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Interaction corrections at intermediate temperatures:
Longitudinal conductivity and kinetic equation
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It is well known that electron-electron interaction in two-dimensional disordered systems leads to logarith-
mically divergent Altshuler-Aronov corrections to conductivity at low temperatufes<(1; 7 is the elastic
mean-free timg This paper is devoted to the fate of such corrections at intermediate tempefatarés We
show that in thigballistic) regime the temperature dependence of conductivity is still governed by the same
physical processes as the Altshuler-Aronov corrections—electron scattering by Friedel oscillations. However,
in this regime the correction is linear in temperature; the value and evesighef the slope depends on the
strength of electron-electron interactidihis sign change may be relevant for the “metal-insulator” transition
observed recentlyWe show that the slope is directly related to the renormalization of the spin susceptibility
and grows as the system approaches the ferromagnetic Stoner instability. Also, we obtain the temperature
dependence of the conductivity in the cross-over region between the diffusive and ballistic regimes. Finally, we
derive the quantum kinetic equation, which describes electron transport for arbitrary valae of
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[. INTRODUCTION those two limits are governed by different physical pro-
cesses. In this paper we prove that notion erroneous: the
Temperature-dependent corrections to conductivity due teesults(1.1) and(1.2) are due to the same physical process,
electron-electron interactions has been a subject ofiamely, elastic scattering of electrons by the self-consistent
theoretical™" and experiment&i**studies for more than two potential created by all the other electrons. Therefore, these
decades. Recently the interest in the matter was renewago different expressions are in fact the two limits of a single
with appearance of new datd” showing a sign change in interaction correction. We calculate the correction within as-
the temperature dependence of conductivity in two dimensymptions of the Fermi-liquid theorgother limitations of
sions (2D). Theoretical discussiofsthat followed empha- our approach we discuss belpand present the cross-over
sized the question of whether that data indicated a nongnction between the diffusive and ballistic limits.
Fermi-liquid behavior. However, the experiments were —\;qreover, we show that the existing theory for the ballis-
performed in a regime where the_ temperatmrwa_s of _t_he tic limit (1.2) is incomplete. First, the results of Refs. 4-7
same order of magnitude as the inverse scattering firtfe account only for Hartree-like interaction terms missing the

(obtained from the Drude conductivjtywhile preexisting . .
calculations were focused on the two limiting cases: the dif_exchange or Fock terms. Second, this theory essentially em

fusive regimé=3 Tr<1, and the ballistic reginfe T7> 1 ploys a perturbative expansion in terms of the interaction

In the diffusive limit one finds™ for the logarithmically strength, which breaks down for stronger coupling. Both is-
divergent correction to the diagonal conductivity- sues lead to the change in the theoretical prediction even on

a qualitative level.
LCSS Fg))

The consequence of the first point is that the correction to
1+3
(o8

, (1.1 conductivity (1.2) is always negative unlike the correction in
0 the diffusive limit that changes sign depending on the value
|of Fg. This sign change is due to competition between the
yniversal(and positiveé Fock correction and the coupling-

So= ¢ | d
7 2772ﬁnTT

where F§ is the interaction constant in the triplet channe
which depends on the interaction strength. It is clear, that th ” d e outi If the Fock
sign of this logarithmically divergent correction may be posi- SPecific(and negativeHartree contribution. If the Fock po-

tive (metallio or negative(insulating, depending on the tential (or, to be more precise, ;mglet channisl pr_opeﬂy
o 13 taken into account, then the sign of the correction in the

value of Fg. ballistic limit is al © uni bei v f K
The resuft’ for the ballistic region frequently cited in . aflistic fimit 1S aiso no universafbeing positive for wea
literature reads interaction in contrast to Refs. 4)7_7 _
As follows from the second point, for the stronger inter-
Tr action the Hartree correction should be modified to include
So=— _h(f) f(rg), (1.2 higher order processes. For this case we steme Sec. I
™ that in fact it should be replaced by the triplet channel cor-
wheref(r,) is a positive function of the gas parameter of therection, which is characterized by the Fermi liquid constant
systenr. In a sharp contrast to E¢l.1), Eq.(1.2) predicts Fg. This constant measures the strength of the spin-
always metallic sign of the interaction correction. exchange interaction. IFJ<0, the spin-exchange interac-
The absence of a rigorous calculation at intermediate temtion tends to align electron spins afitlit is strong enough
peraturesT 7/2=1 may have contributed to the notion that leads to the ferromagnetic Stoner instabilityfeven though
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this constant is unknown, it can be found experimentally by
means of independent measurement of the spin susceptibility
of the system. As a function of temperature the interaction
correction to conductivity is almost always monotonous, ex-
cept for a narrow region of parametdighere it is so small
that it can hardly be observied

The remainder of the paper is organized as follows. The
following section is devoted to qualitative discussion of the
physics involved. In the same section we summarize our re-
sults. Then we present two alternative approaches to the mi-
croscopic calculation. In Sec. lll we use the traditional per-
turbation theory to derive the results presented in Sec. I,
while in Sec. IV the same results are obtained using the
guantum kinetic equation that we derive. The advantage of
the kinetic equation approach is that it can be readily used to
discuss the temperature behavior of quantities other than FIG. 1. Scattering by the Friedel oscillation. Interference be-
conductivity. These results are advertised in Conclusions an@een the two paths A and B contributes mostly to backscattering.

will be published elsewher¥. The Friedel oscillation is created due to backscattering on the im-
purity, path C.
[l. QUALITATIVE DISCUSSION AND RESULTS Taking into account electron-electron interactivig(r,

In this section we describe the scattering processes con=r2) one finds additional scattering potential due to the
tributing to the temperature dependence of conductivity. Wé-riedel oscillation Eq(2.1). This potential can be presented
show that unlike the standard Fermi-liquid corrections, ~as a sum of the dire¢Hartreg and exchangé~ock terms’
the leading correction to conductivity is accumulated at large

distances, of the order: /min(T,\T/7). In the ballistic limit SV(r1,r)=Vu(r)d(ri—ry)—Ve(ri,ry), (2.2a
such correction is linear in temperature and we derive this

result here using a text-book quantum mechanical approach. > :f > > > >

The diffusive limit is discussed in detail in Ref. 1. The re- Vh(ry) drsVo(r1=rs)dp(ra), (2.2

sulting correctiondo~In T seems to be rather different from
the linear one, but we show that both corrections arise due to

the same physics—coherent scattering by Friedel oscilla- Ve(ry,ra)=5Vo(ri—rz)dn(ry,ro), (2.29
tions. Throughout the paper we keep the units such #hat R
=1, except for the final answers. where byp(r) we denote diagonal elements of the one elec-

tron density matrix,

A. Scattering by Friedel oscillations

- s .o -
We start with the simplest case of a weak short-range n(rl,rz)—zk Wi (r)Wi(ry).

interaction Vo(r,—r,) and show how one can obtain the o _

correction to conductivity in the ballistic limit, i.e., due to a 1he factor 1/2 indicates that only electrons with the same

single scatterer. This discussion is similar to that of Ref. 15SPin participate in exchange interaction. As a function of

where the correction to the one-particle density of state§liStance from the impurity the Hartree-Fock ened@)y os-

(DOS) was discussed, and also of Ref. 16, which describe§illates similarly to Eq.(2.1). o _

the correction to the conductivity in the diffusive limit. The leading correction to conductivity is a result of inter-
Consider a single impurity localized at some point, takenf€rence between two seml-culas"s[cal paths depicted on Fig. 1.

as the origin. The impurity potenti&)(r) induces a modu- If an electron follows path "A," it scatters Oﬁ the Friedel

lation of electron density close to the impurity. The oscillat- oscillation created by the impurity and path *B” corresponds

ing part of the modulation is known as the Friedel oscilla-to scattering by the impurity itself. Interference is most im-
tion. which in 2D can be written as portant for scattering angles close 4o(or for backscatter-

ing), since the extra phase factor accumulated by the electron
on path “A” (€'?R with R being the length of the extra path
- 2N interval relative to “B” and X being the difference between
Op(r)=— ——Sin(2Ker). (2.1 initial and final momenta for that extra path intenval can-
2t celed by the phase of the Friedel oscillatien'?<FR so that
. ) ) ) ~ the amplitudes corresponding to the two paths are coherent.
Herer denotes the distance to the impurity and its potentialas a result, the probability of backscattering is greater than
is treated in the Born approximation= fU(r)dr. In 2D the the classical expectatioftaken into account in the Drude
free electron DOS is given by=m/ /2% andm s the elec- conductivity. Therefore, taking into account interference ef-
tron masskg is the Fermi momentum. fects leads to a correction to conductivity. We note that the

2.3
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interference persists to large distances, limited only by tem- f(6) A
peratureR~ 1/|k—kg|<vg/T. Thus there is a possibility for n
the correction to have a nontrivial temperature dependence. ?
The sign of the correction depends on the sign of the cou-
pling constant that describes electron-electron interaction. A
To put the above argument onto more rigorous footing / \ ' (ee fe )2
and to find the temperature dependence of the correction Y
consider now a scattering problem in the potential ). e
Following the textbook approach,we write a particle’s et re )
wave function as a sum of the incoming plane wave and the
out-coming spherical wavén 2D it is given by a Bessel FIG. 2. Scattering amplitude. The singularity for backscattering
function, which we replace by its asymptotic form is due to interference of paths A and B on Fig. 1.
kT 2T ke T
V=g +|f(0)\/We . (2.4 A > lal <2k,
f(6)=—5_Vo(q) (2.8
Heref(0) is the scattering amplitude, which we will dis- arCSif(?F), |al> 2k .

cuss in the Born approximation. For the impurity potential

itself the amplitudef(6) weakly depends on the angle. At | et us examine this expression more closely. Siges 2k,

zero temperature it determines the Drude conductiwigy,  the scattering amplitude E¢R.8) for smallk weakly depends

while the leading temperature correction is proportional toon the angle through the Fourier component of the interac-

T2, as is usual for Fermi systems. We now show that this igion Vo(q), see background value ¢f#6) on Fig. 2. How-

not the case for the potential E(2.2). In fact, taking into  ever, we are dealing with electronic excitations close to the

account Eq(2.2) leads to enhanced backscattering and thusermi surface, so in fadt is close tokg , [k—ke|/ke<<1. If

to the conductivity correction that is linear in temperature. k>k., then the scattering amplitude E¢2.8) has a non-
First, we discuss the Hartree potential H@.2D. Far trivial angular dependence aroude: = shown on Fig. 2.

from the scatterer the wave function of a particle can be According to Eq.(2.8) such dependence is only possible

found in the first order of the perturbation theory s in the region|q|>2kgr. This translates into the condition

=e/“"+ 5% (r), where the correction is given by |6— | <[2(k—kg)/ke]¥2, which determines the singular
dependence of the width of the feature in the scattering am-
o o o plitude on the energy of the scattered electron. Finally, using

N(F):if dFlVH(Fl)eik-rl — eiklr=ry|, the fact that arcsin(@x)=m/2— 2x, we find that the depen-
K[r—ry] dence of the height of the feature in the scattering amplitude

(2.9 s also singularsf(8)=[ (k—kg)/ke]*2
. o - ) ) ) The transport scattering rate * is determined by the
Here|r—ry|~r—r.ry/r, since we are looking at large dis- scattering cross section and can be found with the help of the

tances. Substituting the form of the potential E2,2b and amplitude Eq.(2.8), as well as the constant amplitudlg of
introducing the Fourier transfer of the electron-electron inthe scattering by the impurity itself

teractionV, we can rewrite Eq(2.5) as

de
- o y eier» dr, . i e = f E(l—cosﬁ)lfo+f(0)|2_ (2.9
(r) l \/ﬁ O(q)\/ﬁ I’% SIn( Frl)e ’ . ) '

(2.6) The leading energy de_pendencgﬂ comes from the in-
terference term, which is proportional £¢#). Then integra-

where tion aroundd= 7 is dominated by the feature 6{6) result-

ing in a term of order é—eg)/eg . It is this term that gives

rise to the linear temperature dependence we are after. Since

we are interested in this leading correction only, in all other

terms we can sdi~kg and write the scattering rate as

a=k—kr/r,  |g|=2ksin(6/2),

with 6 being the angle of scattering. Comparing to Ej4)

we find the scattering amplitude as a functionéofit also N
) 2 _ _ <

depends on the electron’s energy k/2m) He)=1; 1, 5 Vo(2Ke) -

€E— €

n(e—ep)fo.
(2.10

Here 7(x) is the Heaviside step function anfg1 is the
zero-temperature rate that determines the Drude conductivity
The integral can be evaluated exatihand the result is (indeed, thed= 1 feature inf(8) only exists fork>kg and
given by at T=0 there are no electrons wittxKkg).

VA dr -
f(¢9)=—ﬁvo(q)J’ Fsm(Zk,:r)e'q". 2.7
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To obtain the scattering time we have to integrate the
energy-dependent rate E@®.10 with the derivative of the
Fermi distribution functiomg(e)

_ J
T= f der( d& Ne(e).

Then the second term in ER.10 leads to a linear correc-
tion to the Drude conductivity, small 89 e . However this

is not the only contribution to the temperature dependence.
At finite temperatures we also have to modify the Friedel
oscillation Eq.(2.1) as follows:

R VAT?
op(r)=— ————sin(2kgr). ) ) . . .
rT) FIG. 3. Scattering process with two impurities and the Friedel

27'rv;2;Sinh2 oscillation. Scattering to all angles is affected by interference. The

relevant Friedel oscillation is created by the self-intersecting path C.

Ur

Consequently, the scattering amplitude EB.7) becomes

temperature dependent teraction is reasonably long ranged, thég(0)>V,(2kg),

so that the correction in Eq2.13 has the sign opposite to
- that in Ref. 6.
f(6)=— iVo(Q)f %e—2r2(T/vF)Sim2kFr2)eid.F2 So far we have considered the effect of a single impurity.
2 rg The extension of the above arguments to the case of many
impurities is straightforward. In particular, one can consider
a scattering process, which involves two impurities and the
Friedel oscillation shown on Fig. 3. It is clear that this pro-
cess contributes to the scattering amplitude at any angle, and
2 not just for backscattering as the single impurity process on
+(q—2kg)2. Fig. 1(which is typical for the diffusive motion of electrons
Such processes were discussed in deétthough using a
slightly different languagein Ref. 16. Scattering by Friedel
Bscillations created by multiple impurities results in a con-
ductivity correction(1.1) that is logarithmic in temperature
and is typical for 2D diffusive systends.

