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Interface optical phonons in spherical quantum-dotÕquantum-well heterostructures

F. Comas and C. Trallero-Giner
Departamento de Fı´sica Teo´rica, Universidad de La Havana, Vedado 10400, Havana, Cuba

~Received 28 September 2002; published 3 March 2003!

Interface optical phonons are studied in the case of a spherical quantum-dot/quantum-well~QD/QW! het-
erostructure by applying a dielectric continuum approach. The prototypical case is a QD/QW of CdS/HgS in
the form of spherical shell of HgS embedded on a spherical CdS QD, a kind of structure intensively investi-
gated in the latter times. We also assume the QD/QW hetrerostructure surrounded by a host material which is
modeled in the form of an infinite dielectric medium which does not participate of the polar optical vibrations.
The possible interface phonon modes~CdS-and HgS-SO phonons!, the corresponding frequencies and the
electron-phonon interaction Hamiltonian are reported. A detailed discussion is made of the SO phonons fun-
damental characteristics and of the strength of the electron-phonon interaction.

DOI: 10.1103/PhysRevB.67.115301 PACS number~s!: 63.22.1m, 71.38.2k
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I. INTRODUCTION

In the framework of the dielectric continuum approa
~DCA! polar optical vibrations of small size crystals ha
been theoretically investigated since a long time ago.1 The
quantum version of these vibrations are the internal LO
TO phonons, as well as the SO phonons associated to
crystal boundary surfaces. The latter type of phonons are
to the different dielectric constants at the interfaces and
also calledinterfaceoptical phonons. Progress in the grow
technology has made possible to fabricate small crystal
the nanometer scale~nanoparticles!, where the three spatia
dimensions are substantially reduced down to a quasi-z
dimensional system. The so-calledquantum dots~QD’s! are
semiconductor nanoparticles where the linear dimensions
comparable to~or even smaller than! the corresponding ex
citon Bohr radius. At the present level of technological s
phistication QD’s with relatively well defined and contro
lable size distributions are fabricated.2–5 The host material
may be a silicate matrix, different organic compounds o
ferroelectric.6 The physical properties of QD’s are usual
studied by means of optical experiments, such as Ra
spectroscopy, hole burning, luminescence, etc., actually
lowing us to investigate the system at an almost individ
level.7–10 Particularly, these experimental techniques per
us to detect the QD phonons11 and study their properties.

By applying the DCA, polar optical phonons in QD’s o
the CdSe or CdS prototypes have been theoretically inve
gated assuming a spherical geometry and considering a
vibrating host material as an infinite dielectric medium
which the QD is imbedded.12,13The case of a QD with ellip-
soidal shape was recently studied,14,15while in all the above-
mentioned works the electron-phonon interaction Ham
tonian was explicitly derived and its influence on Ram
spectra line shapes was also analyzed. The question whe
DCA will correctly describe the interface optical oscillation
obviously is related to the QD linear dimensionsL. An esti-
mation can be made using the bulk phonon wavelengthlP
and requiring it to be smaller thanL (lP,L). Actually, if
lP>L, the mechanical boundary conditions should be
cluded in the treatment, while from the point of view of th
Raman selection rules,16 the purely DCA in general leads t
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misleading results. In such a case a more more rigorous
complete approach should be employed in order to obta
reliable description of optical phonon modes.17–19

In recent times QD’s of CdSe and CdS, as well as Q
heterostructures of the type CdS/HgS, the so-ca
quantum-dot/quantum-well~QD/QW! heterostructures, are
being synthesized by means of colloidal solution chem
try.20–22 These structures show rather interesting si
dependent optical properties~particularly concerning the
fluorescence spectra! and appear to have promising perspe
tives for the development of electronic and optical devic
In the case of QD/QW heterostructures a few monolayers
HgS are epitaxially grown on a CdS core and, after that,
system may be capped or not with an additional layer
CdS.21 The whole system is imbedded in a host mater
which usually is an organic compound. The bulk HgS has
energy gap (Eg50.5 eV) lower than the bulk CdS (Eg
52.5 eV), and hence a true quantum-well heterostructur
created within the QD. Experimental evidence demonstra
the presence of highly confined carriers in the HgS layer

