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Interface optical phonons in spherical quantum-dotquantum-well heterostructures
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Interface optical phonons are studied in the case of a spherical quantum-dot/quantU@eW) het-
erostructure by applying a dielectric continuum approach. The prototypical case is a QD/QW of CdS/HgS in
the form of spherical shell of HgS embedded on a spherical CdS QD, a kind of structure intensively investi-
gated in the latter times. We also assume the QD/QW hetrerostructure surrounded by a host material which is
modeled in the form of an infinite dielectric medium which does not participate of the polar optical vibrations.
The possible interface phonon modgdS-and HgS-SO phononghe corresponding frequencies and the
electron-phonon interaction Hamiltonian are reported. A detailed discussion is made of the SO phonons fun-
damental characteristics and of the strength of the electron-phonon interaction.
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[. INTRODUCTION misleading results. In such a case a more more rigorous and
complete approach should be employed in order to obtain a
In the framework of the dielectric continuum approachreliable description of optical phonon modés®®
(DCA) polar optical vibrations of small size crystals have In recent times QD’s of CdSe and CdS, as well as QD
been theoretically investigated since a long time e  heterostructures of the type CdS/HgS, the so-called
guantum version of these vibrations are the internal LO andjuantum-dot/quantum-wel{lQD/QW) heterostructures, are
TO phonons, as well as the SO phonons associated to theeing synthesized by means of colloidal solution chemis-
crystal boundary surfaces. The latter type of phonons are duey.?°~?> These structures show rather interesting size-
to the different dielectric constants at the interfaces and ardependent optical propertiegarticularly concerning the
also callednterfaceoptical phonons. Progress in the growth fluorescence specirand appear to have promising perspec-
technology has made possible to fabricate small crystals itives for the development of electronic and optical devices.
the nanometer scal@anoparticles where the three spatial In the case of QD/QW heterostructures a few monolayers of
dimensions are substantially reduced down to a quasi-zerddgS are epitaxially grown on a CdS core and, after that, the
dimensional system. The so-callgdantum dot§QD's) are  system may be capped or not with an additional layer of
semiconductor nanoparticles where the linear dimensions a®dS?! The whole system is imbedded in a host material,
comparable tdor even smaller thanthe corresponding ex- which usually is an organic compound. The bulk HgS has an
citon Bohr radius. At the present level of technological so-energy gap E;=0.5eV) lower than the bulk CdSE(
phistication QD’s with relatively well defined and control- =2.5 eV), and hence a true quantum-well heterostructure is
lable size distributions are fabricatéd. The host material ~created within the QD. Experimental evidence demonstrates
may be a silicate matrix, different organic compounds or ahe presence of highly confined carriers in the HgS layer.
ferroelectric® The physical properties of QD’s are usually  The fundamental aim of the current work is to study the
studied by means of optical experiments, such as RamaBO phonons by applying the DCA to the case of a prototypi-
spectroscopy, hole burning, luminescence, etc., actually akal spherical QD heterostructure, which is modelled as fol-
lowing us to investigate the system at an almost individualows: a spherical core of material “1(say, Cd$ is capped
level.”~*° Particularly, these experimental techniques permitwith a spherically concentric layer of material “2(say,
us to detect the QD phonorsand study their properties. HgS and the whole structure is imbedded in a host material
By applying the DCA, polar optical phonons in QD’s of considered as an infinite dielectric medium which does not
the CdSe or CdS prototypes have been theoretically investparticipate of the polar optical vibrations. Consistently ap-
gated assuming a spherical geometry and considering a noplying the basic equations of the DCA we deduce the SO
vibrating host material as an infinite dielectric medium inphonon frequencies for QD-and QW-type modes as a func-
which the QD is imbeddetf:**The case of a QD with ellip- tion of the radius ratio of the core sphere to the external shell
soidal shape was recently studiéd®while in all the above- cap. The physical nature of these SO phonon branches is
mentioned works the electron-phonon interaction Hamil-interpreted and related to the QD/QW structure. We also
tonian was explicitly derived and its influence on Ramanmake a detailed derivation of the electric potential as a func-
spectra line shapes was also analyzed. The question when ttien of the spatial coordinates for each of the possible SO
DCA will correctly describe the interface optical oscillations phonon branches, thus allowing to deduce an explicit expres-
obviously is related to the QD linear dimensidnsAn esti-  sion for the electron-phonon interaction Hamiltonian, whose
mation can be made using the bulk phonon wavelength physical features are discussed. Despite the simple character
and requiring it to be smaller than (Ap<<L). Actually, if  of the applied model, we actually obtain interesting proper-
Ap=L, the mechanical boundary conditions should be inties of the SO phonons bearing a clear physical interpreta-
cluded in the treatment, while from the point of view of the tion, which, as we will discuss in the text below, may be used
Raman selection rulé$,the purely DCA in general leads to to interpret Raman measurements and should provide direct
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information about the geometric parameters characterizinVe need to solve Laplace equation for the electric potential