V)\ ) 4k|:
=— —Vo(q)arcsw(T) : (2.11

2
2
+(q+ 2ke) 2+ \/

2T

p= —
UF
Neglecting the small temperature dependent term in the d

nominator in Eq(2.11) brings us back to E¢2.8). Keeping
this term leads to the same featuref {i{¥) as the one on Fig.

2, only now its width and magnitude are proportionakfb. Comparing the scattering processes on Figs. 1 and 3, one
The resulting correction to the conductivity is therefore simi-., clearly see that conductivity corrections, which arise

lar to the one discussed above. Up to a numerical coefficient,, these processes are governed by the same physics: co-

s - herent scattering by the Friedel oscillation, which means that
o0 _ _ the ballistic and diffusive regions should be analyzed on the
Op €F same footing. In the next subsection we present the results of

o . _ such anlysis, postponing the actual calculations until Secs.
The conductivity Eq(2.12) is the same correction as the ||| and IV.

one calculated in Ref. 6, see also Ef2), up to a numerical

2T

UF

factor. It is also clear that Eq2.12) is not the full story. We B. Results
have forgotten about the Fock part of the potential @) ] i )
Substituting Eq(2.4) into Eq. (2.3, we find the perturbation Let us first consider the case of a weak, short range inter-

of the density matri{which appears in the Fock potential @ction potential. Then the interaction can be treated in the
Eq. (2.20] 5n(F1,F2)w5p[(F1+F2)/2]. Then the argument lowest order of perturbation theory, so that the resulting cor-

can be repeated. The only difference is that the leading ten{-eCtlon is proportional to the interaction constant:

perature correction comes from the Fourier componem at 82 Tr s EF
——In| =] |.
472

=0, rather tharg=2kg . What is most important, the Fock 80y =— Nz =
v

potential enters with the opposite sign. Therefore the expres- h
sion for the conductivity Eq(2.12 has to be corrected (2.14

- Similarly to Eq.(2.13, it can be written as a sum of Hartree
— 1= [ 2Va(2Ke) — Va(0)1—| . 21 apd Fo_ck contributiongsimilar _exprgssion fory, in one-
7-7p Y[2Vo(2ke) = Vol )]EF 213 dimensional systems was obtained in Ref):20

1 3 T
—§W( T)

The sign of the correction is thus not universal and dependsy, = 1[Vy(0)—2V(2ke)], vo=v[Vo(0)—2(Vo(K))rsl,
on the details of electron-electron scattering. If the weak in- (2.15
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e E— trons involved. In the first order correction Eg-14) all spin

1.0 channels gave identical contributions. The total number of
] channels is 4 and they can be classified by the total spin of
084 the two electrons: one state with the total spin z€sin-

glet”) and three states with the total spin(‘riplet,” the

o5 three states differ by the value of taeomponent of the total

= spin). For long range interaction the perturbation theory for

T ] the Hartree correction singlet and triplet channels is differ-
0.4 ent. It is knowr? (see also Sec. Ij] that the singlet channel

contribution should be combined with the Fock correction as

02 a renormalization of the coupling constant. However, the fi-

nal result is universal due to dynamical screening: the singlet
channel modification of the coupling does not affect the re-
o 2 a4 6 8 10 12 14 sult. What remains of the Hartree term is the triplet channel
X contribution, which now depends on the corresponding
Fermi-liquid constantg. Thus, the total correction to the
conductivity can be written as a sum of the “chard@hich
combines Fock and singlet part of Hartremnd triplet con-

where(- - - )gg stands for the average over the Fermi surfacet[rIbUtlonS

Here we kept the notation for the electron-electron interac- o=0p+ o1+ doc, (2.163
tion adopted in the previous section. Then the Hartree cor- o

rection is proportional to the Fourier componenigf{(q) at  Where the charge channel correction is given by
g=2kg, while for the Fock correctio=0. The two cor- 5

rections have different sign as we discussed above. The extra o :e_ 1= §f(Tr)
factor of 2 in the Hartree correction is due to electron spin CTah h 8
degeneracy.

Note, that Eq(2.14) is defined only up to a temperature-
independent constant which is determined by the ultraviolet 3F7 2 1
contribution. We have chosen the argument of the logarithm Sor= o & '7 1— —t(Tr'F”)}
to beEg /T instead of the usual T to emphasize that con- (1+Fg) ™ h g~ 0
trary to the naive expectations the logarithmic term persists
up to temperatures much larger tham,1dee also Ref. 15. e? Er

The different expressions for the Hartree termsyinand 272h In T/

v, are related to the fact that the single impurity scattering,

see Fig. 1, and multiple impurity case, see Fig. 3, allow for (2.160
different possible scattering angles. The dimensionless funGygre the factor of 3 in the triplet channel correction Eq.
tion w(T7) describes the crossover between ballistic and dif'(2.16c) is due to the fact that all three components of the
fusive regimes. In the ballistic limiT 71 it vanishes as

0.0

FIG. 4. Dimensionless functiow(x), which is defined so that
w(0)=1.

e? Er
—2 2hln T/ (2.16b
T

and the triplet channel correction is

3

-3

1
1— —In(1+FY)
Fe (1+Fg

triplet state contribute equally. We reiterate that the correc-
tions EQs.(2.16 are defined only up to a temperature inde-
pendent(however not necessarily Fermi-liquid constant in-
dependentterm, see also discussion after Eg.14).

In the opposite limitT7<1 it approaches a constant value We should warn the reader here, that we describe the in-

[C~0.577.-- is the Euler's constant and (x) is a deriva- teraction in the triplet channel by one coupling constegit
tive of the Riemann zeta functipn For the weak coupling limit, it corresponds to the approxi-

mation Vo(2kg) =(Vo(Kk))es. This approximation overesti-
3 mates the triplet channel contribution to the ballistic case for

( INx=In2—=C+ 7+ 65'(2)> : r<=v2€?/(khvg)<1. However, in this limit contribution it-

self is much smaller than the singlet one. For better estimates
so that the linear correction does not completely vanish irin this regime one should use
the diffusive limit, but competes with the logarithmic term
and in semiconductor structures with low Fermi energy it - 1 rs
might be important except for the lowest temperatures. The Fo—— 2 fs+—\/§
full function w(x) is plotted on Fig 4.

If the Coulomb interaction is considered, then the lowestn the first line of Eq.(2.169 and
order in interaction is not sufficient since for the long range
interactionvVy(q~0)>1. Although the interaction itself is 1 rs I (f2+ \/2—r§)
n ,r

still independent of the electron spin, summation of the per- Fo—— 5=
2 2
turbation theory depends on the spin state of the two elec- 2m \2—rZ \va-y2-r2

w(x>1)~ % In(2x) — %(In x—1)(6In2—-1)

27X

W(x<1l)~1+ 9

2
s

<2,
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00 X (2:—{’)
1.0 <
10.0
F,=0.0 -0.1
0.8 4 | -0.2
0.0 Pree=== -0.3
0.6 -04
) -100
&= -05
0.4 -
-200
06
0.2 -
-300
0.0 T T T T T T T T -0.7
0 2 4 6 8 10 12 14 _400 |
x F, =-0.8
FIG. 5. Dimensionless functiof(x), defined so thaf(0)=1. -50.0 ' ' ' '
0.0 1.0 20 3.0 40 5.0
Tr/h
1 's 1.2 2
a = —_— . . . .. .
Fo—’_; > arctanysrg—1, rg>2 FIG. 7. Total interaction correction to conductivity. The diver-
rs—2 gence afT7/A—0 is due to the usual logarithmic correcti¢Ref.

1). Curve F§=0 corresponds to the universal behavior of com-
in the second line. Far,=1 our replacament is well justified pletely spin polarized electron gas. The correction is defined up to a
even within weak coupling scheme. temperature independent part, see B33 and discussion after
Similar to Eq.(2.14) the dimensionless functiori$¢x) and  Eq. (2.14.
t(x;Fg) describe the cross-over between ballistic and diffu-
sive limits. They are plotted on Figs. 5 and 6 and full expres- The functiont(x;F3) depends on the coupling constant
sions are given by Eq$3.36. The universal functiorf (x) and therefore its asymptotic form also depends=gn For

has the following limits very smallx<1+ F{J the asymptotic form is
f(x>1 L 2(nx-1Din2—Linc2 t(x<1+F)~1— ypx+ —=xInx| 3+
(x=1)= = z—| 2(Inx-1)h 2= 5In(2x) |, (XL ~1=yx gxiny| 3+ ],
(2.17a
{'(2) 1 TY3
m vom = 3| 3t |- ,
f(x<1)~1-yix+ gxInx, (2.17b 37 1+F5) 9(1+F§
+—lcl 3+ +1 2(1+ )
- n
"(2) = 1 18 o ol |
71=—i77)+€(c+§|n2)%0.7216. 0 1+Fo

(2.18

5Fg—-3 (5 ___\In(1+FY)
wei- el

Notice that aff 7— 0, Eqs.(2.16 reproduce the known result
(1.2). Let us point out that for numerical reasons contribu-
tions of scaling functionawv,f,t change the result only by
few percents and they can be neglected for all the practical
purposes.

Notice that while the charge channel correction Eq.
(2.16Db is universal, the triplet channel correction Eg.169
is proportional td=g , which might be negative. That leads to
the conclusion, that the overall sign of the total correction

t(x)

¢ i 1 Egs.(2.16 depends on value d¥J: it can be either positive
X or negative, see Fig. 7.
FIG. 6. Dimensionless functiort(x,F3) defined so that Combining together all of the above results we plot the
t(OFg)=1. total correction to the conductivity on Fig. 7 for different
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S0 % (m) IIl. PERTURBATION THEORY
e2

0.0 In this section we show how the announced results Eq.
(2.16) can be obtained with the help of the traditional pertur-
bation theory. We try to explain the most important points of
-02 the calculation in detail. The comprehensive review of the
diagrammatic technique for disordered systems can be found
in Ref. 1. We start by a brief discussion of the case of a
04y Fy'=-0.3 weak, short-range interaction potential. Although this case is
h artificial and is unrelated to any experiment, it is governed by
06 L \ the same physics as the general problem, and it is simple
- \\ enough to allow a transparent presentation. To generalize to
N stronger coupling, we need to recall the basic ideas of the
Landau Fermi-liquid theory and to identify the soft modes in
the system. Then we present the calculation leading to Eq.
(2.16). Finally, to establish the relation of our results to ex-
-1.0 . s s : isting literature, we briefly discuss scattering on a single im-
0.0 0.1 02 03 0.4 05 purity (this discussion is completely analogous to the one in
Tt/ Sec. Il but uses the language of diagrams

-0.8

FIG. 8. The nonmonotonous correction to conductivity. Note the . )

difference in the overall scale relative to the previous figure. A. Hartree-Fock considerations
The static conductivity of a system of electrons is given

values ofFg. The divergence at low temperature is due toby the Kubo formula

the usual logarithmic correctionAlthough the exact value

of Fg cannot be calculated theoretical(in particular, its ) 1 rur . - .

relation to the conventional measure of the interaction Zep= — liMRE &= 0 d7(T-o(7)]p(0))€ ,

strength,rg, is unknown forrs>1), in principle it can be 00 " iQ—o

found from a measurement of the Pauli spin susceptibility (CHY

wherej (1) is the operator of the electric current at imagi-
= , (2.19 nary time r and the analytic continuation of the function
1+Fg defined at Matzubara frequenci€s,=2=Tn to function
analytic at Imw>0 is performed.
Assuming that electrons interact by means of a weak,
short-range interactiorfrange shorter thamgmin(7,1/T),

14

X

where the density of states should be obtained from a
measurement of the specific héat  '<T<Eg). The con-
stantFg is the only parameter in our theory which describes

all the data, including the Hall coefficient and the magneto—v(r)) it is sufficient to consider the lowest order of the per-

resistance in the parallel field. The theory for interaction cor—turb"’Itlon (tjhgo;y. The p;e'gtu'rbatlondt.heory canTt;]e clonvertnenély
rections in the magnetic field will be addressed in the forth-EXPressed in terms of Feinman diagrams. 'he lowest order
coming papet* diagrams for the_ interaction correction to the conductivity
The correction in Fig. 7 is almost always monotonous are shown on F'g‘ 9. The Hartree fcem_] corresponds to the
excent for a narrow region-0.45< F%< —0.25. A tvpical 'diagrams “a,” while the Fock contribution corresponds to
curvepin this region is s?]own i.n Fig 08 Not.e howg\rl)er thatdiagrams “b.” Evaluation of the correction consists of two

: s ' main steps:(i) analytic continuation to real time, an(@)

'::hie 07V ?;i!grg?;:tt’:aet (ichctgﬁ ﬁ(;rrr;.lctlgg (l)r;);g?\/rea;gé'a)fm disorder averaging. While these two steps can be performed
9- . . y : in any order without affecting the result, it is more conve-
When the interaction becomes so strong that the SySteWient (for technical reasondo start with steffi)

approaches the Stoner instabiliBj; ceases to be a constant '

db d q Th h It E Although analytic continuation in Eq3.1) is now a text-
and becomes momentum dependent. Thus the result Eg,,. task, we include a brief discussion of the standard pro-
(2.16 is no longer valid. Although the simple condition

. - cedure in the Appendix to make the paper self-contained.
dor<op suggests that this happensTat (1+Fo)Eg, the  after the continuation any physical quantity is expressed in
more detailed analysisee Sec. Il Eshows that it happens  erms of exacti.e., not averaged over disordeetarded and

much earlier. In fact, the approximation of the const@fiis  advanced Green’s functions of the electronic system, which
valid in the parameter region defined by the inequality are defined as

-
—<(1+F)2, (2.20

E, W (r)Wi(ry)

e—€*+10 '

Gi*é“’(a:Ej 3.2

see Sec. lll E for the origin of this inequality. We were not

able to make a reliable calculation 6&(T) at higher tem-  wherej labels the exact eigenstates of the system grafe
peratures. the exact eigenvalues, counted from the Fermi energy

214204-7
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FIG. 9. Interaction correction to conductivity in the lowest order

of perturbation theory. Here solid lines correspond to Matsubara

Green’s functions-G(i e, ;Fl,Fz) and the wavy line represents the
interaction potential-V(r;—r,).

|

HereU(F) is the disorder potential.

2

2m

+U(F))wj(F):(ej+eF)\Ifj(F).