The fundamental aim of the current work is to study t
SO phonons by applying the DCA to the case of a prototy
cal spherical QD heterostructure, which is modelled as
lows: a spherical core of material ‘‘1’’~say, CdS! is capped
with a spherically concentric layer of material ‘‘2’’~say,
HgS! and the whole structure is imbedded in a host mate
considered as an infinite dielectric medium which does
participate of the polar optical vibrations. Consistently a
plying the basic equations of the DCA we deduce the
phonon frequencies for QD-and QW-type modes as a fu
tion of the radius ratio of the core sphere to the external s
cap. The physical nature of these SO phonon branche
interpreted and related to the QD/QW structure. We a
make a detailed derivation of the electric potential as a fu
tion of the spatial coordinates for each of the possible
phonon branches, thus allowing to deduce an explicit exp
sion for the electron-phonon interaction Hamiltonian, who
physical features are discussed. Despite the simple char
of the applied model, we actually obtain interesting prop
ties of the SO phonons bearing a clear physical interpr
tion, which, as we will discuss in the text below, may be us
to interpret Raman measurements and should provide d
©2003 The American Physical Society01-1
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F. COMAS AND C. TRALLERO-GINER PHYSICAL REVIEW B67, 115301 ~2003!
information about the geometric parameters characteriz
the QD/QW heterostructures.

The paper is organized as follows. In Sec. II we prese
brief summary of the fundamental equations of the DCA a
apply them to our model system. Section III is devoted to
study of the SO phonon dispersion law, i.e., we describe
frequency branches as a function of the radius ratio of
heterostructure. In Sec. IV we derive the electric poten
and the electron-phonon Hamiltonian. Finally, Sec. V p
sents a detailed discussion of the main results of the wo

II. GENERAL EQUATIONS

For the sake of clarity, let us briefly summarize the fu
damental equations of the DCA for the description of t
polar optical phonons. They are extensively discussed in
existing literature on the subject.1,12–15 The Born-Huang
equations are

ẅ52vT
2w1A~«02«`!/4pvTE ~1!

and

P5A~«02«`!/4pvTw1
«`21

4p
E, ~2!

where w5Aru, u represents the relative displacement b
tween the ion pair~in units of length!, r is the reduced mas
density addressed to the ion pair of the vibrating mediu
Other quantities are the electric fieldE, the polarization field
P, the transversal limit bulk frequencyvT , and the static
~high frequency! dielectric constant«0 («`). Moreover, we
assume the Lyddane-Sachs-Teller relationvL

2/vT
25«0 /«`

with vL being the LO phonon frequency. Considering th
the electric field satisfies quasistatic Maxwell equations,
must require the induction fieldD5«(v)E5E14pP to ful-
fil the equation¹•D50. If the relation E52¹w is as-
sumed, we are led to

«~v!¹2w50. ~3!

In all the above equations the harmonic time dependenc
the form f (t);exp(2ivt) is applied. Then, the frequenc
dependent dielectric function«(v) is easily derived and is
given by the standard expression«(v)5«`(v22vL

2)/(v2

2vT
2). The SO phonons involve an electric potential sa

fying the Laplace equation¹2w50, in which case«(v)
Þ0. The potentialw should be continuous at the interfac
between two different media and also must fulfil the boun
ary condition

«1F]w1

]n G
S

5«2F]w2

]n G
S

, ~4!

i.e., continuity of the normal component ofD at the interface
surfaceS. A complementary relation, which proves to b
rather useful in what follows, reads

¹w5
«`vL

«`2«~v!
A4pr

«*
u,

1

«*
5

1

«`
2

1

«0
. ~5!
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We need to solve Laplace equation for the electric poten
w in the whole space. The geometry of the studied system
the following: for 0,r ,a we have material ‘‘1’’~a polar
semiconductor such as CdS!, for a,r ,b we have material
‘‘2’’ ~a different polar semiconductor such as HgS!, for r
.b we shall assume an infinite dielectric medium with
fixed dielectric constant«D . Using spherical coordinate
(r , u, f) the potential is given by

w lm~r , u, f!

5AlmYlm~u, f!

35
r l , r ,a,

b l21

g2l 1121
r l1

g2l 112b l

g2l 1121

a2l 11

r l 11
, a,r ,b,

b l

a2l 11

r l 11
, r .b,

~6!

where

b l5
1

2l 11
$@ l 111 l« (1)~v!/« (2)~v!#g2l 11

2 l @« (1)~v!/« (2)~v!21#%. ~7!