the QD/QW heterostructures. ¢ in the whole space. The geometry of the studied system is
The paper is organized as follows. In Sec. Il we present ahe following: for 0<r<a we have material “1"(a polar

brief summary of the fundamental equations of the DCA andsemiconductor such as Cd$or a<r<b we have material

apply them to our model system. Section Ill is devoted to the2” (a different polar semiconductor such as bigfr r

study of the SO phonon dispersion law, i.e., we describe the-b we shall assume an infinite dielectric medium with a

frequency branches as a function of the radius ratio of théixed dielectric constanty. Using spherical coordinates

heterostructure. In Sec. IV we derive the electric potentialr, 9, ¢) the potential is given by

and the electron-phonon Hamiltonian. Finally, Sec. V pre-

sents a detailed discussion of the main results of the work.

(P|m(r1 01 d))
Il. GENERAL EQUATION
© QUATIONS =AimYim(60, ¢)
For the sake of clarity, let us briefly summarize the fun- cp! r<a
damental equations of the DCA for the description of the ' '
polar optical phonons. They are extensively discussed in the B-1 , Y -patt
existing literature on the subjett? *® The Born-Huang ot T T o ), a<r<b,
equations are x¢ v -l oyl (6)
a2|+l
W=— 03w+ \(gg— £..)/Amw-E 1) B N r>b,
\
and
e,—1 where
P=\(eg— &) l4mwtwW+ = E, 2
wherew=\pu, u represents the relative displacement be- _ ) ) 2141
tween the ion paifin units of length, p is the reduced mass Bi=grp i+ 141 w) e (w)]y
density addressed to the ion pair of the vibrating medium. ) @)
Other quantities are the electric fiel] the polarization field —I[e"(w)/e(w) — 1]} @)

P, the transversal limit bulk frequency;, and the static

(high frequency dielectric constant, (). Moreover, We |n Eq. (6) the potentialp, obviously satisfies Laplace equa-
assume the Lyddane-Sachs-Teller re|at'@ﬁ/wT_:80_/8w tion in the whole space, is already continuous ata and
with w_ being the LO phonon frequency. Considering that; —; and shows the correct asymptotic behavigs,— 0 for
the electric field satisfies quasistatic Maxwell equations, W§ _, g andr — . The fulfillment of boundary conditiot¥) at

must require the induction field=e(w)E=E+4mPtoful- =5 andr=b has been also ensured conducting to the ex-
fil the equationV-D=0. If the relationE=—Ve¢ is as-  pressjon for, given by Eq.(7) and to the SO phonon dis-
sumed, we are led to persion relatiorisee Eq(9) below]. The quantitie®’ (6, ¢)

5 and A, are the Harmonic Spherical functions and the nor-
&(0)V7e=0. ) malization constants, respectively. The dielectric functions

In all the above equations the harmonic time dependence @ ")(») and&®(w) correspond to materials “1” and “2,”

the form f(t)~exp(—iwt) is applied. Then, the frequency respectively, while, according to the genefadispersionless

dependent dielectric functioa(w) is easily derived and is DCA, are given by

given by the standard expressiafio)=¢..(w?— w?)/(»?