The resulting expression for the correction to the symmet

ric part of the conductivity(the Hall conductivity will be
discussed in a separate publicatfyrcan be written &

5 fw de fdz d?
.= r r
P —=8772 4

XAM{V(T3=1 ) (BEP(Q;73.14)

d

Q
QO T

(Qcot

—2BfA(Q;r3,ry) +{aw B}, (3.3

PHYSICAL REVIEW B 64 214204

Eq. (3.4 correspond to diagrams “bl” and “b2.” For the
Hartree term the expression is similar,

BiA(Qirs,ry)

_f d?r,d?rsg
- [ S
X {JI7GR(€)IEGE(e)GR(e— Q) GEy(€) (3.53
+37G1y €)IEGE( ) GR(e— Q)GF (€)
(3.5b
+237GT(€)GRYe— Q) IEGE(e— Q) Ghy(e)
(3.50
—J{G1(€)IEGE( ) GRy(e— Q)Gy(€)
(3.50

—J{G1y(€)Gle— ) IEGE(e— Q) GEy(e)}.
(3.5

Again, Egs.(3.59 and (3.56 correspond to the diagram
“a3” in Fig. 9. The current operator is defined as

eA(r)

m

f1(r)fo(r).
(3.6

I [ N -
)11 = 5 ()T, (1,7 6,)]-

In the above expressions terms corresponding to diagrams
“b3” and “a3” on Fig. 9 allow for at least one of the spatial
integrations to be performed with the help of the identity

g R 38~R I r _ v \BR
where the extra factor of 2 in the Hartree term is due to the f drsGas(€)J5Gsd €)= ~1€(r3=r4)"Gaqe). (3.7

summation over electron spin. Here we denoted products of o
four Green’s functions aBy, . For the Fock term we have NOW it is clear that Hartree terms EqE.50 and (3.50

BgB(Q , Fs ) FA)

+J7G €)IEGE(€)GE(e— 0)Gfy(e)

d2r1d2r5 Ya~R _\IBAA R A
T{JlGlS(6)J5G53(€)GS4(E_Q)G41(6)

(3.4a

(3.4b

+237GR(€)GRYe— 0)IEGE(e— Q) Ghi(€) .
(3.4

— G €)IEGE€)GE(e— 0)Ghy(e)
(3.40
—J{Gy€)Gi e~ ) IEGE(e— Q)GYy(e)},
(3.4e

where V is the area of the system. Equatiof®&49 and
(3.4@ come from the diagram “b3” on Fig. 9 and the rest of

vanish identically, since there the identi(g.7) should be

applied with coordinate§3 andrﬁ4 being equal to each other.
In the Fock terms Egg3.4€ and(3.49 one needs to further
multiply the result of Eq(3.7) by the interaction potential

V(rs—r,). In the case of the short range interaction potential
this also gives vanishing contribution. Thus we conclude,
that the diagram “a3” on Fig. 9 does not contribute for any
form of the interaction, while the diagram “b3” vanishes for
the short-range interaction.

The same identity can also be applied to terms E3j4.0
and (3.5d), which also vanish by the same reason. Thus the
task of averaging over disorder is now simplified because we
only need to average two Fock terms E(&49 and(3.4b
and two Hartree terms Eq€3.53 and (3.5h). These expres-
sions contain only Green'’s functions of noninteracting elec-
trons and can be averaged using the standard diagrammatic
technique of the theory of disordered systgisee Ref. 1 for
review). The diagrams for averaged quantities can be con-
structed using the four “building blocksiwe use the mo-
mentum representation since translational invariance is re-
stored after averaging
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FIG. 10. Dressed interaction vertex.

o R R o RS R
(1) The average electronic Green’s functi@enoted as a a @ - J_a @ -
solid line; there should be no confusion with the previous use if iB

of the solid line for exact Green’s functions before averag- A A
ing), which in momentum space can be written as

b
(GR(A))(k o= 1 (3.9 FIG. 12. Averggedﬂprodyct of four Green'’s functions. The wavy
' ¢ i ' lines indicate 8(pij,— Pou+q) for the Fock contributionBg(q)
e— & . -
k27 and 278(pin—Pourt 9) o[ NPin] for the Hartree contribution

BH(qrnlan)'

(2) The disorder potential, which is assumed to be Gauss-
ian with the correlator o d%q
Br(Q;rq,rp))= J —_—
< F( 1 2)> (277)2

- - 1 - -
(U(FDU(T) =5 8(F1=T), (310

VT

€4 T(Be(q,0)).

) ) ) Using the explicit expressions Eg.8) and (3.9) we can
In the diagrams this correlator is represented by the dottegsite the analytic form of the averagdk

line.
(3) The dressed interaction vertdx (q and ) are mo- 2

mentum and frequency of the interaction propagatwhich ) i Q+E
represents a geometric series in disorder potential shown on Br(0.Q2) _ (- 1)T+ I(r+1) T 1
Fig. 10. op S vig? S
(3.11
- 17
IeQ)=1+—7p, (3938 |n the absence of magnetic fieBRf) = 6*#Br(uy , which is
S—— why we did not include the Greek indices in E§.11).
T The Hartree contribution is considered analogously. One
where we denote can write
2
L (Bu(Qify,7 >>=f 4 90 99 eiis-iai-r)
S= iQ+—| +vig (3.9b HEm T2 (2m) (27) (2m)2
T

XBu(Q:ny,n;,q), (3.12
(4) The averaged product of a retarded and an advanced
Green's functions(sometimes referred to as the diffuson \yheren, = (cosé ,sin4) indictates the direction of the mo-
where we have summed up a geometric series shown on F'Hﬁentum. Then. disorder averaginngj(Q'ﬁl ﬁz 6) is per-

1. formed with the help of the same diagraisee Fig. 12 but

Usmg’these pwldmg blocks we can average the pr.OdUCttche expression for the vertices changed as indicated in the
of Green'’s functions as shown on Fig. 12. It is convenient tofigure caption

write the averagedr() in the momentum representation. Accordingly, the expression for the dressed ver{&93,
The productBg, which appears in the Fock term, can be . :

. . . . .~ see also Fig. 10, is changed to
viewed as a function of coordinates of the two interaction

vertices and can be transformed to the momentum space as 1
Ch(n,ng;q;Q)=278(nny) +

R S, Sr—1’
o : o r
— + § — Sy(n,a; Q) =iQ—iveqn+1/r, (3.13
- - 21Vt
A wheren, corresponds to the direction of the momentiion
FIG. 11. Diffuson-geometric series of impurity lines. Fig. 10. The final expression fd@,, is similar to Eq.(3.11)
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BH(Q:ﬁlyﬁz,d)

Op

_Zﬂé(nfl\ﬁz)T T d03 N >
—+—f Ir(ng,ng)I'y(nz,ng)

S s] 2@ i
ds [ d6, - . Ty(ng,ng)Tu(ny,ny) iP o i
+ o 2—(n3n4) = =
77 m SH(N3)Sy(Ny)
- - r a b
+(Mny) —=————=—, (3.14 o .
Su(ny)Sy(ny) FIG. 13. (a) Single impurity contribution to the Hartree term,

see Sec. Il F for a detailed discussidh) Second order correction
to the Hartree ternfa).
and we suppressed the argumentQ in the right-hand-side

of the equation. We note in passing, that by construction of

= dQ 9 Q d2q
Egs.(3.43, (3.4b), (3.59, and(3.5b that — - -
gs.(3.4a, (3.4b, (3.5a, and(3.5b oo stwz aQ(QCOch_T)J(zw)Z
Br(Q:r,F)=By(Qsr,1), _ f% df,
X1m| Vy(0)Bg(q,Q0)—2 o | 2

and, therefore, according to Eq$3.10 and (3.12 the n:-ﬁ
relation XV, 2szin% Bn(Q:ny,n,,q) [. (3.19
do. do Evaluating this integralwhere we only keep the temperature
Be(Q;q)= f 1 —ZBH(Q;ﬁl,ﬁz,a) dependent part, see Sec. Il F for detaime arrives to the
2m 2m same result Eq(2.14), but with the coefficient in the form

Eqg. (2.15, in agreement with the discussion of Sec. Il.

, , . i . Let us now turn to the case of the Coulomb potential,
must hold[this can be easily verified using explicit expre- where the scheme of the calculati¢éas described so far
sions(3.1) and(3.14]. breaks down. In the Fock term we haw&0), which di-

We are now prepared to calculate the temperature depefarges for the Coulomb interactigiv(q) ~ 1/q]. To obtain
dence of the conductivity from E¢3.3). We substitute Eqs. meaningful results one needs to take into account the effect
(3.1) and (3.14 into Eq. (3.3. As we will see, the main of dynamical screening. The Hartree term seems to work
contribution to the temperature dependence is provided bgetter since using just the static screening makes the result
wave vectorsir=maxT,(T/n)"4/ve . On the other hand the finite. However, this is wrong also, since in this case dia-
potential V(F) has a range much shorter thargd/ This  grams with extra interaction lines do not contain any small-
enables us to use the following approximations: ness [see, e.g., Fig. 13; there the correction is

~V(2kg)V(0)]. Thus one can not justify the perturbation
theory in the interaction potential. The way out of this prob-
41 adl2r o lem is the standard theory of Landau Fermi liquid, which we
J 3;} 4V(I73_r"4)eiq(r3fr4)%\/(0), briefly discuss in the following subsection.
B. Soft modes

&1 2 As we already discussed, the.main con_tribution to the
f rs r4V(F3—F4)e‘kF(51*52)(r‘3*r‘4) temperature dependencg of physical _quantmes comes from
vV the processes characterized by spatial scales much larger
than the Fermi wavelengthe. Therefore, there is a scale
nrﬁ separation in the problem; all the Fermi liquid paraméters
2ke sin——= |, F; are established at small distances of the orderaf and
2 are not affected by disorder if the relatiep7=1 holds. On
the other hand, all the temperature and disorder dependence

is determined by infrared behavior of the system whiere
where V(k) in the right-hand-side of the above equationscan be considered as fixed.

denotes the Fourier transform of the interaction potential. Therefore, our first step is to identify the terms in the
Altogether, we now write the conductivity correction as interaction Hamiltonian, which may produce the biggest con-

~V
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tributions at temperatures much smaller than the Fermi en- —
ergy. This procedure contains nothing new in comparison ~ _ D F (nlnz)[w (» Vol gt (G Bo)]
with the standard identification of singlet, triplet, and Cooper PP il Sae .5 P10 0, ¥, A7 P2

channels, see Ref. 22, and we present here the main steps to

make the paper self-contained. X[, (py) oY v, (q—p2)]
The original interaction Hamiltonian has the form 3 "2 0540 2

- - - I F°(n 1”2) - -
Him=2 —— (q) W (P Y, (P2) Yo, (P2t Q) s (P1— Q). t 2 e (PO, V(A )]
a.pi '

and we imply summation over repeated spin indices. Soft
modes of the system correspond to the situation when two of X[, (pz)(UJ)U oo (a_ 52)] (3.2
the fermionic operators have momenta close to each other. N A
The difference of the momentg* defines the scale d#*
>N\g, which is the smallest lengthscale allowed in the
theory. Therefore, we explicitly separate the Hamiltonian
into a part that contains all the soft modésst three termg

A 14
and a correctiorsH, which does not contain such pairs of F&°(0)= 2
fermionic operators

describes singleff® and tripletF° pairing fluctuations. The
parameters in this Hamiltonian are

(3.22

.0 0
V( 2k,:sm§) tv( 2kFc0%

where plus and minus signs correspond to ef@rand odd
(o) pairing, respectively. Herel, are the elements of the

The explicit expressions for the entries of the HamiltonianPauli matrices in spin space
(3.16 are the following. The interaction in the singlet chan-

Hin=H,+H,+H,,+ oH. (3.16

(7'

nel (charge dynamigsis described by - 0 1 ~y 0 —i ~, 1 0
_ “l1 o) “lioo) 770 -1)
L1 FP(n.ny) o
HP:E Z V(Q)‘*’T ando'=0dY0'.
lal<ax.p; Deriving Egs.(3.17—(3.22), we used the conditiong*
to > > to> > > <Kkg . This condition allowed us to make the following ap-
X[, (P) Yo, (P1=DI[Y5,(P2) Yo, (P2+ A ], proximation:
(3.1
wheren, = p, /|pi|, the dimensionless parame®@t(n,n,) is (P1—Pa)? ~4k§sm2( 1M )
related to the original interaction potentM(q) by
v 0 We also used the identity
FP(O)=— §V< 2szin§>, (3.18

26010,00404= Oy 00y0, T Ty 0,
and v is the thermodynamic density of states of non- 12 Tsta Tt gs0atz
interacting electronéintroduced here to make” dimension- =gV +ol |
|es$. 0'10'3 0'20'4 0'103

Interaction in the triplet channéspin density dynamigs
is governed by

oh!

0'40'2

So far, the representatid3.16) of original interaction is
exact. The only advantage of this representation is that it

— explicitly separates the terdH which does not contain cou-
a 1 D F7(niny) pling to the low energy excitations of the fermionic system.
T2 oy v Therefore, the contribution ofH to physical quantities is
‘d|<'q* regular and not infrared divergefisuch as T/vgq*)?2].
o L Therefore, for the electron system with weak short range
X[lﬂzl(pl)Ungz‘/’az(pl_Q)] interaction,éH can be disregarded at all.
Moreover, even if the interaction is not weak or long
X[ (P2) Ty Y (P2 )], (3.19 range,sH can be treated in all the orders of perturbation

theory without generating a soft mode. If this term does not
break the translational symmetry at short distances, its only
effect is to renormalize the interaction paramet€ssin Egs.
v 0 (3.17, (3.19, and(3.21) and the Fermi velocity in the non-
F7(0)=— EV( ZKFS"E)- (3.20 interacting part of the Hamiltonian. For instance, one obtains
for the two-dimensional electron gas with the Coulomb in-
Finally, the Hamiltonian teractionV(q) =2me?/(«|q|)

where parameter§?(nn,) are

214204-11
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R R
a
o« R R o A * A
i® iU RS c e
-B B FIG. 15. Conductivity diagrams, group Il. Diagrarta and(b)
A J A J were evaluated for the short range interaction in Sec. Il A. In the
diffusive regime(Ref. 1) only diagramga),(d),(e), were considered
b d at w,qup<l/7.
(3.2)) is guarded by all above symmetries and the electron-
R R A R h : . .
= - ole symmetry, wh|c.h holds appromm_ately at low energies.
J j B J j[3 All the consideration above essentially repeats the basics
-- - -- - of the Landau Fermi-liquid theoR}. We reiterate, that this
theory does not imply that the interaction is weak; the only
A R A R assumption here is that no symmetry is broken at small dis-
tances.
c e
FIG. 14. Conductivity diagrams, group |. Diagraias, (b), and C. Disorder averaging

(d) were evaluated for the short range interaction in Sec. Ill A. In
the diffusive regimegRef. 1) only diagramga),(d),(e), were consid-
ered atw,qug<<1/7.