In Eq. ~6! the potentialw lm obviously satisfies Laplace equa
tion in the whole space, is already continuous atr 5a and
r 5b and shows the correct asymptotic behaviorw lm→0 for
r→0 andr→`. The fulfillment of boundary condition~4! at
r 5a and r 5b has been also ensured conducting to the
pression forb l given by Eq.~7! and to the SO phonon dis
persion relation@see Eq.~9! below#. The quantitiesYlm(u,f)
and Alm are the Harmonic Spherical functions and the n
malization constants, respectively. The dielectric functio
« (1)(v) and « (2)(v) correspond to materials ‘‘1’’ and ‘‘2,’’
respectively, while, according to the general~dispersionless!
DCA, are given by

« ( i )~v!5«`
( i )

v22v iL
2

v22v iT
2

with i 51,2, ~8!

wherev iL andv iT are the bulk longitudinal and transvers
polar optical phonons frequencies at theG point for each
semiconductor material (i 51,2), whileg5b/a. For a com-
plete determination of the potentialw lm we have to deter-
mine the constantsAlm . This will be left to Sec. IV.

III. SO PHONONS DISPERSION RELATIONS

As we mentioned in the previous section the bound
conditions led to the SO phonons dispersion equation
1-2
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« (2)~v!

«D

52
@g2l 1121#« (1)~v!1@11g2l 11~ l 11!/ l #« (2)~v!

@g2l 1121#« (2)~v!1@11g2l 11l /~ l 11!#« (1)~v!
.

~9!

Equation~9! gives the SO phonon frequencies as a funct
of the parameterg for different values ofl ( l 51,2, . . . ), and
may be considered the dispersion relations for this kind
phonon. As remarked before, we do not have here phon
in the usual sense and a phonon wave vector does not ap
at all.11 It is instructive to analyze two limiting cases of E
~9!. ~i! The limit g→1. In this case we are led to

« (1)~v!

«D
52

l 11

l
. ~10!

This limit corresponds to a single sphere of radiusa and
material ‘‘1,’’ imbedded in a dielectric infinite medium
Equation~10! is in total coincidence with previous results1,12

as should be expected.~ii ! The limit g→`. Notice that this
limit may be achieved in two cases:~A! a→0 with a fixed
value ofb and ~B! b→` with a fixed value ofa. Equation
~9! reduces to

« (2)~v!

«D
52

l 11

l

l« (1)~v!1~ l 11!« (2)~v!

~ l 11!« (2)~v!1 l« (1)~v!
. ~11!

The above relation involves a quadratic equation for« (2)(v)
and leads to two possible roots:

~A!
« (2)~v!

«D
52

l 11

l
~B!

« (1)~v!

« (2)~v!
52

l 11

l
, ~12!

corresponding to the cases~A! and ~B! as is explicitly indi-
cated in Eq.~12!. From the above analysis we see that,
each value ofl, we have three possible SO phonon branch
Actually, case~A! in Eq. ~12! defines a single frequenc
given by

xA
(`)5

lx2L1~ l 11!«Dx2T /«`
(2)

l 1~ l 11!«D /«`
(2)

~13!

which depends on«D , while case~B! in Eq. ~12! defines two
frequencies

x6B
(`)5

y6@y224~11a l !~x1Lx2T1a lx2L!#1/2

2~11a l !
, ~14!

wherey5x1L1x2T1a l(11x2L), a l5( l 11)«`
(2)/ l«`

(1) , and
x5(v/v1T)2. In correspondence with this notationx1L
5(v1L /v1T)2, x2L5(v2L /v1T)2, etc. The frequencies de
fined by Eq.~14! are independent of«D .

Considering the spatial symmetry of the QD/QW structu
we must expect two classes of interface phonons. One
them should be related to a spherical QD embedded in
tain host material and the other ones are connected to the
interfaces involved in the QW structure. Thus, this physi
11530
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analysis leads us to the prediction of three independent p
non branches for the structure under consideration. From
mathematical point of view the existence of three SO phon
branches can be directly demonstrated by realizing that
~9! is a cubic equation in thex, which reads

x32Plx
21Qlx2Sl50. ~15!

