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Interaction corrections at intermediate temperatures:
Longitudinal conductivity and kinetic equation

Gábor Zala, B. N. Narozhny,* and I. L. Aleiner
Department of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, New York 11794

~Received 21 May 2001; published 1 November 2001!

It is well known that electron-electron interaction in two-dimensional disordered systems leads to logarith-
mically divergent Altshuler-Aronov corrections to conductivity at low temperatures (Tt!1; t is the elastic
mean-free time!. This paper is devoted to the fate of such corrections at intermediate temperaturesTt*1. We
show that in this~ballistic! regime the temperature dependence of conductivity is still governed by the same
physical processes as the Altshuler-Aronov corrections—electron scattering by Friedel oscillations. However,
in this regime the correction is linear in temperature; the value and even thesign of the slope depends on the
strength of electron-electron interaction.~This sign change may be relevant for the ‘‘metal-insulator’’ transition
observed recently.! We show that the slope is directly related to the renormalization of the spin susceptibility
and grows as the system approaches the ferromagnetic Stoner instability. Also, we obtain the temperature
dependence of the conductivity in the cross-over region between the diffusive and ballistic regimes. Finally, we
derive the quantum kinetic equation, which describes electron transport for arbitrary value ofTt.

DOI: 10.1103/PhysRevB.64.214204 PACS number~s!: 71.30.1h, 72.10.2d, 71.10.Ay
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I. INTRODUCTION

Temperature-dependent corrections to conductivity du
electron-electron interactions has been a subject
theoretical1–7 and experimental8–10studies for more than two
decades. Recently the interest in the matter was rene
with appearance of new data11,12 showing a sign change in
the temperature dependence of conductivity in two dim
sions ~2D!. Theoretical discussions12 that followed empha-
sized the question of whether that data indicated a n
Fermi-liquid behavior. However, the experiments we
performed in a regime where the temperatureT was of the
same order of magnitude as the inverse scattering timet21

~obtained from the Drude conductivity!, while preexisting
calculations were focused on the two limiting cases: the
fusive regime1–3 Tt!1, and the ballistic regime6,7 Tt@1.

In the diffusive limit one finds1–3 for the logarithmically
divergent correction to the diagonal conductivityds:

ds52
e2

2p2\
lnS \

Tt D F113S 12
ln~11F0

s!

F0
s D G , ~1.1!

where F0
s is the interaction constant in the triplet chann

which depends on the interaction strength. It is clear, that
sign of this logarithmically divergent correction may be po
tive ~metallic! or negative~insulating!, depending on the
value ofF0

s .13

The result6,7 for the ballistic region frequently cited in
literature reads

ds52
e2

p\ S Tt

\ D f ~r s!, ~1.2!

wheref (r s) is a positive function of the gas parameter of t
systemr s . In a sharp contrast to Eq.~1.1!, Eq. ~1.2! predicts
always metallic sign of the interaction correction.

The absence of a rigorous calculation at intermediate t
peraturesTt/\.1 may have contributed to the notion th
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those two limits are governed by different physical pr
cesses. In this paper we prove that notion erroneous:
results~1.1! and ~1.2! are due to the same physical proce
namely, elastic scattering of electrons by the self-consis
potential created by all the other electrons. Therefore, th
two different expressions are in fact the two limits of a sing
interaction correction. We calculate the correction within a
sumptions of the Fermi-liquid theory~other limitations of
our approach we discuss below! and present the cross-ove
function between the diffusive and ballistic limits.

Moreover, we show that the existing theory for the ball
tic limit ~1.2! is incomplete. First, the results of Refs. 4–
account only for Hartree-like interaction terms missing t
exchange or Fock terms. Second, this theory essentially
ploys a perturbative expansion in terms of the interact
strength, which breaks down for stronger coupling. Both
sues lead to the change in the theoretical prediction even
a qualitative level.