—w%). The SO phonons involve an electric potential satis-

fying the Laplace equatioV?¢=0, in which cases(w) () =gl

#0. The potentialp should be continuous at the interface * wZ_wiZT

between two different media and also must fulfil the bound-

ary condition

2_ 2
)(,l) Wi

with 1=1,2, (8)

wherew; andw;t are the bulk longitudinal and transversal
polar optical phonons frequencies at thepoint for each
(4) semiconductor material € 1,2), while y=b/a. For a com-
plete determination of the potential,, we have to deter-
i.e., continuity of the normal component Dfat the interface mine the constants,,,. This will be left to Sec. IV.
surfaceS. A complementary relation, which proves to be
rather useful in what follows, reads

P
an

de1
#1 n

=gy

i)
S S

IIl. SO PHONONS DISPERSION RELATIONS

E= 0L 47Tpu, 1t 1 5) As we mentioned in the previous section the boundary

Vo= .
ex—e(w) e* e* &x &g conditions led to the SO phonons dispersion equation
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8(2)((,0)
€D
10D (w) +[1+ 9?21+ 1)/ )
[P =1]1e@ () +[1+ 2 U1+ 1) ]e M (w)
9

Equation(9) gives the SO phonon frequencies as a functio
of the parametey for different values of (I1=1,2,...), and
may be considered the dispersion relations for this kind
phonon. As remarked before, we do not have here phono
in the usual sense and a phonon wave vector does not app
at all** It is instructive to analyze two limiting cases of Eq.
(9). (i) The limit y—1. In this case we are led to

8(1)(w)

€p

[+1

This limit corresponds to a single sphere of radaigand
material “1,” imbedded in a dielectric infinite medium.
Equation(10) is in total coincidence with previous resdtg
as should be expectefi) The limit y—co. Notice that this
limit may be achieved in two case®\) a—0 with a fixed
value ofb and (B) b—« with a fixed value ofa. Equation
(9) reduces to

(10

e@(0) 1+11eW(0)+(1+1)eP(w)
(141 () +Hle@W(w)

(11)

€D
The above relation involves a quadratic equationsfGH(w)
and leads to two possible roots:

8(2)(w)

l+1
O

8(1)(w) - |_|__1 "
@ (w) - ’

I
corresponding to the caséa) and(B) as is explicitly indi-
cated in Eq.(12). From the above analysis we see that, for

(A) = 2)

€p
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analysis leads us to the prediction of three independent pho-
non branches for the structure under consideration. From the
mathematical point of view the existence of three SO phonon
branches can be directly demonstrated by realizing that Eq.
(9) is a cubic equation in thg, which reads

x3—Px2+Qx—§=0. (15)

"The coefficients in Eq15) are given in the Appendix A. The
Ogaove equation has three different real solutions which can

e classified according to the classical CardarorsTarta-
jp's) formula as®

1 1 1 311/3
Xl:§ P|+2 _2_7(Q|_§P|2) cos0/3, (16)
1 1 1 311/3
X2=§p|+2 _2_7<Q|—§P,2> cog0/3+27/3),
) ) (17)
1 1 1 311/3
X3=§P|+2 —2—7(Q|—§ |2> cog ®/3+47/3),
) ' (18
where
—cos ! S+2P327-P,Q,/3 19
[—4(Q,— P/3)3271¥2|

The obtained solutions describe the three possible phonon
branchegfor each value of) already mentioned in the text
above. It can be proved that the roat[Eq. (18)] for y—
leads to the asymptotic valud” [Eq. (13)]. In the same
limit the rootx, [Eq. (16)] hasx{} [Eq. (14) with the upper

each value of, we have three possible SO phonon branchesSignl as asymptotic value, while; [Eq. (17)] has its

Actually, case(A) in Eq. (12) defines a single frequency
given by

IXo + (1 +1)epXor /e

NG
l+(1+1)ep/e?