The coefficients in Eq.~15! are given in the Appendix A. The
above equation has three different real solutions which
be classified according to the classical Cardano’s~or Tarta-
glia’s! formula as23

x15
1

3
Pl12F2

1

27S Ql2
1

3
Pl

2D 3G1/3

cosQ/3, ~16!

x25
1

3
Pl12F2

1

27S Ql2
1

3
Pl

2D 3G1/3

cos~Q/312p/3!,

~17!

x35
1

3
Pl12F2

1

27S Ql2
1

3
Pl

2D 3G1/3

cos~Q/314p/3!,

~18!

where

Q5cos21H Sl12Pl
3/272PlQl /3

@24~Ql2Pl
2/3!3/27#1/2J . ~19!

The obtained solutions describe the three possible pho
branches~for each value ofl ) already mentioned in the tex
above. It can be proved that the rootx3 @Eq. ~18!# for g→`
leads to the asymptotic valuexA

(`) @Eq. ~13!#. In the same
limit the rootx1 @Eq. ~16!# hasx1B

(`) @Eq. ~14! with the upper
sign# as asymptotic value, whilex2 @Eq. ~17!# has its
asymptotic value defined by the same equation with
lower sign (x2B

(`)). The identification of the frequency asymp
totes ~for g→`! corresponding to the three different roo
gives us a certain physical insight into the nature of th
vibration modes. A more detailed discussion is left to Sec

IV. ELECTRON-PHONON HAMILTONIAN

In order to introduce a quantum description of the S
phonons we define the annihilation and creation opera
âlm and âlm

† obeying bosonic commutation relation
@ âlm ,âl 8m8

†
#5d l l 8dmm8 , etc. Then, the displacement vectoru

is transformed into the operatorû by means of

ûlm55
u0¹~r lYlm!âlm , r ,a,

u10¹F S ~b l21!r l1~g2l 112b l !
a2l 11

r l 11 D YlmG âlm ,

a,r ,b.
~20!
1-3



t

y
or
e

re
rm

p-

F. COMAS AND C. TRALLERO-GINER PHYSICAL REVIEW B67, 115301 ~2003!
The potential operatorŵ lm can be obtained from Eq.~20!
with the help of Eq.~5!. The continuity of this operator a
r 5a leads to

u105S «`
(1)v1L

«`
(2)v2L

D S «`
(2)2« (2)~v!

«`
(1)2« (2)~v!

DA«2* r1

«1* r2

u05ACl~v!u0 .

~21!

The potential operator forr ,a anda,r ,b is then given by

ŵ lm5Al~v!Ylm5
r l âlm , r ,a,

F b l21

g2l 1121
r l1

g2l 112b l

g2l 1121

a2l 11

r l 11 G âlm ,

a,r ,b,
~22!

where

Al~v!5
«`

(1)v1L

«`
(1)2« (1)~v!

A4pr1

«1*
u0 . ~23!

Now we shall determine the constantu0. The classical ki-
netic energy due to the vibrations is given by

WKin5
1

2
r1v2E

V1

u2dV1
1

2
r2v2E

V2

u2dV, ~24!

where V1 (V2) is the volume of the regionr ,a (a,r
,b). The energyWkin is transformed into an operator b
means ofu→û, but it must be realized that the operat
defined in Eq.~20! is not Hermitian. For that reason th
correct transformation isu2→(û†

•û1û•û†)/2. After a
simple manipulation of this result, we obtain

Ĥph
( lm)5

1

2
u0

2v2Ml S âlm
† âlm

† 1
1

2D , ~25!
,

ai
ic

11530
where

Ml5r1E
V1

¹j1* •¹j1dV1r2Cl~v!E
V2

¹j2* •¹j2dV.

~26!

In Eq. ~25! we use the notationĤph
( lm) for the SO phonon

Hamiltonian operator. Other functions appearing in Eq.~26!
are

j15r lYlm , j25F b l21

g2l 1121
r l1

g2l 112b l

g2l 1121

a2l 11

r l 11 GYlm .

~27!

The volume integrals in Eq.~26! can be analytically per-
formed. This calculation is given in Appendix B. We requi
that Ĥph

( lm) should be expressed in its standard harmonic fo

Ĥph
( lm)5\v(âlm

† âlm11/2). Then, the constantu0 is deter-
mined by

u0
25

2\

vMl
, ~28!

whereMl is explicitly given in Eq.~B7!. The above proce-
dure permits to evaluate the constantsAlm present in Eq.~6!
@also in Eqs.~22! and ~23!#:

Al~v!5
«`

(1)v1L

«`
(1)2« (1)~v!