The consequence of the first point is that the correction
conductivity~1.2! is always negative unlike the correction
the diffusive limit that changes sign depending on the va
of F0

s . This sign change is due to competition between
universal ~and positive! Fock correction and the coupling
specific~and negative! Hartree contribution. If the Fock po
tential ~or, to be more precise, singlet channel! is properly
taken into account, then the sign of the correction in
ballistic limit is also not universal~being positive for weak
interaction in contrast to Refs. 4–7!.

As follows from the second point, for the stronger inte
action the Hartree correction should be modified to inclu
higher order processes. For this case we show~see Sec. III!
that in fact it should be replaced by the triplet channel c
rection, which is characterized by the Fermi liquid consta
F0

s . This constant measures the strength of the sp
exchange interaction. IfF0

s,0, the spin-exchange interac
tion tends to align electron spins and~if it is strong enough!
leads to the ferromagnetic Stoner instability.13 Even though
©2001 The American Physical Society04-1
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this constant is unknown, it can be found experimentally
means of independent measurement of the spin suscepti
of the system. As a function of temperature the interact
correction to conductivity is almost always monotonous,
cept for a narrow region of parameters~where it is so small
that it can hardly be observed!.

The remainder of the paper is organized as follows. T
following section is devoted to qualitative discussion of t
physics involved. In the same section we summarize our
sults. Then we present two alternative approaches to the
croscopic calculation. In Sec. III we use the traditional p
turbation theory1 to derive the results presented in Sec.
while in Sec. IV the same results are obtained using
quantum kinetic equation that we derive. The advantage
the kinetic equation approach is that it can be readily use
discuss the temperature behavior of quantities other t
conductivity. These results are advertised in Conclusions
will be published elsewhere.14

II. QUALITATIVE DISCUSSION AND RESULTS

In this section we describe the scattering processes
tributing to the temperature dependence of conductivity.
show that unlike the standard Fermi-liquidT2 corrections,
the leading correction to conductivity is accumulated at la
distances, of the ordervF /min(T,AT/t). In the ballistic limit
such correction is linear in temperature and we derive
result here using a text-book quantum mechanical appro
The diffusive limit is discussed in detail in Ref. 1. The r
sulting correctionds; ln T seems to be rather different from
the linear one, but we show that both corrections arise du
the same physics—coherent scattering by Friedel osc
tions. Throughout the paper we keep the units such tha\
51, except for the final answers.

A. Scattering by Friedel oscillations

We start with the simplest case of a weak short-ran
interaction V0(rW12rW2) and show how one can obtain th
correction to conductivity in the ballistic limit, i.e., due to
single scatterer. This discussion is similar to that of Ref.
where the correction to the one-particle density of sta
~DOS! was discussed, and also of Ref. 16, which descri
the correction to the conductivity in the diffusive limit.

Consider a single impurity localized at some point, tak
as the origin. The impurity potentialU(rW) induces a modu-
lation of electron density close to the impurity. The oscilla
ing part of the modulation is known as the Friedel oscil
tion, which in 2D can be written as

dr~rW !52
nl

2pr 2
sin~2kFr !. ~2.1!

Here r denotes the distance to the impurity and its poten
is treated in the Born approximationl5*U(rW)drW. In 2D the
free electron DOS is given byn5m/p\2 andm is the elec-
tron mass,kF is the Fermi momentum.
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Taking into account electron-electron interactionV0(rW1

2rW2) one finds additional scattering potential due to t
Friedel oscillation Eq.~2.1!. This potential can be presente
as a sum of the direct~Hartree! and exchange~Fock! terms17

dV~rW1 ,rW2!5VH~rW1!d~rW12rW2!2VF~rW1 ,rW2!, ~2.2a!

VH~rW1!5E drW3V0~rW12rW3!dr~rW3!, ~2.2b!

VF~rW1 ,rW2!5
1

2
V0~rW12rW2!dn~rW1 ,rW2!, ~2.2c!

where byr(rW) we denote diagonal elements of the one el
tron density matrixn,

n~rW1 ,rW2!5(
k

Ck* ~rW1!Ck~rW2!. ~2.3!

The factor 1/2 indicates that only electrons with the sa
spin participate in exchange interaction. As a function
distance from the impurity the Hartree-Fock energydV os-
cillates similarly to Eq.~2.1!.