A

(13

which depends onap , while casgB) in Eq. (12) defines two
frequencies

X(w):yi[y2_4(1+ a)) (Xy Xor+ aXg ) M2
*B 2(1+0[|)

, (14
wherey=x;, + X1+ a;(1+X%y), o= (1+1)e@/11 | and
x=(w/w7)%. In correspondence with this notatioxy,
=(wy lw17)?, X = (0w, lwy7)%, etc. The frequencies de-
fined by Eq.(14) are independent of, .

Considering the spatial symmetry of the QD/QW structure
we must expect two classes of interface phonons. One of 0=

them should be related to a spherical QD embedded in ce

tain host material and the other ones are connected to the two
interfaces involved in the QW structure. Thus, this physical

asymptotic value defined by the same equation with the
lower sign Q(S“}%). The identification of the frequency asymp-
totes (for y—o0) corresponding to the three different roots
gives us a certain physical insight into the nature of these

vibration modes. A more detailed discussion is left to Sec. V.

IV. ELECTRON-PHONON HAMILTONIAN

In order to introduce a quantum description of the SO
phonons we define the annihilation and creation operators
a,, and é,Tm obeying bosonic commutation relations
[&im ,élT,m,]= S Smny » €tC. Then, the displacement vector
is transformed into the operatérby means of

l'IOV(rlYIm)éImv r<a,
21+1

a ~
U1V (B|—1)f|+(72'+l—ﬁ|)r,+l Yim|@im

r_
a<r<b.
(20
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The potential operatod,,, can be obtained from Eq20)
with the help of Eq.(5). The continuity of this operator at
r=a leads to

(1) (2)_ o(2)
e wy | [ e’ — e (w) 82P1
U0~ |~ O_,@ NCi(@)Uo.
e wy ) \ &5~ (w) 8192
(21
The potential operator far<a anda<r <b is then given by
r'a,, r<a,
Bl_l | ,}/2|+1_B| a2|+1
om=A(w)Y &m»
Pim=A(@)Yim S ST e |
a<r<b,
(22)
where
( )w 4
_ iL [4mp1
Al(w)_ggcl)—g(l)(a)) 83\: Up - (23)

Now we shall determine the constam§. The classical ki-
netic energy due to the vibrations is given by

1 1
WKinZElezfv udV+ §P2wzfv uzdV, (29
1 2

where V; (V,) is the volume of the regiom<a (a<r
<b). The energyW,;, is transformed into an operator by

means ofu—10, but it must be realized that the operator

defined in EQ.(20) is not Hermitian. For that reason the
correct transformation isu?— (0f-0+0-0%)/2. After a
simple manipulation of this result, we obtain

PHYSICAL REVIEW B67, 115301 (2003

where

Mi=ps | V& -TEAVHpCw) [ V8- Tev.
A A
(26

In Eq. (25 we use the notatiom (7" for the SO phonon
Hamiltonian operator. Other functions appearing in &)
are

2l+1 B a2|+l

B|_1 |+‘y
2l+1 r
y -1 Y

glerYlma YIm

(27)

The volume integrals in Eq(26) can be analytically per-
formed. This calculation is given in Appendix B. We require

thatH /™ should be expressed in its standard harmonic form
HOW =% w(af &m+1/2). Then, the constant, is deter-
mined by

&=

2|+1_1 r

, 2h -
Uo=p (28)
whereM; is explicitly given in Eq.(B7). The above proce-
dure permits to evaluate the constaAts present in Eq(6)
[also in Egs.(22) and(23)]:

N )wlL

sgol)—s(l)(w)

8mhp, 1/2

Al(w)=
(@) oM,

(29

Notice thatA,, actually depends just oh We have thus

1 . .. . . . _
H('m)——quZM éF = (25) obtalngd z'fm explicit analytic expression for the potential op
2 2 eratoro)y, :
|
([ Yim'am+H.c., r<a,
-1 21+1__ a2I+1
Al(w) ] Yim fl 1 |+y2| . b —|amtHc., a<r<b,
E\le: 2 < 7 * _1 + 1 I’ (30)
21+1
Y|mﬂ| I+la|m+HC r>h,
\

where “H.c.” stands for “Hermitian conjugate.” Obviously,
the operatorg,, in Eqg. (30) is Hermitian. Finally, the
electron-phonon interaction Hamiltonian is given by