F 8p\r1

«1* vMl
G 1/2

. ~29!

Notice thatAlm actually depends just onl. We have thus
obtained an explicit analytic expression for the potential o
eratorŵ lm :
ŵ lm5
Al~v!

2 5
Ylmr l âlm1H.c., r ,a,

YlmF b l21

g2l 1121
r l1

g2l 112b l

g2l 1121

a2l 11

r l 11 G âlm1H.c., a,r ,b,

Ylmb l

a2l 11

r l 11
âlm1H.c., r .b,

~30!
nd
i-

ma-
the
e

.e.,

al-
where ‘‘H.c.’’ stands for ‘‘Hermitian conjugate.’’ Obviously
the operatorŵ lm in Eq. ~30! is Hermitian. Finally, the
electron-phonon interaction Hamiltonian is given by

Ĥe2ph
( lm) 52eŵ lm~r ,u,f!. ~31!

V. DISCUSSION OF THE OBTAINED RESULTS

Let us make a detailed physical discussion of the m
results obtained in the foregoing sections. For the numer
n
al

computations we considered that material ‘‘1’’ is CdS a
material ‘‘2’’ is HgS. The values of the corresponding phys
cal parameters are given in Table I. Concerning the host
terial where the QD/QW is imbedded we used essentially
dielectric constant«D54.64 ~except a particular case wher
the value«D52 was applied!.

In Figs. 1 and 2 we analyze the dispersion relation, i
the frequency dependence on the parameterg5b/a for the
three types of vibration modes obtained and for various v
1-4
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ues ofl. We are using the notationx5(v/v1T)2 as described
in the text above. Thus,x denotes the squared frequencies
units of v1T . The squared frequencies of the three vibrat
modes found in our calculations are given by the variablexi
( i 51,2,3), which are the roots of Eq.~15!, and were explic-
itly reported in Eqs.~16!–~18! as a function ofg and l.
Figure 1~a! describes the rootx1 for three values ofl ( l
51,2,3). The dotted lines correspond to the strictly spher
QD of CdS imbedded in a dielectric medium of dielect
constant«D54.64.1,12 The dashed lines give the correspon
ing asymptotes~g→`! according to Eq.~14!, i.e.,x1B

(`) . This
asymptote@case~B!# implies the limit whenb→` anda is
fixed, i.e., a CdS sphere of radiusa imbedded in an infinite
semiconductor medium made of HgS. The curves incre
for larger values ofg ~and also ofl ), while for g51 repro-
duce the case of a sphere of CdS imbedded in a diele
infinite medium. The rootx1 corresponds to the QD-SO pho
non modes, i.e., to the interface phonons of a spherical
dot imbedded in a certain host material (HgS1 infinite di-
electric medium! with a certain effective dielectric constan
The influence of this ‘‘effective host’’ dielectric constant o
the vibration frequencies is determined by the Eq.~16! with
an asymptotic behavior ruled byx1B

(`) . In order to get a more
clear insight into the dependence of the Cd-SO pho
modes on the host dielectric constant, in Fig. 1~b! we present

TABLE I. Values of the semiconductor physical parameters.

Material «` «0 vT(cm21) vL(cm21)

CdS 5.5 9.1 233 300
HgS 11.36 18.2 197.5 250

FIG. 1. Squared interface optical phonon frequencies o
QD/QW (v l /v1T)2 as a function ofg5b/a for three values ofl:
l 51,2,3. These curves correspond to the CdS-SO phonon br
given by the rootx1 as explained in the text. The dotted line
represent the strictly spherical QD case~size independent! and the
dashed lines give the asymptotesx1B

(`) @see Eq.~14!# for g→`. ~a!
Host dielectric constant«D54.64. ~b! «D52. In this case the as
ymptotes are below the lines of the strictly spherical QD.
11530
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the same case~root x1) but now we have taken«D52. As
can be seen, in this case the frequencies decrease for l
values ofg. The point is that in this case the lines for th
strictly spherical case~and for eachl ) are shifted upwards
due to the smaller value of«D , while the asymptotes do no
depend on«D . Hence, the slope of these curves critica
depends on the value of«D . We should remark that hos
materials with a relatively wide range in the values of«D
have been reported in the literature~see, for instance Ref. 6!.