The leading correction to conductivity is a result of inte
ference between two semi-classical paths depicted on Fig
If an electron follows path ‘‘A,’’ it scatters off the Friede
oscillation created by the impurity and path ‘‘B’’ correspon
to scattering by the impurity itself. Interference is most im
portant for scattering angles close top ~or for backscatter-
ing!, since the extra phase factor accumulated by the elec
on path ‘‘A’’ ( ei2kR with R being the length of the extra pat
interval relative to ‘‘B’’ and 2k being the difference betwee
initial and final momenta for that extra path interval! is can-
celed by the phase of the Friedel oscillatione2 i2kFR so that
the amplitudes corresponding to the two paths are coher
As a result, the probability of backscattering is greater th
the classical expectation~taken into account in the Drud
conductivity!. Therefore, taking into account interference e
fects leads to a correction to conductivity. We note that

FIG. 1. Scattering by the Friedel oscillation. Interference b
tween the two paths A and B contributes mostly to backscatter
The Friedel oscillation is created due to backscattering on the
purity, path C.
4-2
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INTERACTION CORRECTIONS AT INTERMEDIATE . . . PHYSICAL REVIEW B 64 214204
interference persists to large distances, limited only by te
peratureR'1/uk2kFu<vF /T. Thus there is a possibility fo
the correction to have a nontrivial temperature depende
The sign of the correction depends on the sign of the c
pling constant that describes electron-electron interaction

To put the above argument onto more rigorous foot
and to find the temperature dependence of the correc
consider now a scattering problem in the potential Eq.~2.2!.
Following the textbook approach,18 we write a particle’s
wave function as a sum of the incoming plane wave and
out-coming spherical wave~in 2D it is given by a Besse
function, which we replace by its asymptotic form!

C5eikW•rW1 i f ~u!A2p

kr
eikr . ~2.4!

Here f (u) is the scattering amplitude, which we will dis
cuss in the Born approximation. For the impurity potent
itself the amplitudef (u) weakly depends on the angle. A
zero temperature it determines the Drude conductivitysD ,
while the leading temperature correction is proportional
T2, as is usual for Fermi systems. We now show that thi
not the case for the potential Eq.~2.2!. In fact, taking into
account Eq.~2.2! leads to enhanced backscattering and t
to the conductivity correction that is linear in temperature

First, we discuss the Hartree potential Eq.~2.2b!. Far
from the scatterer the wave function of a particle can
found in the first order of the perturbation theory asC

5eikW•rW1dC(rW), where the correction is given by18

dC~rW !5 i E drW1VH~rW1!eikW•rW1A 2p

kurW2rW1u
eikurW2rW1u.

~2.5!

Here urW2rW1u'r 2rW•rW1 /r , since we are looking at large dis
tances. Substituting the form of the potential Eq.~2.2b! and
introducing the Fourier transfer of the electron-electron
teractionV0 we can rewrite Eq.~2.5! as

dC~rW !52 i
nl

A2p
V0~q!

eikr

Akr
E drW1

r 1
2

sin~2kFr 1!eiqW •rW1,

~2.6!

where

qW 5kW2krW/r , uqu52k sin~u/2!,

with u being the angle of scattering. Comparing to Eq.~2.4!
we find the scattering amplitude as a function ofu ~it also
depends on the electron’s energye5k2/2m)

f ~u!52
nl

2p
V0~q!E drW

r 2
sin~2kFr !eiqW •rW. ~2.7!

The integral can be evaluated exactly19 and the result is
given by
21420
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f ~u!52
nl

2p
V0~q!H p

2
, uqu,2kF ,

arcsinS 2kF

q D , uqu.2kF .

~2.8!

Let us examine this expression more closely. Sinceuqu<2k,
the scattering amplitude Eq.~2.8! for smallk weakly depends
on the angle through the Fourier component of the inter
tion V0(q), see background value off (u) on Fig. 2. How-
ever, we are dealing with electronic excitations close to
Fermi surface, so in factk is close tokF , uk2kFu/kF!1. If
k.kF , then the scattering amplitude Eq.~2.8! has a non-
trivial angular dependence aroundu5p shown on Fig. 2.