=—eQn(r,0,¢). (31

V. DISCUSSION OF THE OBTAINED RESULTS

computations we considered that material “1” is CdS and
material “2” is HgS. The values of the corresponding physi-
cal parameters are given in Table I. Concerning the host ma-
terial where the QD/QW is imbedded we used essentially the
dielectric constant,=4.64 (except a particular case where
the valuesp =2 was appliefl

In Figs. 1 and 2 we analyze the dispersion relation, i.e.,

Let us make a detailed physical discussion of the mairfhe frequency dependence on the paramgteb/a for the
results obtained in the foregoing sections. For the numericghree types of vibration modes obtained and for various val-
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TABLE |. Values of the semiconductor physical parameters. L
HgS-S0O modes

Material .0 o or(cm™ o (cm™

Cds 55 9.1 233 300
HgS 11.36 18.2 197.5 250

ues ofl. We are using the notation= (w/w,7)? as described -
in the text above. Thux denotes the squared frequencies in =
units of w,7. The squared frequencies of the three vibration
modes found in our calculations are given by the variakles
(i=1,2,3), which are the roots of E¢L5), and were explic-

itly reported in Eqs.(16)—(18) as a function ofy and I.
Figure Xa) describes the roox; for three values of (I . . . . .
=1,2,3). The dotted lines correspond to the strictly spherical 1.5 20 25 3.0 3.5

QD of CdS imbedded in a dielectric medium of dielectric bla
constantp=4.64112The dashed lines give the correspond-

ing asymptote$y—) according to Eq(14), i.e.,x(fg. This FIG. 2. Square_d frequencies(/ w,7)?, of the HgS-SO phonon
asymptote[case(B)] implies the limit whenb—c anda is modes as a function of="b/a for I=1,2,3. The upper branches
fixed, i.e., a CdS sphere of radiasmbedded in an infinite  c0rrespond to the SO phonon modes given by the xg¢see Eq.

semiconductor medium made of HgS. The curves increasg-9] While the lower branches to the modes [see Eq.(17)] as

ined i i *) as-
for larger values ofy (and also ofl), while for y=1 repro-  SXPlained in the text. Dotted lines represent #@ andx"} as

duce the case of a sphere of CdS imbedded in a dielectr%n;p\gﬁz c:;;he_<34agj)\<;;:nucst:)dns, respectively . In the calculation
D_ . .

infinite medium. The roox; corresponds to the QD-SO pho-
non modes, i.e., to the interface phonons of a spherical Cdfhe same cas@oot X;) but now we have takenp=2. As
dot imbedded in a certain host material (HgSnfinite di-  can be seen, in this case the frequencies decrease for larger
electric medium with a certain effective dielectric constant. yalues ofy. The point is that in this case the lines for the
The influence of this “effective host” dielectric constant on Stricﬂy Spherica| Caséand for eacH) are shifted upwards
the vibration frequencies is determined by the Bd) with  gye to the smaller value ef; , while the asymptotes do not
an asymptotic behavior ruled by} . In order to geta more depend ons,. Hence, the slope of these curves critically
clear insight into the dependence of the Cd-SO phonomjepends on the value afy. We should remark that host
modes on the host dielectric constant, in Fih)ve present  materials with a relatively wide range in the valuessgf

have been reported in the literatisee, for instance Ref)6
L L A B A B Figure 2 displays the roots; (upper branchegsand x,
(lower branchesfor the firsts three values df Again the
dotted lines represent the asymptotes as givexiby!) [Eq.
(13)] for the upper branches an(ﬁ%(l) [Eq. (14)] for the
lower branches. The curves may be closely related to the
case of interface optical phonons in a typical quantum well
heterostructure, and, therefore, should be associated with a
kind of interface LO phonons of the spherical HgS QW sand-
wiched between a spherical CdS QD and a host dielectric
medium. Let us remark that in Fig. 2 the limit=1 was also
included, but this limit has no physical meaning. Actually,
the corresponding vibration modes associated with these fre-
quencies shall be present whenever the layer of semiconduc-
tor “2” (i.e., HgS has a finite thickness, i.eh—a#0. We
have also analyzed the Hg-SO branches for different values
of the dielectric constantp, but the general trends of the
curves do not change essentid(iyst their separation is uni-