To study the interaction correction to conductivity due to
charge and triplet channel interactions introduced in the pre-
vious subsection, we follow the same route as in the case of
the short-range interaction. In particular, the charge channel

FP(0)=F(0)= 1 I's (3.23 correction is a direct generalization of the Fock term. We
2 ) ’ ' start, however, with the discussion of disorder averaging.
V2 Siny +rs The correction to conductivity Eq.3.3) represents the
first order perturbation theory in the original poteni&lq),
where valid when the potential is weak. For stronger coupling we
make use of the effective Hamiltonian E®.16). Although
v2e? the diagrams for conductivity look similar to the Fock term
r's= Khive (3.24 “b” on Fig. 9, their content is now quite different. First, the

wavy line now represents the propagator for one of the soft
is the conventional parameter characterizing interactiofnodes in Eq(3.16. Therefore the expression for the con-
strength and is the low frequency dielectric constant of the ductivity Eq. (3.3 should be rewritten as

host material. ExpressiofB.23 is applicable only forr
<1, however, keeping it in denominator is legitimate for Sor :_f* dQ K2 O cot QO
ah Q) T

small angle scattering. 82

For stronger interactiorrg=1, but still far from the -
Wigner crystal instability® r <37 exact calculation of the dersdery A s A - s
parameters= from the first principlesas well as their ex- X1m vy P (2,73, +TrDH(Q.13.7y)]

plicit expressions in terms af;) is not possible. Neverthe- .

less, to study the behavior of the system at distances much X(BEB(Q,rg,r4)+{aH,B})}, (3.2
larger than\ g, one can still disregard the ter@H in Eq. A .

(3.16. Then parameter§ are no longer bound by Egs. whereD* and D} are advanced propagators for charge and
(3.18, (3.20, and(3.22 [or by Eq.(3.23 for the Coulomb triplet channelif)T is a 3X3 matrix as follows from Eq.
interactior] but rather should be treated as starting param{3.19), see also Sec. Il FandBg is the product of electronic
eters for the low-energy theory. The form of Ed8.17), Green’s functions given by E¢3.4), the same as in the Fock
(3.19, and(3.2)) is guarded by symmetries of the system: term. Deriving Eq(3.25 we assumed that the spin rotational
Eqg. (3.17 is guarded by translational symmetry and chargesymmetry is preserved, i.e., no Zeeman splitting or the spin-
conservation; Eq(3.19 is guarded by translational symme- orbit interaction is present. We also neglected the depen-
try and symmetry with respect to spin rotations; and Eqgdence of the interaction propagators on the direction of the
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electron momenta. Lifting of those two assumptions is D v
straightforward but it will not be done in the present paper. aan — ~aan + """O""’ + ,\M@w
To the leading order in kI we can average the propagators
independently 0B (see, e.g., Ref.)1Here we proceed with
averagingBg and the discussion of the propagators follows. + 0O + EC)"M + ECD"""
We have already averaged the prodBgtof four Green’s
functions for the case of the short-range potential. There the a
three terms Eqg3.48, (3.40, and(3.4d vanished due to the Dij FU" S; 5; o, o
particular form of the potential. Now we have to take these o
terms into account and consider the full set of diagrams wv — 0O+ EL/>M + ECI)"""'
shown on Figs. 14 and 15. These diagrams can be evaluated
in exactly the same way as those in Sec. ll[where we b
considered a subset of these diagrams . ) ) )
As a result, the average@ has a form similar to Eq. ChaFnIr(]Be.lla Interaction propagator in ttie) singlet and(b) triplet
(3.1) and can again be expressed in terms of the dressed '
vertexI” [see Eq(3.9)]. We are still interested in the longi-
tudinal conductivity and thus disregard the Hall contribution.
Thus, after averaging the correction E8.25 takes the form

proximation (RPA), see Fig. 16, is applicable. To simplify
further considerations, we approximate the Fermi liquid pa-
rameterF* by its zero angular harmonic

o 2
502—620,2:ij ﬁi( Othzg)f a9 Fr(0)~Fg, (3.28
w2 0 T (2m)°? . . . )
this approximation does not affect the final result because of
><Im{[DA(Q,q)+Trf)$(Q,q)]BF(Q,q)}, t_h>eoo.long range nature of the Coulomb potentiflg— 0)
1 Consequently, we write the charge channel propagator in
i - the form
. 00 27110+ . F+(F2—1)72
F(22.0 S S WV(q)+F§
DAQ,q)=— . (3.293
2 v+ (vV(q)+F4TIA
vEg?-2 i9+_) 2 o o
N T T_+ I(I'+1) where the polarization operator is given by
s° 2 U|2:q2
iQ
1 2 1 IAQ,q)=v 1-—|, (3.29h
iQ+ ; oT2 iQ+ ; S— ;
X S — T3 S -1
S using the notatior(3.9b. The polarization operata3.29h
F3v2q2 differs from the more standard oriased, for instance, in
F

, (3.26 Ref. 16 since the diffusion approximation has not been
7P made yet. Indeed, expanding the polarization operator in
small ) andq we can recover the usual diffusive form. In
terms of the scattering time it corresponds to the lifinit
<1. We do not do that here since we want to calculate the
= o conductivity for all values off .
Br((2,0=0)=0 (327 The form of the propagatd8.29 and expression for the
[to see this one should use explicit expressith§) in Eq.  conductivity correction(3.26) suggests that there could be
(3.26)]. This property is not accidental—it is guarded by thetwo contributions. First, the propagator Eg.29 has a pole
gauge invariance of the system: no interaction with zero mowhich corresponds to the 2D plasmon. However, the plas-
mentum transfer can affect the value of the closed loop. Mon dispersion relation is

To proceed further with the actual calculation of the cor- i
rection (3.26) we need to specify the interaction propagator. 2 _ z
It will be done in the following two subsections. (e Q) vV(qp|)—ZQ(Q+ T

where quantitied” and S are defined in Eq(3.9).
It is important to emphasize that

ie., (qup|)2<|Q(Q+i/7-)| at all distances larger than the
screening radius. According to the gauge invariance condi-

In this section we discuss the charge channel correctiortjon (3.27) this contribution is strongly suppresséay a fac-
described by the Hamiltonia(8.17). Because the effective tor of the order of mai,(T/7)¥?]dg./vg, with dg being the
interaction is characterized by the momentum transfer mucbBcreening radiusV(1/ds) =1) and we will not take it into
smaller than the Fermi wave vector, the random phase amccount.

D. Charge channel
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Second, at frequencies smaller than the plasmon fre- =dQ 4 1
quency we can neglect the unity in the denominator in Eq.  doc(T7<1)= —827' 5= 0—Q<Q COthz—)
(3.29, which corresponds to the unitary limit, i.e.,
¢ |n(EF) (3.32
S—E 22 T/ -
A 1 _ 1 T
D7=- o~ v_ 1 330 |y the opposite limit we can replace arcfanby 7/2. Then
S— ; —iQ the integral is divergent in the ultraviolet, but that large con-

stant can be incorporated in the definition7ofThis is done
as follows:

Thus the original couplingy(q) as well as the renormaliza-
tion of the coupling by the Fermi liquid parameter E8.17)
does not affect the resulting propagator. In other words the f dQ—(Q cothz—)—> 2T+ EFcothz— (3.33
propagator becomes universal.
It is important to emphasize that E(.30 gives the up-
per bound for the strength of the repulsive interaction. This isvhereEg is put for the upper limit of the integral. This is
guaranteed by stability of the electron system with respect teonsistent with the approximations in momentum integra-
the Wigner crystallization, i.e., by the conditiofV(q) +F§ tion, where one typically relies on fast convergence in order
>0 atq<q*. Therefore, we always have to set the integration limitfotherwise determined by the
Fermi energy to infinity and to set all momenta in the nu-
merator to the Fermi momentum in magnitude. Since we are
vW+Fg - 1 interested in temperaturds<E, the second term is essen-
v+ (WW+FHII m’ tially a temperature independefaithough infinit¢ constant.
The temperature dependent correction to the conductivity is

so that Eq.(3.30 is indeed the upper bound for the propa- determined by the first term. As a result

gator Eq.(3.2939. Note, that the above condition is satisfied

regardless of the sign d¥j. In particular, it is po.s_sible to Soc(Tr>1)=— dQ ‘? Qcothz—)

have Ff<—1 so that the so-called compressibility of the

systemv/(1+ F§) is negative. This fact, however, has noth- (3-34)
ing to do with stability of the Fermi liquid and does not

affect transport phenomeRa. Integrating the full expression E¢B.31) we find the cor-

Using the propagator E§3.30 in the expression for the rection valid at all values of 7,
correction Eq(3.26) we obtain after momentum integration

Soe= ez|(EF A P T S
-d o= oS gt —gf(Tn}, (3.39

Soo=—¢? o Q cot T
o=~ o s @0y

where the dimensionless functié(x) is defined as a dimen-
sionless integral

s—H(Q7)In2

2 1
x[;arctarﬂﬂr 7TQT+ >

8(= |4
f(x)= §J;) dz a(zcothz)—l

L 1 H(Qn Jarctan— + -7
—[ (Q7)]arc anQ— yp=
1 w1 X2 H(2x2)In 2+ 11+ H(2x2) Jarctan-
— XZ)In — XZ) |arcta
x| 5 +H(@7)|In - } (3.3D) ™ ™ 2x2
xz|1
where the dimensionless functiof(x) is defined as BT PG Sy
2
1 + —arctanQr—11. (3.39
H(x)= . T
4+ x2

The factor 3/8 is introduced for convenience, so thi@)

In the frequency integral E¢3.31) we single out the first =1. The integral can be evaluated analytical in the two lim-
two terms as being dominant in the ballistic and diffusiveiting cases and the result is given by EB.17). In the inter-
limits respectively with the rest being the crossover functionmediate regime the integral can be evaluated numerically
The diffusive limit is given by and the result is plotted on Fig. 5.
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E. Triplet channel Having discussed the validity of the approach, we proceed
In this section we discuss the correction in the tripletWith the straightforward calculation: one has to substitute the

channel. Similar to the case of the charge channel, we neejoPagator Eq(3.40 into the expression for the correction
to derive the interaction propagator in the triplet channel andFd- (3-26 and evaluate the integral. The result of the mo-
then use Eq(3.26. As follows from the Hamiltonian Eq. Mentum integration is given by
(3.19, the triplet channel propagator is now &3 matrix.

Apart from this minor complication, the propagator can be&rT:_aezTr @ d (Q cot Q )[ ( 1 iln(1+Fg)
T =4
0

found using the same RPA approximation as the one used in A 00
Sec. Il D, see Fig. 16.
Similarly to the charge channel, we take the Fermi liquid 1 Fo 2 Qr
couplingF” to be independent of electron momenta X0 (1+FO) —arctan) 7+ S—{[H(Q7)
Fo(0)~Fg. (3.37

1
) i o +h(Q7)]IN2+hy(Q7)}+ —=[1+H(Q7)
Unlike the case of the charge channel, this approximation ™

slightly affects final result§see discussion after Eq.16 1 0
for the drawbacks of this approximation as well as for its +(Q7)%h,(Q 1) ]arctan— + il
remedie$ Then the matrix equation for the triplet propaga- Q7 4w

tor has the form 1
In( 1+ 9272) H ., (3.42a

where we introduce notations

1
X §+H(QT)+h2(QT)

F .
[DT]ij:_5i17_7 > [ Drl;,  (3.39
k=x,y,z
wherei,j=x,y,z. _
In the absence of the magnetic field and spin-orbit scat- h;(X)=H(x;1+2Fg)[5+6F35—4(2+3Fg)H(x)],
tering each electronic Green'’s function is a diagonal matrix (3.42h
in the spin space, and therefore B
ho(X) =hy(X) + H(XFg)

f(9,0) = 8, 11%(q,Q), (339 . .
where I14(q,Q) is the polarization operator given by Eq. X —5(1+Fg)+ng2 5—(1+ Fg)ﬁ(x;Fg)H,
(3.29h. Altogether, using Eq(3.39 in the equation3.38),
we find the triplet channel propagator as (3.429
Fo ha(x)=H(x;1+2F)[—1—2F§+(2+3F§)H(X)]
[DAQQL= -8 ——————. (340 : ° ° °
v+ FJITAQ,q) -

+EH(X;F8)[1+ Fox2H(x;F)1, (3.420
Before we continue, let us discuss the validity of the ap- 2
proximation Eq.(3.37). Consider the situation close to the
Stoner instabilityFg— —1. In this case the pole of the
propagator Eq(3.40 describes a magnetic excitation in the
system. In the ballistic caseq&1/) it is a slow, over-
damped spin wave 1+F¢
+hs(X)
—iw~(1+Fvelgl. 0

5Fg—3 1-—(F§)?
0 + 0

> In(1+F)

ha(x)=H(x;F§ {
0

In(1+F9), (3.428

The main contribution to the temperature dependent conduc- _ o Ty o\ L2y O
tivity correction comes from thisppole a.i~TF) The corre- hs(X)=(2Fg = DHO1+2F0) +H(x Fo)
sponding typical momenta ar&*~T/[(1+Fq)ve]. Al-
though we are using the momentum independ€ff it is
knowr?® that fluctuations in the triplet channel produce a
nonanalytic correction to the spin susceptibility, so up to a

numerical coefficienF?~Fg(1—[q|/kg). Such momentum ore we introduce a dimensionless functidix; y)
dependence can only be neglectekif<kg(1+Fg). This

1
= -2Fg

X
2

(1+ Fg)Z—(Fg)sz(;quH.