Figure 2 displays the rootsx3 ~upper branches! and x2
~lower branches! for the firsts three values ofl. Again the
dotted lines represent the asymptotes as given byxA

(`)( l ) @Eq.
~13!# for the upper branches andx2B

(`)( l ) @Eq. ~14!# for the
lower branches. The curves may be closely related to
case of interface optical phonons in a typical quantum w
heterostructure, and, therefore, should be associated w
kind of interface LO phonons of the spherical HgS QW san
wiched between a spherical CdS QD and a host dielec
medium. Let us remark that in Fig. 2 the limitg51 was also
included, but this limit has no physical meaning. Actual
the corresponding vibration modes associated with these
quencies shall be present whenever the layer of semicon
tor ‘‘2’’ ~i.e., HgS! has a finite thickness, i.e.,b2aÞ0. We
have also analyzed the Hg-SO branches for different va
of the dielectric constant«D , but the general trends of th
curves do not change essentially~just their separation is uni
formly changed for the upper or lower branches!.

In order to get a deeper physical insight into the nature
the vibration modes, it is interesting to study the strength
the electron-phonon interaction for the different possi
modes. In that connection, we analyzed the radial part of
electrostatic potentialF l(r ), where we assumew lm(r ,u,f)
5F l(r )Ylm(u,f). Figure 3~a! showsF l(r ) as a function of
the dimensionless radiusr /a for the CdS-S0 phonon

a

ch

FIG. 2. Squared frequencies (v l /v1T)2, of the HgS-SO phonon
modes as a function ofg5b/a for l 51,2,3. The upper branche
correspond to the SO phonon modes given by the rootx3 @see Eq.
~18!# while the lower branches to the modesx2 @see Eq.~17!# as
explained in the text. Dotted lines represent thexA

(`) and x2B
(`) as-

ymptotes of thex3 andx2 functions, respectively . In the calculatio
the value of«D54.64 was used.
1-5
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branches withl 51, 2, and 3@shown in Fig. 1~a!#. We have
fixed g5b/a51.2, the value of«D54.64 was applied, and
the potential has been measured in units ofF0 , where

F05A8p\v1L

a«1*
. ~32!

As evidently seen in the figure, the strength of the interact
is sharply peaked atr 5a indicating that these modes a
strongly localized at the interface between materials ‘‘1’’ a
‘‘2.’’ The other interface is not essentially contributing to th
interaction. In Fig. 3~b! the radial part of the electrostati
potential for the HgS-SO modes is shown and the rootx2
~lower branch of Fig. 2! is selected for the same values ofg
and«D . It is obvious from the figure that in the present ca
the interaction strength is simultaneously peaked at both
terfaces and that the absolute value of the potential is slig
lower. Moreover, the interaction strength is extended wit
the whole layer of material ‘‘2’’ resembling the typical QW
interface phonons. Figure 3~c! presentsF l(r ) for HgS inter-
face phonons, but now the rootx3 was used~upper branch of
Fig. 2!. Figure 3~c! describes the same kind of dependence
in Fig. 3~a!, but in this case the interaction strength is co
centrated in the other interface atr 5b, while the interface at
r 5a practically does not provide an essential contributio
Thus, the two vibration modesx1 and x3 involve SO
phonons in a situation where the system effectively beha
as if just a single interface would be present. They resem
the cases of single spheres with radiusr 5a or r 5b, respec-
tively, while the medium outside (r 5a) or inside (r 5b) the
spheres could be identified as a certain composite. The
quency asymptotes analyzed in Sec. III are just extreme s
ations forg→`. Actually, the asymptote related to the fr
quencyx1 implies a single sphere of radiusa in an infinite
semiconductor medium whenb→`. The asymptote related

FIG. 3. Radial part of the electroctatic potentialF l(r ), in units
of F0, as a function ofr /a for l 51,2, and 3.~a! CdS-interface
phonon modes according to thex1 root. ~b! HgS-SO phonon mode
given by the rootx2 ~lower branches of Fig. 2!. ~b! HgS-SO
phonons for the modesx3 ~upper branches of Fig. 2!. We fixedg
51.2 and«D54.64.
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to the frequencyx3 corresponds to a single sphere of radiusb
whena50 and the external medium is an infinite dielectr
continuum.

In different works on this subject it has been claimed th
SO phonons do not involve a very strong interaction with
carriers. From our analysis it appears that this interact
may be certainly more important, particularly concerning t
type of QD/QW we are considering. A more detailed analy
of the electron-phonon interaction shall be left for a futu
paper.