FIG. 1. Squared interface optical phonon frequencies of aformly changed for the upper Or, lOW_er ,bran,ches
QD/QW (| /w17)? as a function ofy=b/a for three values of: In order to get a deeper physical insight into the nature of

1=1,2,3. These curves correspond to the CdS-SO phonon brandR€ Vibration modes, it is interesting to study the strength of
given by the rootx, as explained in the text. The dotted lines the electron-phonon interaction for the different possible
represent the strictly spherical QD casize independeptand the ~ Modes. In that connection, we analyzed the radial part of the
dashed lines give the asymptotd) [see Eq.(14)] for y—x. (@)  electrostatic potentiab,(r), where we assume(r, o, ¢)

Host dielectric constanty=4.64. (b) ep=2. In this case the as- =®(r)Y (6, ¢). Figure 3a) shows®d(r) as a function of
ymptotes are below the lines of the strictly spherical QD. the dimensionless radius/a for the CdS-SO phonon
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04 1 ) €45-SO modes 1 to the frequencys corresponds to.a smgle s'ph'er.e of .radlus'
03L ba=12 . 1 whena=0 and the external medium is an infinite dielectric
[ ) ] continuum.

In different works on this subject it has been claimed that

0.2 __ =2 \\
01 I=3 > SO phonons do not involve a very strong interaction with the

0.0 carriers. From our analysis it appears that this interaction
-0.1 [ (b) HgS-S0 modes may be certainly more important, particularly concerning the
type of QD/QW we are considering. A more detailed analysis
of the electron-phonon interaction shall be left for a future

0.4 |- (c) HgS-SO modes

Electrostatic Potential (Units of <I>0)

03} paper.

o2 | A direct application of the above exposed results is related
- to the determination of the QD/QW size, i.e., the values of

04|

the radiia andb of the contributing semiconductor materials.
. This is an important issue for the growth control of the QD
04 08 12 1.6 structures. Raman measurements applied to these novel het-
Radius (Units of ) erostructures should provide information about phonon
FIG. 3. Radial part of the electroctatic potentig(r), in units modes and _glectron—phonon in'teraction as a f}Jnction of the
of ®,, as a function oft/a for I=1,2, and 3.() CdS-interface QD/QW radii. Due to the spherical symmetry, first order LO
phonon modes according to the root. (b) HgS-SO phonon modes Raman scattering is allowed for phonons witaO angular
given by the rootx, (lower branches of Fig.)2 (b) Hgs-SO  momentun.”**Nevertheless, a clear and well defined shoul-
phonons for the modes; (upper branches of Fig.)2We fixed y der at the left side of the main LO peak was observed in the
=1.2 andep=4.64. Raman spectra of QDsee, for example, Ref. 10 and refer-
ences therein The presence of this shoulder is usually asso-
branches with =1, 2, and 3[shown in Fig. 1a)]. We have ciated to the SO-phonon contribution considering the break-
fixed y=b/a=1.2, the value ofp=4.64 was applied, and down of the selection rule 1¢0). Hence, Raman
the potential has been measured in unitsbgf, where spectroscopy applied to QD/QW structures shall be a power-
ful technique for the detection of the corresponding shoul-
87ho ders located at well defined frequencies and related to the
o= (2T (32) QD-SO and QW-SO phonon modes according to the results
aey presented in Figs. 1 and 2. We may finally conclude that the
present theoretical study of SO phonons together with the
As evidently seen in the figure, the strength of the interactiojata from Raman spectra should provide a relatively precise

is sharply peaked at=a indicating that these modes are determination of the QD/QW geometry, especially concern-
strongly localized at the interface between materials “1” anding the growth parametey=b/a.