(3.429

translates into a limitation for the temperature range where 5 1
the results listed in Sec. Il B are valfff: HxGy) = —F——,
(1+y)°+(xy)
<T* ~ T2
T<T"~(1+Fo)"Ee. (341 which is related to the functioH (x) introduced in Sec. Ill D

At higher temperature$>T* our theory is not applicable. simply by H(x)=H(x;1).
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The expression in brackets turns into its counterpart in the
charge channel in the unitary limiF§— o). Its first term
describes the diffusive limit described in Ref(the formal
difference in the coefficient stems from the difference in the
definition of the coupling constanfThe frequency integral is
evaluated in the same way as in E§.32. Similar to our
discussion of the charge channel correctisee, e.g., Eq.
(3.34], we identify the second term in E¢B.423 with the
ballistic limit (which we discuss in more detail in the next a b
section. The intermediate temperature regime is described
by the expressiofiwhich appeared previously in Sec. Il B,
Eqg. (2.160]:

FIG. 17. Single impurity diagrams for Hartree channel.

Ref. 1. On the other hand the correction in the ballistic limit
1 ) E is subject to conflicting claims in literatufé’” Unfortunately,
So=— 3( 1— —In(1+F9) ) e_m(_F) neither result is completely correct. Therefore we discuss the
g 22\ T ballistic limit in some detail, starting with diagrams before
averaging(i.e., diagrams on Figs.)9This way we are able to
3 > point out exactly which diagram produces the dominant re-
1- gt(TﬂFo)}’ (343 sult and which diagrams were missed in existing theories.
We begin by discussing the Hartree term. This contribu-
Where the dimensionless func“(b(‘b(,l:g) is defined as '[iOI’l was Considered in Ref 6 in the framework Of the tem-
perature dependent dielectric function. The physical idea was
J that electrons tend to screen the charged impurities and thus
(2 COch)—l} modify the scattering rate. In what follows we show which
diagrams describe this process and how to calculate the re-

0

3F] Tr
+ —Oe2_
(1+Fg) ™

(o8 8 “
t(x;Fg)= §f0 dz

X7 sulting correction, which appears to be the samp to a
X[—{[H(sz)+h1(2xz)]ln 2+h4(2x2)} numerical factor miscalculated in Ref. 6; see below for de-
77 tailed explanation The important difference between the
two approaches is that the impurity screening picture de-

+ £[1+ H(2xz)+4x222h3(2xz)]arctanzi scribed only the direc{Hartreg interaction, while missing

™ Xz on the exchange part. The latter was later considered in Ref.

27. We think that this consideration is erroneous, and we

+ xz £+H(2xz)+h2(2xz) inl 1+ discuss the Fock term in Sec. Il F 2.

2m| 2 (2XZ)2

1. Single impurity limit for Hartree term

+ Earctarﬁsz)—l ] (3.44) The goal of this discussion is to show which diagrams

™ correspond to the ballistic limit of the Hartree tefas dis-

N . . cussed in Sec. Jland how it relates to other interaction cor-
Except for the limiting casefsee Eq(2.18] the integral in  ections we discuss in this paper. The Hartree term corre-

Eq. (3.449 has to be evaluated numerically. We plot the resmtsponds to averaging the two diagrams on Fig. 9, where the

for several values oFg in Fig. 6. wavy line represents a weak interaction potential. In this case
the diagram “a3” of Fig. 9 is equal to zero even before the
F. Single impurity limit averaging(as a total derivativeand we only need to average

}he diagrams “al” and “a2.” The rigorous procedure would

In the previous sections we obtained the expression fo . . . ) . )
the correction to conductivity averaged over disorder. Tomvolve dressing the interaction vertices according to Fig. 10

complete the calculation we needed to separately average the

interaction propagator and use the result to evaluate the in- A R R .o A A
tegral in Eq.(3.26). In doing this we assumed that the di- ’__ _ o _
mensionless conductance of the system is large or in terms of b i8 iB
R A A
b d

the scattering timeE->1. We have not, however, assumed

anything about the relative value of the scattering rate and a

temperature. In other words, the correction 326 is valid

in both the diffusivel 7<1 and ballisticT 7> 1 limits. It also R R A R

describes the cross-over behavior at intermediate tempera- i@ @jﬁ i® @ iP

tures. -- - -- -
The temperature behavior of the interaction correction in A R A R

the limiting cases can of course be obtained from the general

result Eq.(2.16). As we pointed out in Sec. Il B, in the dif-
fusive limit our results coincide with the standard theory, FIG. 18. Fock channel diagrams without impurity lines.

[ e
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FIG. 21. The single impurity diagram for Fock channel with the
impurity line connecting two advanced Green'’s functions.

R R
i @jB 2. Fock contribution
Nt In the similar manner one can discuss the single impurity

contribution to the Fock term. Again, for weak interaction we
could simply expand the result of disorder averaging for the
FIG. 19. Single impurity diagrams for Fock channel with the FOCk term Eq.(3.11) to the leading order in T/r. For Cou-

impurity line dressing one interaction vertex. lomb interaction we would expand E(B.26), since in Eq.
(3.11) the special form of the delta-function potential was

utilized to eliminate the diagram “b3” on Fig. 9. Diagram-
k_matically, such expansions equivalent to direct evaluation of
diagrams without impurity linegbut with averaged electron
Green’s functionsshown in Fig. 3 and diagrams with only
one impurity line shown on Figs. 19-21.

The evaluation of the single impurity diagrams for the
ock term is straightforward and is completely analogous to
the Hartree term discussed in the previous subsection. The
result can be written as

and adding diffusons Fig. 11 as it was done in Sec. l(58e
Fig. 12, evaluating the resulting expression, and finally ta
ing the limit Tr—o. However, the same result can be ob-
tained by making the expansion by noticing that impurity
line brings smallness Tk. Therefore, high temperature limit
may be studied by considering diagrams on Fig. 17 directly,
Such approach is completely equivalent to that of Ref. 6. Th
result[which can also be obtained from the general expres
sion Eqg.(2.160] is similar to the one obtained in Ref.(the

difference is the extra factor of In2 found in Ref. 6 due to an e2:rT

error in this reference, which consists in putting the energy TF=— (3.46
of the scattered electron on the Fermi shell rather than inte-

grating over ij: This result contradicté&ven in sign that of Ref. 27. Here we

briefly discuss the reason for this contradiction. We notice
T that one has to be careful to keep track of gauge invariance
Sopy= _4UD(_>[_ vD(2kg)] (3.45  Wwhile evaluating diagrams for the Fock term. Gauge invari-
Er ance manifests itself in the fact that any interaction at zero
momentum gives no contribution to physical quantities,
[for weak couplingD(2kg)=—V(2kg)]. The factor of 4 in  which are expressed diagrammatically as closed loops, see
Eq. (3.45 can be interpreted as a result of a summation OVeEq. (3.27). This is indeed the case for E(8.26), where we
four spin configurations. Although correct for weak coupling, summed up all the diagrams. On the other hand, any indi-
this factor should be modified when stronger interaction isvidual diagram is not gauge invariant. In particular, each
considered, see discussion above. subset of diagrams in Figs. 18—21 is not gauge invariant.
Therefore to obtain the result E(R.46 from these diagrams

one has to disregard terms which contain higher than second
jo A * A jaR * R oA * A powers of the scattering rater1/As we already mentioned,
-- ¢ - - - - - - - the contribution from the plasmon pole is small due to the
> iP N if i? condition (3.27). However, in Ref. 27 it was claimed other-

wise. Namely, diagrams in Fig. 18 were claimed to be im-
portant for the plasmon correction and to give a large result,
r ® A R while diagrams in Figs. 19—-21 were alleged to be not impor-
" g o B o B tant for the plasmon correction. This claim explicitly violates
’ _J_ - _ Ea _ J gauge invariance and leads to incorrect conclusions. In par-
A " ticular, the plasmon contribution to the conductivity was
A R

A R overestimated by a factor of order af{/d.T)=(Eg/T).
c e e

a b d

] ] o ) IV. KINETIC EQUATION APPROACH
FIG. 20. Single impurity diagrams for Fock channel with the

impurity line connecting a retarded and an advanced Green’s func- Our purpose in this section is to put the treatment of the
tions across the diagram. interaction effects in disordered systems into the framework
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of the kinetic equation. Even though at this point this will not SYf} =St f}+St{f}. 4.3
produce any further physical results, this proves to be more

convenient for practical calculations of more sophisticated]_h lasti ¢ th llision i Ld i .
quantities, such as the Hall coefficient, the thermal conduc] '€ €lastic part of the collision integral describes scattering

rof electrons by static impuritieeve assume pointlike scat-
éering; generalization to the finite range is straightforwasl

main technical advantage of the kinetic equation is that iwell as by the self-consistent field generated by all the other

operates with gauge invariant quantities from the very begin€!€ctrons:

ning, unlike the perturbation theory, where each diagram
taken separately is not gauge invaridahd may produce Lo Lo
nonphysical divergencgs Stffl=— f(ter.n) —(f(tier,n)y +
We will present the final form of the kinetic equation in T
Sec. IV A, and show how to operate with this equation for s wBle. = e
the conductivity calculation in Sec. IV B. The derivation of X(F(tern)at nal 175 e r)(ngf(ter,n)y.
this equation based on the Keldysh technique for nonequilib- (4.4
rium system& is presented in Sec. IV C.

lo(t;€,n,r)

The effect of the self-consistent field is described by the last
two terms, where we introduce notations
As usual in the kinetic equation approach, averages of
observable quantities are expressed as certain integrals of the
distribut?on functionf(t;e,F,ﬁ). For instance, the averaged Io(t;e,ﬁ,F)= _ §f d—w[naKSB(w)(nﬁf(t;e—w,F,ﬁ))n
density is 2w

A. Final form of the kinetic equation

© aLaB
p(t,F>=vf_wdemt:e,riﬁ»n (4.19 b 02<w)

J - >
Vﬁ+eEﬁz}(f(t;e—w,r,n)>n]

and the average current is (4.59

o

de(nf(t;e,r,n))y (4.1b

j(t,F)=evv f - 8 (dw N

F Ifﬁ(t;e,r)z—;JEKfﬁ(w)<f(t;e—w,r,n))n.
and so on. Here is the density of state@ntering into linear (4.5b
specific heat of the clean systgat the Fermi surface ang-

is the Fermi velocityn=(cosé,sin6) is the unit vector in the  The collision integral Eq(4.4) preserves the number of par-
direction of the electron momentum and angular averaging I%cles on a given energy shell: integrating.Si(t; e b ﬁ)}

introduced as o >
over directions ofn gives zero for any value of [see also
de Eqg. (4.58].
(o= on The term|, expresses enhanced momentum relaxation
due to static disorder. The physics of this term was discussed
The Boltzmann-like equation for the distribution function in detail in Sec. II. The ternh, describes electron scattering
has the form by nonequilibrium nonlocal Focklike potential created by all
other electrons. This process is responsible for generation of
the finite drift velocity of electrons. One can easily see that

f=Sgf}, I, vanishes in the equilibrium situatiori(e,n,r)="f[e
(4.2 tee(r)], V,o=—E,.

- o . The kernelsK, K4, andL, entering into Eqs(4.5) can

whereE denotes the external electric field aindis a vector  be expressed in terms of interaction propagators and the

with the magnitude equal to the cyclotron frequency correpropagators describing semiclassical dynamics of non-
sponding to an external magnetic field perpendicular to thenteracting electrons. Explicitly,

plane and the direction along the field.
Equations(4.1) and (4.2) neglect energy dependence of
the velocity of electrons, which makes it inapplicable for d?
quantities associated with electron-hole asymmetry, such as<i*(@)=Im f
the thermopower. On the other hand, any component of the

. S
&t+anV+evF(nE)£+wc(nX£)

q R -
oD@

thermal and electrical conductivities is still within our de- Sap 9

scription. x[(naD)(DnB)—T (DYD)+i £<D>)]’
All of the interaction effects are taken into account in the

collision integral (4.69
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d? - 2
Kgﬁ(w)zlmf 2 C;ZDR(w,q) A(w)z?yf

ko

d?q 2R, 22
oy [REDFID @A, (480

i d where(D) is given by the solution to Eq4.7) averaged over
<[ D0~ - O OO, angrea " wnaverag
“ The above equations are written for the interaction in the
(4.6b singlet channel only. In a situation where both triplet and
singlet channels are present, but the distribution function

d’q R 9 does not have a spin structum@o Zeeman splitting or non-
L5 (w)=~ Ref (ZW)ZDR(G’,Q){@)@(%D) equilibrium spin occupation presenbne has to replace
9 9 DR-DR+TrDR 4.9
—(Dna)—(D>—<Dna—D>]. (4.60
ddg 9dp in Egs.(4.6) and
Here, D"(w)=D"(—w) denotes the retarded interaction |DRIZ— | DRI2+ T DR DRI (4.10
propagatofsee, i.e., Eq(3.30] and we introduce the short
hand notation for the angular averaging in Eq. (4.8b.
Equations(4.2—(4.8) constitute the complete system of
dede’ . . . R transport equations with the leading interaction corrections
<an>Ef (2m)? a(n)D(n,n";w,q)b(n"), taken into account. They may be used to study both linear
o

and nonlinear response. We reiterate that they do not include
effects of electron-hole asymmetry and in this form cannot

doedo’' de’ produce finite thermopower. The Hall effect, the thermal
(anDc)Ef 5 conductivity, and energy relaxation, however, are included
(2m) and will be studied in a subsequent publicattdmn the fol-

lowing subsection we apply the kinetic equation approach to
study the interaction correction to the conductivity at inter-
. . ) - - - mediate and low temperatures and reproduce the results ob-
for arbitrary functionsa,b. The functionD(n,n";®,q) de-  tyined in Sec. IIl by means of diagrammatic technique. The
scribes the classical motion of a particle on the energy shellaa50n for doing so is to show how the kinetic equation