According to Eq.~2.8! such dependence is only possib
in the regionuqu.2kF . This translates into the conditio
uu2pu,@2(k2kF)/kF#1/2, which determines the singula
dependence of the width of the feature in the scattering
plitude on the energy of the scattered electron. Finally, us
the fact that arcsin(12x)5p/22A2x, we find that the depen
dence of the height of the feature in the scattering amplit
is also singular:d f (u).@(k2kF)/kF#1/2.

The transport scattering ratet21 is determined by the
scattering cross section and can be found with the help of
amplitude Eq.~2.8!, as well as the constant amplitudef 0 of
the scattering by the impurity itself

t21~e!5E du

2p
~12cosu!u f 01 f ~u!u2. ~2.9!

The leading energy dependence oft21 comes from the in-
terference term, which is proportional tof (u). Then integra-
tion aroundu5p is dominated by the feature off (u) result-
ing in a term of order (e2eF)/eF . It is this term that gives
rise to the linear temperature dependence we are after. S
we are interested in this leading correction only, in all oth
terms we can setk'kF and write the scattering rate as

t21~e!5t0
211

nl

2
V0~2kF!

e2eF

eF
h~e2eF! f 0 .

~2.10!

Here h(x) is the Heaviside step function andt0
21 is the

zero-temperature rate that determines the Drude conduct
~indeed, theu5p feature inf (u) only exists fork.kF and
at T50 there are no electrons withk.kF).

FIG. 2. Scattering amplitude. The singularity for backscatter
is due to interference of paths A and B on Fig. 1.
4-3
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To obtain the scattering time we have to integrate
energy-dependent rate Eq.~2.10! with the derivative of the
Fermi distribution functionnF(e)

t5E det~e!
]

]e
nF~e!.

Then the second term in Eq.~2.10! leads to a linear correc
tion to the Drude conductivity, small asT/eF . However this
is not the only contribution to the temperature dependen
At finite temperatures we also have to modify the Frie
oscillation Eq.~2.1! as follows:

dr~rW !52
nlT2

2pvF
2sinh2S rT

vF
D sin~2kFr !.

Consequently, the scattering amplitude Eq.~2.7! becomes
temperature dependent

f ~u!52
nl

2p
V0~q!E drW2

r 2
2

e22r 2(T/vF)sin~2kFr 2!eiqW •rW2

52
nl

2p
V0~q!arcsinS 4kF

p D , ~2.11!

p5AS 2T

vF
D 2

1~q12kF!21AS 2T

vF
D 2

1~q22kF!2.

Neglecting the small temperature dependent term in the
nominator in Eq.~2.11! brings us back to Eq.~2.8!. Keeping
this term leads to the same feature inf (u) as the one on Fig
2, only now its width and magnitude are proportional toAT.
The resulting correction to the conductivity is therefore sim
lar to the one discussed above. Up to a numerical coeffic

ds

sD
522nV0~2kF!

T

eF
. ~2.12!

The conductivity Eq.~2.12! is the same correction as th
one calculated in Ref. 6, see also Eq.~1.2!, up to a numerical
factor. It is also clear that Eq.~2.12! is not the full story. We
have forgotten about the Fock part of the potential Eq.~2.2!
Substituting Eq.~2.4! into Eq.~2.3!, we find the perturbation
of the density matrix@which appears in the Fock potenti
Eq. ~2.2c!# dn(rW1 ,rW2)'dr@(rW11rW2)/2#. Then the argumen
can be repeated. The only difference is that the leading t
perature correction comes from the Fourier component aq
50, rather thanq52kF . What is most important, the Foc
potential enters with the opposite sign. Therefore the exp
sion for the conductivity Eq.~2.12! has to be corrected

s5sDF12n@2V0~2kF!2V0~0!#
T

eF
G . ~2.13!

The sign of the correction is thus not universal and depe
on the details of electron-electron scattering. If the weak
21420
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teraction is reasonably long ranged, thenV0(0)@V0(2kF),
so that the correction in Eq.~2.13! has the sign opposite to
that in Ref. 6.