“2.” The other interface is not essentially contributing to the
interaction. In Fig. &) the radial part of the electrostatic
potential for the HgS-SO modes is shown and the oot APPENDIX A:
(lower branch of Fig. Ris selected for the same valuespf
andep . Itis obvious from the figure that in the present case
the interaction strength is simultaneously peaked at both in-
terfaces and that the absolute value of the potential is slightly ~ R/P;=[142Xz + 8(Xq. +2Xo7) (¥ 71— 1)
lower. Moreover, the interaction strength is extended within
the whole layer of material “2” resembling the typical QW T (ot Xt X)) P+ (X X00) G
interface phonons. Figurg@ presentsb,(r) for HgS inter- (A1)
face phonons, but now the rooj was usedupper branch of
Fig. 2). Figure 3c) describes the same kind of dependence as
in Fig. 3(a), but in this case the interaction strength is con-
centrated in the other interfacerat b, while the interface at
r=a practically does not provide an essential contribution.
Thus, the two vibration modeg; and x3 involve SO + (Xo Xo7+ Xq Xo7+ X1 X0 ) Fy 4 (A2)
phonons in a situation where the system effectively behaves
as if just a single interface would be present. They resemble
the cases of single spheres with radigsa or r =b, respec-
tively, while the medium outsider &€ a) or inside ¢ =b) the

CoefficientsP,, Q,, andS; in the Eq.(15) are given by

RQ/= [x§L+ 2Xo + 5(2X2TX1L+X§T)]( 72|+1_ 1)

+ (Xo1+ Xa1 X21X21) Gy

RIS = (X3, + 0%y X57) (y? +1-1)

spheres could be identified as a certain composite. The fre- FXaxaXerF Xerxa G A3)
guency asymptotes analyzed in Sec. lll are just extreme situ-

ations fory—oo. Actually, the asymptote related to the fre- where

qguencyx, implies a single sphere of radiasin an infinite

semiconductor medium whdm—c. The asymptote related R=F+G+(1+8)(y*1-1), (A4)
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In Eq. (B3) N is the unit radial vector an8, is the spherical

Sgcl) I €p | + 1 . . : ]
Fi=—3|1t myz'“ » G=—1 I—yz'“ , surface of radiug. We used the normalization condition of
€ € the functionsY,,,, namely, [Y] Y;,dQ=1. Fori=2 the

(A5) volumeV, is enclosed between the spherical surfegeand
and 6=&WMep /(e?)2. The discriminant of the cubic equa- Sp- Then
tion (15) can be written as

111 2 21 1P | =f§V§*-Nr2dQ=|'—|" (B4)
A=7 §P|Q|_2_7P|3_S|} +2—7[Q|_§P|2} (A6) PR 202
and, in our case, is a negative quantity, {0). wherel} (13) involves the spherical surfa®, (S,). We are
choosingN in the outward direction to the spherical surfaces.
APPENDIX B: It is not difficult to find that

Let us make the explicit calculation &, defined in Eq.
(26). In the first place, we notice that a\?+?
L=18[B+eW(w)/eP(w)-1]| =] , (B

VEVE=V-(§VE) -V =V-(§VE) (BY) ’

becauseV?¢f =0 in each of the considered regiopg for
i=1,2 are defined in Eq27)]. Then, both volume integrals

present in Eq(26) may be transformed into surface integrals
of the form Substituting the latter expressions for, in Eq. (26), and

after straightforward simplifications, we are led to

15=1a2+ 1@ (w)/e@(w). (B6)

|i:f &VE NS (B2) )
S i{wns(z)(w)]

In Eqg. (B2) N is the unit radial vectorl() is the element of wy eD(w)

solid angle, whileN is a unit vector normal to the surfa&
enclosing the volum&. Fori=1 we have {,&[ﬂﬁ 1+ D)/ 6@ (w)] 8(1)(w)H
X .

,}/2|+l 8(2)((’0)

&3

M|=|p1a2'+1[ 1+

= L £,V € Nr2dQ=1a? 1, (B3) (B7)
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