A direct application of the above exposed results is rela
to the determination of the QD/QW size, i.e., the values
the radiia andb of the contributing semiconductor material
This is an important issue for the growth control of the Q
structures. Raman measurements applied to these nove
erostructures should provide information about phon
modes and electron-phonon interaction as a function of
QD/QW radii. Due to the spherical symmetry, first order L
Raman scattering is allowed for phonons withl 50 angular
momentum.17,18Nevertheless, a clear and well defined sho
der at the left side of the main LO peak was observed in
Raman spectra of QD’s~see, for example, Ref. 10 and refe
ences therein!. The presence of this shoulder is usually as
ciated to the SO-phonon contribution considering the bre
down of the selection rule (lÞ0). Hence, Raman
spectroscopy applied to QD/QW structures shall be a pow
ful technique for the detection of the corresponding sho
ders located at well defined frequencies and related to
QD-SO and QW-SO phonon modes according to the res
presented in Figs. 1 and 2. We may finally conclude that
present theoretical study of SO phonons together with
data from Raman spectra should provide a relatively pre
determination of the QD/QW geometry, especially conce
ing the growth parameterg5b/a.

APPENDIX A:

CoefficientsPl , Ql , andSl in the Eq.~15! are given by

Rl Pl5@112x2L1d~x1L12x2T!#~g2l 1121!

1~x2T1x2L1x1L!Fl1~11x2T1x2L!Gl ,

~A1!

RlQl5@x2L
2 12x2L1d~2x2Tx1L1x2T

2 !#~g2l 1121!

1~x2T1x2Lx2Tx2L!Gl

1~x2Lx2T1x1Lx2T1x1Lx2L!Fl , ~A2!

RlSl5~x2L
2 1dx1Lx2T

2 !~g2l 1121!

1x1Lx2Lx2TFl1x2Tx2LGl , ~A3!

where

Rl5Fl1Gl1~11d!~g2l 1121!, ~A4!
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Fl5
«`

(1)

«`
(2) F11

l

l 11
g2l 11G , Gl5

«D

«`
(2) F11

l 11

l
g2l 11G ,

~A5!

andd5«`
(1)«D /(«`

(2))2. The discriminant of the cubic equa
tion ~15! can be written as

D l5
1

4 F1

3
PlQl2

2

27
Pl

32Sl G2

1
1

27FQl2
1

3
Pl

2G3

~A6!

and, in our case, is a negative quantity (D l,0).

APPENDIX B:

Let us make the explicit calculation ofMl defined in Eq.
~26!. In the first place, we notice that

¹j i•¹j i* 5¹•~j i¹j i* !2j i¹
2j i* 5¹•~j i¹j i* ! ~B1!

because¹2j i* 50 in each of the considered regions@j i for
i 51,2 are defined in Eq.~27!#. Then, both volume integral
present in Eq.~26! may be transformed into surface integra
of the form

I i5E
S
j i¹j i* •NdS. ~B2!

In Eq. ~B2! N is the unit radial vector,dV is the element of
solid angle, whileN is a unit vector normal to the surfaceS
enclosing the volumeV. For i 51 we have

I 15E
Sa

j1¹j1* •Nr 2dV5 la2l 11. ~B3!
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In Eq. ~B3! N is the unit radial vector andSa is the spherical
surface of radiusa. We used the normalization condition o
the functionsYlm , namely,*Ylm* YlmdV51. For i 52 the
volumeV2 is enclosed between the spherical surfacesSa and
Sb . Then

I 25E
S
j2¹j2* •Nr 2dV5I 282I 29 , ~B4!

whereI 28 (I 29) involves the spherical surfaceSb (Sa). We are
choosingN in the outward direction to the spherical surface
It is not difficult to find that

I 285 lb l@b l1« (1)~v!/« (2)~v!21#S a

g D 2l 11

, ~B5!

I 295 la2l 11« (1)~v!/« (2)~v!. ~B6!

Substituting the latter expressions forI 1,2 in Eq. ~26!, and
after straightforward simplifications, we are led to

Ml5 lr1a2l 11H 11
«1*

«2*
Fv1L« (2)~v!

v2L« (1)~v!
G 2

3Fb l@b l211« (1)~v!/« (2)~v!#

g2l 11
2

« (1)~v!

« (2)~v!
G J .

~B7!
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