So far we have considered the effect of a single impur
The extension of the above arguments to the case of m
impurities is straightforward. In particular, one can consid
a scattering process, which involves two impurities and
Friedel oscillation shown on Fig. 3. It is clear that this pr
cess contributes to the scattering amplitude at any angle,
not just for backscattering as the single impurity process
Fig. 1 ~which is typical for the diffusive motion of electrons!.
Such processes were discussed in detail~although using a
slightly different language! in Ref. 16. Scattering by Friede
oscillations created by multiple impurities results in a co
ductivity correction~1.1! that is logarithmic in temperature
and is typical for 2D diffusive systems.1

Comparing the scattering processes on Figs. 1 and 3,
can clearly see that conductivity corrections, which ar
from these processes are governed by the same physics
herent scattering by the Friedel oscillation, which means t
the ballistic and diffusive regions should be analyzed on
same footing. In the next subsection we present the resul
such anlysis, postponing the actual calculations until Se
III and IV.

B. Results

Let us first consider the case of a weak, short range in
action potential. Then the interaction can be treated in
lowest order of perturbation theory, so that the resulting c
rection is proportional to the interaction constant:

dsw5
e2

\ Fg1

Tt

p\ F12
3

8
w~Tt!G2

g2

4p2
lnS EF

T D G .

~2.14!

Similarly to Eq.~2.13!, it can be written as a sum of Hartre
and Fock contributions~similar expression forg1 in one-
dimensional systems was obtained in Ref. 20!:

g15n@V0~0!22V0~2kF!#, g25n@V0~0!22^V0~k!&FS#,
~2.15!

FIG. 3. Scattering process with two impurities and the Frie
oscillation. Scattering to all angles is affected by interference. T
relevant Friedel oscillation is created by the self-intersecting path
4-4



ce
ac
co

x
pi

-
ole
h
-
is

ng
fo
n

di

e

i
m

i
h

es
ge

e
le

of
n of

l
for
er-
l
as
fi-

glet
re-
nel
ing
e

q.
he
ec-
e-
n-

in-

xi-
-
for

ates

t

INTERACTION CORRECTIONS AT INTERMEDIATE . . . PHYSICAL REVIEW B 64 214204
where^•••&FS stands for the average over the Fermi surfa
Here we kept the notation for the electron-electron inter
tion adopted in the previous section. Then the Hartree
rection is proportional to the Fourier component ofV0(q) at
q52kF , while for the Fock correctionq50. The two cor-
rections have different sign as we discussed above. The e
factor of 2 in the Hartree correction is due to electron s
degeneracy.

Note, that Eq.~2.14! is defined only up to a temperature
independent constant which is determined by the ultravi
contribution. We have chosen the argument of the logarit
to beEF /T instead of the usual 1/Tt to emphasize that con
trary to the naive expectations the logarithmic term pers
up to temperatures much larger than 1/t, see also Ref. 15.

The different expressions for the Hartree terms ing1 and
g2 are related to the fact that the single impurity scatteri
see Fig. 1, and multiple impurity case, see Fig. 3, allow
different possible scattering angles. The dimensionless fu
tion w(Tt) describes the crossover between ballistic and
fusive regimes. In the ballistic limitTt@1 it vanishes as

w~x@1!'
8

3px F ln~2x!2
1

4
~ ln x21!~6 ln 221!G .

In the opposite limitTt!1 it approaches a constant valu
@C'0.577••• is the Euler’s constant andz8(x) is a deriva-
tive of the Riemann zeta function#

w~x!1!'11
2px

9 S ln x2 ln 22C1
3

4
16z8~2! D ,

so that the linear correction does not completely vanish
the diffusive limit, but competes with the logarithmic ter
and in semiconductor structures with low Fermi energy
might be important except for the lowest temperatures. T
full function w(x) is plotted on Fig 4.

