v) @D)V, =¢ D, @D)V,V,V, =4 D, and @D)V,V,V,V.V, =4 D.
In this case par(W) is the 15-tuple

(Vy, Vo Vi, Vo, ViVLV,y, Vi oo, Vs, VL, VLV, VIV,V V.V
which we think of as being composed of five triples or blocks where the decom-
position is the obvious one relative to (i)-(v). Then a line of the truth-table
contains “Yes” in the answer column if and only if there exists a block for
which all three answers are “Yes”.

It should be clear to the reader that an analogous procedure will give
an appropriate m-tuple and truth-table for an arbitrary W. The essential
point is that to each possible sequence of primitive k-reductions of standard
type there must correspond a block of questions and that the entry in a line
of the answer column is “Yes” if and only if there is a block of questions to
which all the answers are “Yes”.

We make use of the following lemma due originally to Fridman and later
elegantly proved by L. A. Bokut’ [1].

LEMMA. (Fridman-Bokut’) (?P)(AL)@AR)(AX)P =4, LER s recursively
solvable.
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LEMMA 2. (?V k-free)AD)V =, D 18 truth-table reducible to (?Z)X =, q.

Proof. Either by using an enumeration of all provable equations in G,
or else directly from the proof of the Fridman-Bokut’ Lemma, we can recur-
sively compute, for any P such that AL)@AR)@3Z)P =, LZR, words L,, Rp,
and I, such that P =, L, R,. This enables us to compute values for
par(V) and tt(V), for arbitrary V, as follows.

If Vis t-free, then D)V =, D if and only if (AR)V =, R. Since there
is an algorithm to determine whether or not the latter holds (the existence
of such an algorithm follows from Theorems V, XII, XIII and XVI and 0 of
[38]), we can define par(V) to be arbitrary and t¢(V) to have all answers “Yes”
or all answers “No” according as (AR) V =, R or not.

Now suppose that we have given a procedure to deal with all words V
with fewer than » ¢t-symbols. Let V be Ut*P where ¢ = =1 and U hasn — 1
t-symbols. Then 3D)V =, D if and only if (i) L,, R;, and Z, are defined,
(ii) @D)ULRZ; =4, D, and (iii) Z, =, ¢. Thus we define par(V) and t¢{(V) as
follows. Determine, recursively, if L, R, and X, exist and compute them
if they do. If they do not exist, then par(V) is arbitrary and ¢£(V') has “No”
in every entry in the answer column. Otherwise par(V) = (2, par(UL;Z;))
and #£(V) is derived from the diagram below.

Yes

: tt(ULpZp)
Yes
No

: tt(ULpZp)
No

This consists of two copies of t{(ULyZ;), one below the other, with an addi-
tional column to the left (for X,) with “Yes” entries next to the upper copy
of t{(UL»Z;) and “No” entries next to the lower. Then (V) is obtained by
making every entry in the answer column of the lower copy a “No”. It follows
from the equivalence involving (i), (ii), and (iii) that this is correct.

THEOREM. (?W)W =1 is truth-table equivalent to (?X)L =, q.

Proof. Since X =,q if and only if kX4 =, 3 "'t3k, it is clear that

(?Z)X =, ¢ is truth-table reducible to (?W)W =;1. The converse follows
from Lemmas 1 and 2.

To complete the argument, we must verify that for any recursively
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enumerable truth-table degree D there exists a Thue system T, of the re-
quired form, such that (?Z)Z =, q has degree D. We therefore examine
Boone’s argument in [2]. In particular we look at §§8, 6, and 9 in that
order.

By [2, Lemma 1], we may regard D as the degree of the problem
(?m)hsrt'q,h —, hgh. We require, firstly, the following truth-table version of
Equivalence Theorem 1’ [2, p. 568].

LeMmMa 3. (W, W on 3,)W ; hqgh s truth-table equivalent to
(?n)hsrq,h —, hqh.

Proof. The argument given in §8 of [2], taken exactly as it stands,
shows that the above two problems are truth-table equivalent. This must
be checked in detail but the verification is straightforward and we therefore
leave it to the reader.

We also require the truth-table version of Theorem XIII [2, p. 566] but
the procedure here is less clearcut.

_LEMMA 4. (W, W on Be)W k3,1 is truth-table equivalent to (?A, A
on 3)A -; P.
Proof. By [2, Lemma 39], (?A, A on 3)A ;P is truth-table reducible to
(?W, W on Bp)W 5, 1.

The converse, however, is not so straightforward. Just as the p-reduction
procedure of [3], which is derived from Britton’s Lemma [5, Lemma 4], can
cause the type of difficulty which we resolved in Lemma 1, so [2, Lemma 40]
gives a reduction procedure which requires special care. If W is a word on
B.p1, let 7, [W] be the word obtained from W by deleting all symbols except
¢ and d. Also let £, = (¢, d; ed — 1). Then it is not hard to show that if
w =% 1, then 7,[W] =;,,1. There is an obvious recursive procedure to
determine for any W whether or not 7,[W] =, 1 so it suffices to consider
words W such that 7,[W] =, 1.

If W is ¢-free, then W must also be d-free and W % 1 if and only if

Wis 1. A truth-table can certainly to be constructed for this case. So suppose

that W contains c-symbols. From Lemma 40 of [2], W -1 in &[P] if and only
if there is a sequence

(*) W = Achldcl b A101 = A20B2d02 —_— s 0o —) 1 ,
where B; — P in T. We employ what is essentially the argument of Lemma 1.

Given W we can, on the basis of the {c, d}-structure of W, write down all
such theoretically possible sequences (x) — let these be R, R, -+, R,. Each
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R; will have the same number p of steps and R; will be a genuine sequence
ifandonly if B FPin&,j=1,2 -+, p. Then

par(W) = (Buy cey Blpy ct ey Bqn tty qu)

and the truth-table is constructed in the obvious way.

We can now establish that the equivalences in Boone’s arguments can
all be established by truth-tables. Given any r.e. truth-table degree D, we
can, by Lemma 3, construct ¥, so that the word problem for <, relative to
hqh has (truth-table) degree D and hence, by Lemma 4, " can be constructed
such that its word problem relative to 1 has degree D. It follows easily from
Theorem XIV of [2] that we can construct T such that (?X)X =, ¢ has degree
D whence, by the Theorem, a finitely presented group can be constructed
with word problem of degree D.

One final point should be noted. We have proved that the equivalences
in Boone’s arguments can all be established by truth-tables. However, our
argument employs arbitrarily large truth-tables and it seems unlikely that
it can be modified or replaced in such a way as to show that all these equi-
valences can be established by bounded truth-tables. There seems, therefore,
to be no obvious answer to the question of whether or not the main theorem
remains true for bounded truth-table degrees.

QUEEN MARY COLLEGE, UNIVERSITY OF LONDON.
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