€r In @ magnetic field works and to demonstrate explicitly that both approaches are

xa(n)D(n,n’)b(n")D(n’,n")c(n”)

equivalent.
) S B s o Closing our description of the structure of the kinetic
“lotlveng+ . ”XE D(n,n";w,q) equation, we discuss the range of its applicability. Any ki-

netic equation implies that the distribution function changes
1 N R N R — slowly on the spatial scale of the Fermi wavelengthand
+—[D(n,n";0,q)=(D(n,n";@,q))s]=2m(nn"). on the time scale &£ . In our case, the conditions are more
restrictive. First, in the interaction correction to the elastic
4.7 collision integral we take into account only the effect of the
interaction on the zeroth and first angular harmonics of the
As we have already mentioned, the elastic part of thelistribution function. This implies that the equation gives the
collision integral is nulled by a distribution function of the correct description for the interaction effects on the conduc-
form f[e+eq(r)] for an arbitraryf. It is the inelastic term tivity and diffusion, whereas it is not correct for description
that is responsible for establishing the local thermal equilibof the quantities involving higher angular harmonics. Sec-

rium and it has the standard form ond, we made a gradient expansion in E§59 and only
took into account terms linear in the electric field. This im-

plies that the distribution function changes slowly on the

Sﬁn{f}:J dwf de;A(w)f(e)[1—f(e1— )] spatial scalel r=min[#vg/Tue(#T)?], and on the time
scale of the order ofi/T. The electric field expansion is
X{—f(e)[1—f(e+w)]+[1—f(e)]f(e—w)} justified by the conditiore EL;<<T. One can check that both

these conditions are satisfied, if the energy relaxation time is
(4.89 much longer than the time for the elastic collisions. We also
did not include quantum effects of the magnetic field. This is
f(e)=(f(t;e,r,n))y. justified atw.<max(T/4,7 1.
Finally, the interaction part of Eq4.4) is calculated in the
The kernelA(w) describes matrix elements for inelastic pro- first loop approximation. It means, that it has to be consid-
cesses in both ballistic and diffusive limits. The explicit ex- ered as the first order correction torllf one is interested in
pression for this kernel is the next order interaction correction to the elastic part, one
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should take into account the second loop correction, which is F( —w) 9 ®
not considered in the present paper. On the contrary, the in- f defp(e)————=—1+——|w COch—T),
elastic part(4.8) can be considered in all orders to find the

zero angular momentum part of the distribution function; the . .

only assumption here is the validity of the Fermi-liquid de- f dwKi(w):f doLo(w)=0.
scription at energies smaller thap. —o —o

B. Conductivity calculation In order to derive explicit expressions for the kernils
andL, we have to solve Eq4.7) for the functionD in the

In order to calculate the conductivity at zero magneticabsence of the magnetic field. The result can be written as
field w,=0 we look for the solution of Eq94.2—(4.4) in

the form

>

D(R,0':,4)=278(nn")Dy(,w,q)
f(n,e)=fe(e)+nl(e), (4.12)

wherefg(€)=1/(e“T+1) is the Fermi distribution function Cr—1’

(all the energies are counted from the Fermi lgvehdI is (4.19

the quantity to be found and it is proportional to the electric

field. whereD, denotes the solution of E@4.7) without the an-
We substitute Eq(4.11) into Egs.(4.2), (4.4), (4.5, and gular averaged terntand in the absence of the magnetic

(4.8). The inelastic part of the collision integrggee Eq. field)

(4.9)] obviously vanishes, as effects of the heating are pro-

portional to at least the second power of the electric field. As - - 1

a result, we obtain an equation fbr Do(n,w,q)=

+Do(N,®,q)Dy(n’, 0,q) =——

—iw+iv,:ﬁ(i+ 1Ur

dfe(e) Fa(e)_ff d_w[K“B( Vi o(em o) Here we used the short-hand notation
VFEa T e T T 7) 27t N@)TRLET@

) C=V(—iw+1n2+vid?
XT 5(e)+KgP(w)fp(e)T s(e—w)]
P 0 F P which is similar to the notatiors used in Sec. II[in fact,
4fe(e) C=S*, see Eq.(3.9b]. Substituting Eq.(4.19 into Egs.
(4.69—(4.60 and performing the angular integration we ar-
rive to

dw op d
f ﬂLO (a))eEﬁﬁfF(e— w).

(4.12

We solve Eq(4.12 by iterations. As usual for kinetic equa- (@)=— Imf (0.0)
tions, the solution is expressed in terms of the unperturbed fa q
distribution functionfg(e) and the kernels, which in this ) ) )
case are given by Ed4.6): x[ 1 (C—(—Iw-l—l/T)) C—(—|w+1/r)]
te(e) do vEg?\  C-lr7 C(C—1/)?
Fa(e):_evFTEaT+4evFTf Z[Kf'g(w)fp(é—w) (4.163
(9f|:( ) (6 w) R
< s Kgh(w)e(e)” £y o =m [ 4R,

d b —(—i i 2
—4f,:(e)f%Lgﬁ(a})eEﬁ%fF(e—w). 413 X[c (—iw+17) [C—(—iw+1n]? 1 ]

+
C(C—1/1)? C(C-1Un)  y2¢?

Substituting Eqs(4.13) into Eq.(4.11) and the result into Eq. (4.16H
(4.1b, we integrate ovee and find the conductivity

d
o=0p+ 60, (4.143 3(;) fq IDR(w,q)
S do 9
—sz © (wcothz—) olw) —Ky(w)— O(w)}, 3 ved’® N
op T o VET E’C3(C—l/ )2+ TR R
(4.14b T ( 7)
where the Drude conductivity i9D=e2vv§r/2. Here we (4.169

used the fact that in the absence of the magnetic field all thgogether with the conductivity correction E¢4.140 the
kernels are diagonak = OapKi, LaP= daplo- We also  above expressions E(4.16 are identical to Eq(3.26 ob-
used the identities tained in Sec. Il by means of the standard perturbation
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C fermionic fieIdSz//T and ¢ (as well as the bosonic fielg)
can be treated as doublets
g v
- o0 + o0 = y (4.21)
& v

FIG. 22. The Keldysh contour. . ) .
y where we adopt the notation that fields with-a(+) sub-

theory. Thus the kinetic equation approach is completelfcript(also referred to by Greek letters in this _sec)i(mside
equivalent to such diagrammatic calculation. on the Iower(up[f)eb part. of the contour 0;2 F'Q(-Zfl)- The
Integration over the wave vectqrequires the knowledge M€ dependent fermionic operatogsare taken in the inter-

of the interaction propagator. Substituting £8.30 for the ~ 2ction represntation
singlet channel and Eq3.40 for the triplet channel and . e )
performing the straightforward integration we arrive to the —iap(t)=[H(t);(t)],

results in Sec. Il B. whereH; is the one-electron Hamiltonian which includes the

o o _ static disorder potential as well as external fields.
C. Derivation of the kinetic equation Consequently, the Green’s function in E&.17) is a 2

In this section we derive the kinetic equation discussed in<2 matrix. Time ordering along the contour is denoted in
Sec. IV A. For simplicity we show the derivation for the case Eq. (4.19 by T.. Matricesy® in Eq. (4.20 are defined as
of the singlet channel interaction E(.17. The case of the

triplet channel can be treated in the same manner with minor ~, (710 ~_ (00
differences(introduction of extra spin indicéslescribed in Y 1o ol Y =lo 1/
the end of this section. To keep the discussion at the same
level as in Sec. I, we treat the Fermi-liquid paramdté&rin The Green'’s functioré(xl,x2|¢) in Eq. (4.1 is given
Eq.(3.17 as a constant, similar to our treatment of the tripletpy
channel in Sec. Il E.
e = 1 T —iSg[¢. 4]
1. Keldysh formalism G(Xq,%o|p) = mm_clﬁa(xl) Pp(Xp)e PR,
Here we summarize the results originally obtained by (4.22

Keldyst® that enable us to calculate correlation functions forgere. as well as in Eq(4.19 the angular bracketé: - -)

any nonequiliibrium distribution. Let.us first cons.ider a denote quantum-mechanical averaging. In this section we
Green's function of electrons before disorder averaging. Theii| use the short hand notation

electron-electron interaction is described by the Hamiltonian

Eqg. (3.17. In the path-integral formulation it can be decou- X=(t 1)
pled from fermion operators using an auxiliary bosonic field R
¢. Then the Green’s function can be written as The bosonic action Eq4.18 can be treated in the saddle
point approximation
G(x1.%;) = f [DPIG(x1 %, p)e~ 'S4, (4.17) (e~ iSaldly = g iFL4], (4.233

with the action defined as 1 _.
Fl¢l=F[¢=0]+ §¢TH¢+ 0(¢%, (4.23b

* 1
Sel ¢1= J_mdtdzr(id’TVO foap| +ilnZ[ 4], wherell is the electronic polarization operator, defined as
where —V, is the (bare; following Eq.(3.17 V,=V(Qq) Haﬂ(xleZ):m - (4.24
+ F§/v) electron-electron interaction propagator @i the ¢=0
partition function The quadratic expansion in E@.23b is justified, provided
that the fields¢ are slowly changing on the scale much
Z[ p]=(Tce 'Selé¥l) (4.19  larger than\g.
Let us now average the Green’s function E4.17) over
disorder:

Sl .y]= f:dtdzr{w%;v%, (4.20

. _ S (G(X1.,%) ) gis= f [DPI(G(X1,Xo| b)) gise ™ SeLDcis
where o,=diag(—1,1) is the Pauli matrix in the Keldysh (4.25
space. '
In the above expressions all the fields are defined on thehere (- - - )45 hereafter denotes averaging over disorder.
Keldysh time contour shown in Fig. 22. In particular, the Here we average the electronic Green’s function B2
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separately from the bosonic action E4.23. This approxi- The coupling Eq.(4.20 between the fermionic and
mation means that we neglect correlations between mesobosonic fields in the rotated basis has the form
copic fluctuations of the polarizability in E¢4.23b and the

fermionic operators in Eq4.22 (which describe the motion . {91 P2
of conduction electronsThis is the same approximation we by b=y by b 2 (4.39
used in Sec. lll. It is justified by the well known fact that

mesoscopic fluctuations are smaller than average quantiti
by a factor of the order 1H7)2.
It is convenient' to rotate the Keldysh basis as follows:

gde propagators Ed4.30 are solutions of the Dyson equa-
tions

@(1,2)=f>o(1,2)+f d3d4Dy(1,311(3,4D(4,2)

. 1./1 =1\, /1 1 ) 43
In the new basis the Green’s function E4.22 has the form P DR D o e I
R « 0 DA) 0o A
R (G (X1.%a| @)  GN(xq,%2| &) R
G(X1,Xo| ) = GZ(xy %ol ) GA(Xy,%o|)) and we introduced the short hand notatiop=(t; ,r;). The

(4.27)  bare interaction propagators are

After the averaging over the bosonic field and over the dis- D§=DQ= —[V(ri—ro)+F88(ri—r,)16(t;—ty),
order according to Eq(4.25 the entries in Eq(4.27) ac-
quires the following meaning/where after integrating over Dgzo_ (4.33
the bosonic fieldp the diagonal elemenBR* become the
retardedadvanceﬁ Green'’s functions of the electron System Any classical external field takes identical values on the two
branches of the contour and, hence, in the rotated basis has
(GR(t1,tp)) = —in(ti—to)(P(t) ' (t) + YT (1) Y(ty)), only a diagonal component.
The matrix Green'’s functio4.27) satisfies the equation
(GA(ty ) =imta—t)(P(t) ¢ (L) + w(tzw(tl».

e 4R 2
where 7(t) is the Heaviside step function. The lower diago- g +Ee— [1Ve, T Aex(X0)] —(x)—U(Fy)
nal element vanishes due to the causality, ER 2m 1 1
(G*(t1,t5))=0,
even before the disorder averaging. Finally, the upper off- — PedX1) [ G(X1, %] ¢)=15(x1—X2), (4.39

diagonal elementthe so-called Keldysh Green'’s functiois L ) o

< foo R ,&ext(xl) and ee,(X,) are the vector and scalar potential due
(G (t1,t)) = —i{y(te) ' (t2) — &' (t2) Yh(ta)), 428 to the external electric and magnetic fields.

the quantum mechanical averaging is performed with an ar- eE=0Aey— V ey, €B=— Ev*xgext_ (4.35
bitrary distribution function to be found from the solution of c
the kinetic equation. Equation(4.34) is the basis for the further consideration. One
The bosonic field in the rotated basis has the two compog g, perform the disorder average in E4.34) in the leading
nents in 1/(E-7) approximation, which amounts to summation
1 over all the nonintersecting impurity lines one obtains
¢1(2):§(¢+i¢7) (4.29 L 5
_ [—iV, FAex(x) ]2 .
which are described by the propagators 1d, +Er— 2m ~ P(X1) ~ Pex(X1)

(it P it 1) =3Pt tir1 ), @308 XCaxald)

i “Ta00 -3+ [ A3 000l 6)606.x] 4); - (4.38
<¢1<t1,r1>¢2<t2,F2>>=§DR<t1,t2;F1,F2>, (4.300

S (01 %ol )= 2 D6, 1)
1:72 - 2mvT 1572 .
ty,r (tp,r2))==DA(t,t T 4.30 ) . . .
($a(ts l)¢1 2 2)> L2l 2) ( 9 Equation (4.36) allows for semiclassical treatment intro-
R R duced in Refs. 29,30, and described in great details in Ref.
(ho(ty,r1) Po(ts,r,))=0. (4.300  31. Since we have already averaged the equation of motion
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over disorder, the semiclassical approximation now amounts

to averaging the Green’s functidﬁ(xl,x2|¢) over the dis-
tance from the Fermi surface. This is done in two steps:

&ty iR = f e T G(xy ol d), (4.3

]
Il
N
-

O
R=3(11+1o),

. -1 - - -
P:p_E[Aext(tlvR)+Aext(t21R)];

- I I N R .
g(tl,tz;n,r)=—J d§G<tlat2;n pF+£ ;r). (4.38
m) - Vg

Since we follow the avenue of Ref. 31, we will skip further

intermediate steps, and use the semiclassical equation written

in the next subsection.

2. Eilenberger equation

The dynamics of the electron matrix Green’s function is

then described by the Eilenberger equatfon

4 A_é<é>n_<é>n§
nxﬁ)]g_ 27 '

where angular averaging is defined as before

G +venV + o,

(4.39

de

(= on n=(cosé,siné),

and the covariant derivatives in E@.39 are defined as

99=a, 9+, 0+ie(t,1g-ige(t,,r), (4.403

Vg=Vg+iA(t,Ng—igA(t,,1).  (4.40D
Hereg is a matrix in Keldysh space,
A L R gK
g(tl,tz;n,r)=<gz o)’ (4.41

and we will suppress the coordinate and the time arguments
unless otherwise is stated. A product of such matrices should
be understood as a matrix product in Keldysh space and Yy

convolution in time:
CIGREIGNT

L:dte; [9(ty,t3:0,0) Tl O(t3,t2:01,1) i

(4.42

and solutions of the homogeneous equati®i9 are subject
to the constraints

PHYSICAL REVIEW B 64 214204

[’

dt Tr g(t,t;n,r)=0,
(4.43

8RN =T, j

where
[1K]ij= 8 6(t;—ty).