If the Coulomb interaction is considered, then the low
order in interaction is not sufficient since for the long ran
interactionnV0(q'0)@1. Although the interaction itself is
still independent of the electron spin, summation of the p
turbation theory depends on the spin state of the two e

FIG. 4. Dimensionless functionw(x), which is defined so tha
w(0)51.
21420
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trons involved. In the first order correction Eq.~2.14! all spin
channels gave identical contributions. The total number
channels is 4 and they can be classified by the total spi
the two electrons: one state with the total spin zero~‘‘sin-
glet’’ ! and three states with the total spin 1~‘‘triplet,’’ the
three states differ by the value of thez component of the tota
spin!. For long range interaction the perturbation theory
the Hartree correction singlet and triplet channels is diff
ent. It is known1,2 ~see also Sec. III!, that the singlet channe
contribution should be combined with the Fock correction
a renormalization of the coupling constant. However, the
nal result is universal due to dynamical screening: the sin
channel modification of the coupling does not affect the
sult. What remains of the Hartree term is the triplet chan
contribution, which now depends on the correspond
Fermi-liquid constantF0

s . Thus, the total correction to th
conductivity can be written as a sum of the ‘‘charge’’~which
combines Fock and singlet part of Hartree! and triplet con-
tributions

s5sD1dsT1dsC , ~2.16a!

where the charge channel correction is given by

dsC5
e2

p\

Tt

\ F12
3

8
f ~Tt!G2

e2

2p2\
lnS EF

T D , ~2.16b!

and the triplet channel correction is

dsT5
3F0

s

~11F0
s!

e2

p\

Tt

\ F12
3

8
t~Tt;F0

s!G
23S 12

1

F0
s

ln~11F0
s!D e2

2p2\
lnS EF

T D .

~2.16c!

Here the factor of 3 in the triplet channel correction E
~2.16c! is due to the fact that all three components of t
triplet state contribute equally. We reiterate that the corr
tions Eqs.~2.16! are defined only up to a temperature ind
pendent~however not necessarily Fermi-liquid constant i
dependent! term, see also discussion after Eq.~2.14!.

We should warn the reader here, that we describe the
teraction in the triplet channel by one coupling constantF0

s .
For the weak coupling limit, it corresponds to the appro
mation V0(2kF).^V0(k)&FS. This approximation overesti
mates the triplet channel contribution to the ballistic case
r s5&e2/(k\vF)!1. However, in this limit contribution it-
self is much smaller than the singlet one. For better estim
in this regime one should use

F0
s→2

1

2

r s

r s1A2

in the first line of Eq.~2.16c! and

F0
s→2

1

2p

r s

A22r s
2

lnS&1A22r s
2

&2A22r s
2D , r s

2,2 ,
4-5
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F0
s→2

1

p

r s

Ar s
222

arctanA 1
2 r s

221, r s
2.2

in the second line. Forr s*1 our replacament is well justified
even within weak coupling scheme.

Similar to Eq.~2.14! the dimensionless functionsf (x) and
t(x;F0

s) describe the cross-over between ballistic and dif
sive limits. They are plotted on Figs. 5 and 6 and full expr
sions are given by Eqs.~3.36!. The universal functionf (x)
has the following limits

f ~x@1!'2
1

3px S 2~ ln x21!ln 22
7

2
ln~2x! D ,

~2.17a!

f ~x!1!'12g1x1
p

6
x ln x, ~2.17b!

g152
z8~2!

p
1

p

6 S C1
1

3
ln 2D'0.7216.

FIG. 5. Dimensionless functionf (x), defined so thatf (0)51.

FIG. 6. Dimensionless functiont(x,F0
s) defined so that

t(0,F0
s)51.
21420
-
- The functiont(x;F0

s) depends on the coupling consta
and therefore its asymptotic form also depends onF0

s . For
very smallx!11F0

s the asymptotic form is

t~x!11F0
s!'12g2x1

p

18
x ln xS 31

1

11F0
sD ,

g252
z8~2!

3p S 31
1

11F0
sD 2

pg3

9~11F0
s!

1
p

18FCS 31
1

11F0
sD 1 ln2S 11

3

11F0
sD G ,

~2.18!

g3512
5F0

s23

11F0
s

2S 5

2
22F0

sD ln~11F0
s!