The scalar and vector potentials in E¢.40 have the fol-
lowing structure in the Keldysh space

5 -, Aext(tar) O
A(t,r)= T (4.44
0 AeXI(tvr)
~ - ()Dext(t!r)+¢l(tir) (ﬁz(t,f)
e(t,r)= - . -,
¢2(t!r) QDeXt(tlr)_i_(bl(t!r)

where g, andA.,, are the externallassical potentials due
to the electric fielcE,

eE= ‘9t'&ext_ v Pext (4.49

acting on the electron system, amqu(t,ra) are the auxiliary
fluctuating fields decoupling the interaction in the singlet
channel. Because the singlet channel describes processes
with small momentum transfersmaller thang*, see Sec.

I B), the fieIdqul,z(t,F) vary slowly on the scale of the
1/g*.

The condition(4.309 enforces causality of the physical
response functions. It is worth noticing that the decoupling
of interaction can be performed also using a fluctuating vec-
tor potential; our choice is strictly a matter of taste.

In this formalism any observable quantity described by

one electron operata®(p,r) is given by[see Eqs(4.28
and(4.389]

- de - -
O(t,r)=—vf EO(pFn,r)

v

2 <gK(t1 !t1 ﬁ,F)>¢+ (Pext(tvF) ’

X Iim[
tlﬁt

(4.46

here(- - -),, stands for averaging over both auxiliary fields

¢, fluctuating according to Eqg4.30. The last term in

brackets is a consequence of the ultraviolet anomaly, and its

form is enforced by the requirement of the gauge invariance.
Finally, the electronic polarization operators are deter-

mined[see Eqs(4.24) and(4.38)] as variational derivatives

of the solutions to the Eilenberger equati@n39:

7T<59K(t1,t1§ﬁ,F1)>¢

28¢41(15,15) '
(4.47)

1R(1,2=T1%(2,1) = Vf a0 ( 0107t

2m
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« de Now we are prepared to derive the collision integral. We
nl (1.2)=V77j pye notice that due to causalitygz),=0 in all orders of the
perturbation theory. We separate slow and fast degrees of
X<5gK(t1,t1;ﬁ,F1)+5gz(t1,t1;ﬁ,F1))¢ freedom as follows:
25¢5(t5.15) ' 9k=(0K) s+ 90k; 9z= 80z, (4.51)

where 89 is the contribution fluctuating with the auxiliary

fields and we calculate it to first order ifh. In the same
Our goal now is to obtain an equation for the Keldyshapproximation Eq(4.48 becomes

function averaged over the fluctuating fields,
(gK(tl,tl;ﬁ,Fl))¢. It is this quantity that determines physi-
cal observables, see E¢.46. We will do this using the
noncrossing approximation for bosonic propagatoss, the
first loop approximation for the collision integialsee Fig. 1
16. Thispapf)?oximation is justified provided thgt the reSL?Iting gh=—ati—tp) + 5 dg%g" (4.52
dynamics for the electrorigharacterized by time,) is slow ) )
in comparison with motion of relevant bosonic mo@le,  [€xpansion up to the second order dg” is unnecessary
>1. because terms of such kind vanish due to @30d].

To do so, we notice that only two components of the We now substitute Eq$4.5) and(4.52 into Egs.(4.49

matrix g are independent, and the other two are fixed by the%nd c;t;::m equations governing the behavior of the fluctuat-
constraint(4.43. For our purposes, we choose to fix the gp
-~ 0
nxX—
an)

diagonal components

g"=v1-g"g% gi=-V1-g%g", (448
where the square root should be understood in operator =—2i¢,(ty,r)8(t1—to), (4.533
sense: as a sum of its Taylor series, with all arising products
hereafter being time convolutions, similar to £4.42. The
two remaining independent components of the Eilenberger
equation have the explicit form

3. Derivation of the kinetic equation

1
gR=0(t;—ty) — EgKtsgz,

~ Ko 1
di+venV+ o, 5g”— ;[592—<592>n]

~ A . 1
0t+anV+wc(nx?) 5gK+;[5gK—(5gK>n]
n

=2i¢y(ty,1)3(ty—ty) —i[ a(ty,1)— (2,1 (),

Fy+venV + o,

n 192 +%[<9K>¢<5QZ<9K>¢>F<<9K>n>¢5gz<gK>¢]

= —i[¢a(ty,1) = pa(to,1)]g%—i po(ty,1)gR

. d
nxX—
J

L) 408205~ (60581

. -1

+ighda(ta,r) + Z[QZ@R% (4.53h

—(g%9) g+ gN g% n— (g ng?], (4.493 Solutions to Eqgs(4.53 should be substituted into Eq.

(4.49D for the smooth part. Than the equation for the smooth
g part should be averaged over the fluctuating fields with
B+ eV + o, ﬁxﬁ) ng the help of Eq(4.30. As a result
N - - ~ o K
=—i[p1(t1,r)— ¢a(t2,1)]1g —i ¢y(t1,1)g" Gt venV+ o ”XE (9
- 1

+igRea(tz, 1) + 5—[9°(g™n—(9)ng" + 9%(g")n = Sn{(g") o} + Sterl(g") }- (4.54

R K Here we separate the collision integrals into two contribu-
—(9n0"], (4499 tions. The physical meaning of such separation will be dis-

, : L . cussed shortly. The first, inelastic part has the structure
and we redefine the covariant derivatives E440 to in- y P

clude only the external scalar and vector potentials Stl(gK) (1t n,r)
in Hs\tlst2,th
9= 0y, 9+ I, g+ i[ @ed(ts,N) ~ @ex(tz,1)]g, (4.50 = —i([ pa(ts,1) = B1(t2,1) 1895 (ty,t2;n,0)) g
(4.595

Vg=Vg+i[Aets,r)—Aodts,r)]g. The second, elastic contribution has the form

214204-24



INTERACTION CORRECTIONS AT INTERMEDIAE . .. PHYSICAL REVIEW B 64 214204

Ste,{(gK>¢}(t1,t2;ﬁ;F) for any directi_onﬁ. Tgking coinciding time arguments is
equivalent to integrating over the whole energy spectrum
[see Eq(4.69], so that not only the total number of particles
is conserved, but the total number of particles moving along

a given directiom is conservedi.e., inelastic forward scat-

1 N SN
= —[(g" (t1,t25n0) g )n= (9" (L, 2303 1)) 4]

+j dtsf % tering).
2m Let us now perform the actual calculation of the collision
integrals. We solve Eq4.539 and obtain

X <<9K(t1,tsiﬁlaF)>¢FA(t3,t2iﬁl,ﬁiF)

_<<gK(tl1t31ﬁaF)>¢FA(t31t21ﬁaﬁlaF)] 5gz(t1,t2,ﬁ,F):2| 5(t1_t2)f drldt3¢2(r1,t3)

+Jdt f%[FR(t t3;n,Nn1;0) (g (ts,t2:01,1)) de’

3) 27 LML DG s 2N g xfﬁD(ta—tl,ﬁ',ﬁ;Fl,F) (4.60

—FR(ty taing, min (9" (ts, t2in,0) g1, (4.56
where the first term is just the ordinary impurity scattering 5
and the remaining terms characterize interaction effects. TheD(t'ﬁ AT FZ):J ded qeid(Fl—Fz)—ith(ﬁ A w d)
kernels in Eq{(4.56 are defined as b (2m)3 A

FR(ty,t2;0,05;r)
1 where the diffuson propagat@ is defined in Eq(4.7).
= | dtal 8aK(ts ta AP SG%(ta ts Rn T To S|mpllfy the analytic sqlunon of Eq(4.-53k), we as-
47j Ata(007 (1,131 09 (ks t23N0,1) sume without loss of generality thég“) , varies slowly on
the spatial scald.t=vgmin(1/T,\7/T), and also a slow

Z g
—09%(t3,t2:n,1) 1)y, function of t;+t, on the time scale=1/T. These assump-
1 tions are consistent with the first loop approximation we al-
EA(t, t,in.nqF :_J dto([ S9Z(t, ta:ny .1 ready invoked.
(tty 1) 4T ([897(t1, ks, 1) In what follows we will keep only the zeroth and first

5 N K . angular harmonicswhich is consistent with assumption
—697(t1,t3;n,1) 169" (t3,t2;n,1)) 4. about the spatial smoothngss the direction dependence of
(457  the Keldysh function

Equations(4.54), (4.55, (4.56), (4.53, (4.30, and (4.32
constitute a closed system of kinetic equations. Although suf- b R D) o~ 0t oo
ficient for description of interaction effects in disorder sys- (g(ty,t2;n,1))=~(g(ty,tz;n,1))y
tems, these equations are inconvenient for analytical calcu- ning’ o

. : NI + , .
lations because the expressions for the collision integral are 2n(n"g(ty,t2;n",r))y . (4.6
nonlocal in space and time. To simplify further calculations

we will use the assumption thatg™(t;,t>;n,r)), is @  This approximation does not affect results for any relevant

smooth function so that a gradient expansion will be posgyantities. From now on we will suppress the explicit sign of

sible. _ _ ~averaging over the fluctuating fields because we will not be
Before embarking on such calculation we pause to discusgealing with nonaveraged quantities anymore.

the physical distinction between the elagdc56) and inelas- We now substitute Eq4.61) into the right-hand side of
tic (4.55 collision terms. One immediately notices from Eq. gq. (4.53h and obtain

(4.56 that

f df St(ty,to;n;r)=0, (4.58 89K (ty,t2in,1) = 8% (t1,t;n,1) + 895 (t1,to;0,1).
(4.62

for anyt; andt,. This indicates that this part of the collision

integral preserves the number of particles on a given energy

shell[see below for explicit connections between time rep-The first termin Eq(4.62 is proportional to the field, and

resentation and energy representation @c5)]. gives contributions to both the elastic and the inelastic parts

The inelastic term4.55 does not vanish after angular of the collision integral. To obtain nonvanishing contribution
averaging. Therefore this part does promote electrons bdo the latter we have to do each one of the followifigtake

tween energy shells. However, we notice that into account the first angular harmonia) perform the first
order gradient expansiofji ) expand up to the first order in
Stn{(g*) g} (ty,t1;0,1)=0, (459  external fieldsA.,. The result is
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89 (ty,ty;n,r) g(t,e)=—g(t,—e), (4.67)

. N dn’
e G RG]

DX(t,w;r1,r)=DK(t,— wil,,r),
xD(t,n,n";r,r){(g(t —tt,—ting,r)s (4.633

S s N DR(t,w;Fl,F2)=DA(t,—w;FZ,Fl).
+2n"(ng (i~ tt,—ting.n)s, (4.630)

g YR S S Now, we are ready to obtain the explicit form of the col-
= NV(g (L=t =ty M) ), lision integral. We start with the inelastic contribution and
(4.630 perform the following three step$l) substitute Eq(4.63a
where the covariant derivative is defined in E4.50 and  and (4.64 into Eq. (4.8a; (2) average over the fieldg ,
we neglected higher order derivatives of the external fieldswith the help of Eq.(4.30; (3) perform the temporal trans-
Expansion in the time coordinatge+t, (using the covariant formation(4.65 of the result. As a result we obtain with the

derivatived,) is not necessary because it produces a neglif€/P of Egs.(4.66 and (4.67) the following form of the
gible correction to the inelastic collision integral and doesC!lision integral:
not affect the elastic one.
The second term in the right-hand side of E4.62 is )
proportional to the fieldb,, and according to Eq_$4_1.57)_ and St{g¥l(t,eF)=— '_f d2r1J d_“’D K(t,w:F,Fy)
(4.309 it does not contribute to the elastic collision integral. 2 2w
Therefore, it is sufficient to keep only the zeroth angular

component and neglect gradient terms at all. This yields X[(D(w;r,r1))+(D(—w;r1,M)]
5g§(t1,t2;ﬁ,F) X[(g(t,e;ﬁ,F)}ﬁ—(g(t,e—w;ﬁ,F))ﬁ]
i dw
do’ do” N o e oo o > [ 2SR ooz
= J EEJ drldtD(t,an’;r,rl) + ZTJ' drldr2f 2’7T[D (t!wyrlarZ)

—DA(t,;5,F ) I[{D(w;r,ry)){D
X

2i py(ry,t—1) St —t) - - -
(—w;r,r2))—=(D(w;r,r))D(—w;r,ry))]

i - - s N N
+ ;(g(tl—t,tg;nl,r))gl(g(tg,tz—t;nl,r)>ﬁl X(g(t,e+w;n,r)s(g(t,en,r));, (4.68
X[<D(t4_t3vﬁ”vﬁl;F2aF1)>ﬁl where the angular averaging of the diffusons is defined after
Eqgs.(4.6).
_ S A By - Now, we have to express the bosonic propagator in terms
D(ts—ts,n,n ,rz,rl)]¢2(r2,t4)]. (469 ot the fermionic polarization operators. The polarization op-

erators are given by Eq$4.47), where we now substitute

As we already mentionedj(t;,t,) has a much faster de- Eqs.(4.60), (4.633, and(4.64). After the temporal transfor-
pendence on the differendg—t, then on the sunt;+t,. mation (4.65 we find

Therefore it is more convenient to use a temporal transfor-
mation of the Green’s function

IR(w;t, 1) =ITA(— w;t,r,,r1)

.- de [t;+t R
gK(tlth;nlr):ng 12 zlE;nyr)eIE(tztl)y |
(4.65 =v|o(ry—rp+ Z<D(w§l'1,r2)>

which defines the precise notion of energyn this context. .

We introduce the same transformation for the propagators of xf de[{g(t,e;n,r))y

auxiliary fields(4.30

do [t;+t . —(g(t,e—w;n,N); 4.69
D(tl,tz):fﬁp 12 Z,w)e'“’(tztl) (46@ <g( €E—w )>ﬂ]} ( a

The transformed functions have the symmetry property L o
(hereafter we omit th& superscript for brevity since we are =v[d(ri—ry)tio(D(w;ry,r))l,
only dealing with the Keldysh function (4
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HK(t,w;Fl,FzFL_];f dr[(D(w;r,r1))(D(~w;f,rp)) Fenamatten ein Dl e
—<D(w;F.F1)D(_(U;FaF2)>] SO a'&ext d g Rive
. +H(r =N\ V+— %)@(t,f—w?“"»ﬁ’}'
><j de[(9(t, e+ w;n,r)); (4.739

X(g(t,&;n,r))q—4]. 4.7 i,
(gten.r))n—4] (479 Deriving Eq. (4.73 we use the fact thafdwDR(w)D(w)

. . . . =0.
The last step in the calculation of the interaction propagators . .
is to solve Eq.(4.32 with the polarization operators Eq. We substitute Eqs4.73 and (4.61) into Eq. (4.58. We

4.693. This givesDR™ in the form given by Eq(3.29 expand _the regult into angular harmonics. The .zeroth angular
femd fzr the Kgldysh component we gbtain y Eal 3 harmonic vanishes because of the conservation (a®8),

and the first harmonic giveave write only interaction cor-

DK DRIKDA @713 rection to the collision integral

Also we can relate the difference of the retarded and ad5t9|(t' E.;)
vanced propagators which enters the collision integral Eq. =

(4.68 to the polarization operators 2 (dow B - -
:; Z[naKl (w)<nﬂg(t;€irvn)>n

DR—DA=DRIIR-TIA]DA. (4.71b ..
X{(g(t;e—w,r,n)), (4.743

To obtain the final form of the inelastic part of the colli- +1,KEP(0)(ngg(t;e—w,r,n))n(g(t;€,1,0)),
sion integral Eqs(4.8) we need to substitute E¢4.71) into (4.74D
Eq. (4.68), while using Eq(4.693 for IIR—TIIA. In addition, n, L% (w) .
we note that +————(g(ter,n),

2 N Aexdp @ ) - -

“[(D(@;0)D(~w; =)~ (D(@;d))D(~w;~q))] X\Vet T ge/(Otiem @)l (4.740

=(D(w;q))+(D(~w;—q)). _
Here the kernel& andL are given by Eq(4.6). Each labeled
Finally, we introduce the gauge invariant distribution func-Separately term in Eqg4.74) corresponds to ones in Egs.
tion f as (4.73 and in Eqs(4.63 so the origin of terms can be easily
traced.
Finally, we use the gauge invariant distribution function
4 Ot 47 (4.72 instead ofg and we arrive to Eq94.5). Closing this
9(e+ Pex(r) ) .72 section, we remark that the above treatment can be easily
generalized to include other channels as well as the higher
and obtain Egs(4.8). angular harmonics of the Fermi-liquid constant. For the latter
The calculation of the elastic part of the collision integraltask one has to introduce’aﬂgle dependent auxiliary fields
is completely gnalogous. We substitute E(qse3a)—(4.63o_ ¢1'2(;,ﬁ,t) and usd:gﬁFp(ﬁlﬁz)_
and Eq.(4.60 into Egs.(4.57 and average over fluctuating T riplet channel requires introduction of the coupling
fields with the help of Eq(4.30. After the temporal trans- N S )
formation (4.65 we find of the form hy (r,t)o, whereo’!, j=x,y,z are the Pauli
matrices in the spin space, ag (r,t) are the auxiliary
fields. Accordingly, each bosonic propagator from E430

N
IS

fe,t;n,r)=

FR(e,t;ng,n,,r) becomes a %3 matrix. Equation(4.32 retains the same
... form with the matrix multiplication in Keldysh and spin
=F*(e,t;ng,ny,1)* spaces implied. Equatiof#.33 becomes
ifde’ .o . - (dngdn,
= | = drldrsz(w,rl,rz)f__ N N
4r) 2m 2m 2m [D51ij=[Dolij=—F§8;8(ri—r2)d(ti—tp),

(4.79

X[D(w;Ng,Ny,r2,1)—D(w;N3,N1,15,1)]
XD(w;Ny,N4, M, r)(g(t,e—win',N))i (4738 and Eq.(4.47 is modified to

214204-27



GABOR ZALA, B. N. NAROZHNY, AND I. L. ALEINER PHYSICAL REVIEW B 64 214204

m(Tro; 69" (ty,ty; ﬁ,F1)>¢
48hi(ty,r)

d
Hf}(l,z)znﬁ(z,l)zuf —Z( 8120 + , (4.7

2

do (Tro89%(ty,t:n,r1) + Tro8g%(ty,t130,11))

Im%(1,2 Zwvzf . -
(42 2m 46hh(ty,r,)

where trace is performed in spin space. APPENDIX
Further derivation consists of a repetition of the steps de-

scribed in this section, and in the absence of the spin struc- In th's appel_"ndlx we show in some detail the prgcedure of
S T X - . analytical continuation that leads to the expression for the
ture of the distribution functionf;;=&;;f, results in Egs.

(4.9 and (4.10. The spin-orbit interaction or Zeeman split- interaction correction Eq.3.3) to the conductivity in terms

ting by external magnetic field slightly changes the resultsof exact Green’s function of nonlnteractlng_dlsordered sys-
. ; . . tem. The structure of the current correlator is
but we will postpone the corresponding analysis until a fu-
ture publicationt*
Finally, the Cooper channel interactio3.21) can be der(T S (1)} 4(0))e "
treated in the same manner by introducing auxiliary fields in Aol T p
the Gorkov-Nambu space. We will not discuss this question

further in the present paper. -T> J,G(i entiQn)J;G(i€y) (Ala)

V. CONCLUSIONS

This paper is an attempt to consistently describe the effect _TEZ JoGlientiQn)l gli€n+in,i€n)Glien),
of electron-electron interaction on longitudinal conductivity ! (Alb)
of disordered 2D electron gas at<Eg. Our results are
valid for an arbitrary relation betweeh and7/7 and are  where e,=#T(2n+1) is the fermionic Matsubara fre-
summarized in Sec. Il B. At low temperaturds<7i we  quency,G(ie,) is the exact Green’s function of the interact-
reproduce the logarithmically divergent Altshuler-Aronov ing system(diagrams 1 and 2 on Fig. 9 are the first order
correction. At higher temperatur@s>1, i.e., in the ballistic  correction to the Green’s functipnl 5(i e, +1Q i €,) is the
region, we found the linear temperature dependence in agrertex function(not to be confused with disorder averaged
cord with Refs. 6,27. However, even the sign of the slope ofnteraction vertexX” from Sec. Il). Diagrams 3 on Fig. 9 are
this dependence depends on the strength of electron-electréme first order correction to the vertex function. The current
interaction in contradiction to the results of Refs. 6(8&e operator is defined in E@3.6). Note, that we omit the spatial
Secs. Il and Il F for discussions of this discrepancy coordinates and the integration whenever it should cause no
We deliberately did not compare the theory with experi-confusion.
mental data, postponing this comparison until the publication We perform the analytic continuation in each tefAia)

of theoretical results for Hall conductivity and magneto-and(A1b) separately. In EqAla) we use the standard pro-
resistance in the parallel field. For comparison with data obgedure

tained for Si-MOSFET samples the valley degeneracy should

be taken into accourjthe degeneracy may increase the nu- 1 c

merical factor in Eq(2.169 by as much as a factor of 5 in TE (- )= _J dftanhz_(. ), (A2)
the case of low intervalley scatterihngVe also relegate the €n 4miJe T

corresponding discussion to a separate publication.

Finally, we derived a kinetic equation to describe the ef-where integration contour is shown on Fig. 23. We deform
fect of electron-electron interaction at arbitrafy. The ad-  this contour to formC,, use the facts that tand{iQ.)/2T
vantage of this approach is that it turns out to be more con=tanhe/2T, andG(e*i0)=GR®(¢) and we obtain
venient for practical calculations of transport properties in
magnetic field as well as thermal transport properties.

M1(i1Q0) =T J,G(i€e+i1Qn)IsG(i€,)
€n
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° Thus one obtains for the quantity entering into conductivity
(3.1
LA Y S S
_ Mq(w
N1=—Iimlm( al ))
w—0
—Rfdet € 3,GM(€)3,0.GP
A =Re| 5_tanh,=J,GA(€)J40.G(e)
¢ CI fded € |3,GR(e)3,G A5
° | 22| glanhT [ .G (€3G (e).  (AS)
FIG. 23. Integration contours for analytic continuation of Egs.
(A1) Equation(A5) can be further simplified for the calculation of

the symmetric part of the conductivity
In the form (A3) frequency() is present only in functions

which may have singularities only on the real axis, so that

the required analytic continuation can be easily performed: s de [ d €
ym__ _ A A
- . Nl Ref 8 detanhz—_l_ [ JaG (G)JBG (€)
Ml(w)= M1(|Qnﬁ>w+|0)
+3,GR(€)1G () +(a—p)]. (AB)

de €
= f mtanhz—_r{\]aGR(E-F w)Jﬂ[GR( €)— GA( €)]
Term (Alb) is considered analogously. We find similarly to
+J,[GR(€)—GA(€)]I5G (e~ w)}. (A4)  Eq.(A3)

Mo(iQ) =T J,G(ientiQnT a(ien+iQy,ie,)Gliey)

de € . . : . .
=fmtanfiz—T{JaG(E+IQn)[FB(E‘HQn,E+IO)GR(6)—FB(6+IQH,E—IO)GA(G)]
+Ja[GR(e)Fﬁ(e+iO,e—iQn)—GA(e)Fﬁ(e—iO,e—iQn)]G(e—iQn)}. (A7)
Using analytic properties of the Green’s function and the vertex function, we perform the analytic continuation and obtain
My(w)=M,(iQ,—w+i0)

) ] de € ) ) ) )
= lim lim f4—7_ritanhz—T{JaGR(e+w)[FB(e+w+|61,e+|52)GR(5)—FB(5+w+|0,e—|0)GA(e)]

6,—0%5,-0"

+J,[GR(e)T 4(e+i0,e—w—i10)— G (e)T g(e—i8;,e—w—i5;) ]G e~ w)}. (A8)

In the appropriate frequency limit, we find

N, = — lim tm| M2(@) —Rfde € 3 GAe) 2 im  lim Ta(e—id,,e,—i8,)GA
= |m0m el e Etanhz— o (»s)a—e1 7[ |m+ |m+ p(€—105,€61—161)G"(€1)]
o= €1=€ 51—‘0 52—>0
fde 4 anh |3 GROT (4 i0.e—i0)G A9
+ P EtanhZ_T G (e s(e+i0,e—i10)G™(e). (A9)

Further calculation requires specification of the form of the self-energy and the vertex function. We have to find both in the
first order in interaction propagator, and expand &) up to the first order:
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de
6N5ym Ref
41

For brevity we consider only the “Fock” contribution of Fig(19:

detanhzi_l_)[—JaGA(e)EA(e)GA(e)JﬁGA(e)+JaGR(e)JﬁGA(e)EA(e)GA(e)+(a<—>/5‘)]. (A10)

E(ien)m:Tﬂz DiAi Q) Goli €n—i1Q 1), (A11)
whereD is the bosonic propagator, and we restored the notation for spatial coordinates. In the same order
[F(ien,iem)phz:TQE D1 Qm)[G(i €= 1Qn) I pG(i €m—1Qm) ]12. (A12)

After analytic continuation similar to that in the derivation of E44) we find

dQ Q
Sh(e)= fz cothz—[Ilez(Q)]Glze Q)+ifﬂtanhFD12(Q G e—0)—GR(e—Q)] (A1)

and for the vertex function we have two cases

) . ) _ dQ Q A A A [ dQ -Q_,
lim lim Fﬁ(e—|52,61—|51)=—fEcotl'\Z—T[llez(Q)][G (e=Q)JsG (sl—Q)]12+|f ype tanh—D o(€))

5, —075,-0"
El_Q A

X[GR(e=0)I45(GM(e1— Q) ~ GR(e1—- D)) 12, (Al4a)

X[<GA(E—Q>—GR(e—m>J,BGA<el—Q>]12+if@

[
FB(G-I—iO,e—iO)

dQ Q A
- f ECOch_T[ImD Q)]

X[GR(G—Q)JBGA(G—Q)]J_Z

dQ
ONP™= Imj

DAQ)

do(ll (Q cotl12—)

X[J,GA(€)G e~ Q)G (€)IzG (e)
—J3,G"(e)G e~ Q)GA(€)IsGR(€)

+iJgtanh€2_—TQD§2(Q) —J3,GR(e)Ge—Q)GR(€)J G (€)]
dQ Q

X[(G(e~ Q) ~GR(e~0))3,G e~ )]y, - | S g
T

do e— 0 2T sinhz—
+i J EtanhFDi\z(Q)

X R J,G(€)Gioe—Q)GA(€)IzGR(e)]
t(a=p). (A153)
(Al4b) The same manipulations are performed with substituition

of Egs.(A14) into Eqg. (A9). One finds for the symmetrized

X[GR(e=0)I45(GM(e— )~ GR(e— Q)]s

We now substitute EqA13) into Eq. (A10). We use the dal d Q
fact that the combination containing only retarded or onlyaNgym:|mf —2[—(9 COch_
advanced Green'’s functions vanish upon the disorder averag- d T
ing. Moreover, the average of the combinations like % A A R/ R,
G(€)G(e—Q,)---G(e—Qy) does not depend on the en- {[GH)ICH)]1d CT e~ V)G (e~ D) ]2y
ergy e, which enable us to perform the integration ower —2[GR(€)J,G"( )11 GR(e—0)IGR(e— Q)11
using

DIAQ)

fdﬂ o IMD2(Q)
- P e 12!
g’ 2Tsin|‘?§—_|_
fdetan 5T de tanhz— Qcothz—
X{[GR(€)J,G"(€)11d G (e—0)IzGR(e— Q)11

We find usingD*(Q)=[DA(—Q)]* +(a—p). (A163a)
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FIG. 24. Cancellation of inelastic terfA17) in the leading
ladder approximation.

Total correction to the conductivity is judt; +N,. In the
Hartree-Fock approximatiob”= —V(q) and we obtain Eq.
(3.3. In the case for the stronger interaction ter(Ad.5a)
and (A16a are added to produce E@3.25 and terms

ing term

PHYSICAL REVIEW B 64 214204

Sodephe ﬂ

d ImD2(Q)
B 87T2 12

2Tsm|‘Fﬁ

X Re{[21,GM(€) Gl e—Q)GA(€)I5GR(e)]
+[GR(€)3,GA(€) 114G (e~ 0)IGR(e— Q) ]oq}
+(a—pB). (A17)

In our leading approximation in EE7 this term vanishes,

see Fig. 24. The role of this term in the temperature depen-
(A153), (A16a) give rise to the inelastic or so-called dephas-dence of weak localization correction is discussed in detail in

Ref. 16.
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