F0
s

.

Notice that atTt→0, Eqs.~2.16! reproduce the known resu
~1.1!. Let us point out that for numerical reasons contrib
tions of scaling functionsw, f ,t change the result only by
few percents and they can be neglected for all the pract
purposes.

Notice that while the charge channel correction E
~2.16b! is universal, the triplet channel correction Eq.~2.16c!
is proportional toF0

s , which might be negative. That leads
the conclusion, that the overall sign of the total correcti
Eqs.~2.16! depends on value ofF0

s : it can be either positive
or negative, see Fig. 7.

Combining together all of the above results we plot t
total correction to the conductivity on Fig. 7 for differen

FIG. 7. Total interaction correction to conductivity. The dive
gence atTt/\→0 is due to the usual logarithmic correction~Ref.
1!. Curve F0

s50 corresponds to the universal behavior of co
pletely spin polarized electron gas. The correction is defined up
temperature independent part, see Eq.~3.33! and discussion after
Eq. ~2.14!.
4-6
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INTERACTION CORRECTIONS AT INTERMEDIATE . . . PHYSICAL REVIEW B 64 214204
values ofF0
s . The divergence at low temperature is due

the usual logarithmic correction.1 Although the exact value
of F0

s cannot be calculated theoretically~in particular, its
relation to the conventional measure of the interact
strength,r s , is unknown forr s.1!, in principle it can be
found from a measurement of the Pauli spin susceptibilit

x5
n

11F0
s

, ~2.19!

where the density of statesn should be obtained from a
measurement of the specific heat~at t21!T!EF). The con-
stantF0

s is the only parameter in our theory which describ
all the data, including the Hall coefficient and the magne
resistance in the parallel field. The theory for interaction c
rections in the magnetic field will be addressed in the for
coming paper.14

The correction in Fig. 7 is almost always monotono
except for a narrow region20.45,F0

s,20.25. A typical
curve in this region is shown in Fig. 8. Note, however, th
the overall magnitude of the correction in the range ofTt in
Fig. 7 is so small that it can hardly be observed.

When the interaction becomes so strong that the sys
approaches the Stoner instability,F0

s ceases to be a consta
and becomes momentum dependent. Thus the result
~2.16! is no longer valid. Although the simple conditio
dsT,sD suggests that this happens atT'(11F0

s)EF , the
more detailed analysis~see Sec. III E! shows that it happen
much earlier. In fact, the approximation of the constantF0

s is
valid in the parameter region defined by the inequality

T

EF
,~11F0

s!2, ~2.20!

see Sec. III E for the origin of this inequality. We were n
able to make a reliable calculation ofds(T) at higher tem-
peratures.

FIG. 8. The nonmonotonous correction to conductivity. Note
difference in the overall scale relative to the previous figure.
21420
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III. PERTURBATION THEORY

In this section we show how the announced results
~2.16! can be obtained with the help of the traditional pertu
bation theory. We try to explain the most important points
the calculation in detail. The comprehensive review of t
diagrammatic technique for disordered systems can be fo
in Ref. 1. We start by a brief discussion of the case o
weak, short-range interaction potential. Although this cas
artificial and is unrelated to any experiment, it is governed
the same physics as the general problem, and it is sim
enough to allow a transparent presentation. To generaliz
stronger coupling, we need to recall the basic ideas of
Landau Fermi-liquid theory and to identify the soft modes
the system. Then we present the calculation leading to
~2.16!. Finally, to establish the relation of our results to e
isting literature, we briefly discuss scattering on a single i
purity ~this discussion is completely analogous to the one
Sec. II but uses the language of diagrams!.

A. Hartree-Fock considerations

The static conductivity of a system of electrons is giv
by the Kubo formula

sab52 lim
v→0

ReF 1

Vn
E

0

1/T

dt^Tt ĵ a~t! ĵ b~0!&eiVntG
iVn→v

,

~3.1!

where ĵ a(t) is the operator of the electric current at imag
nary time t and the analytic continuation of the functio
defined at Matzubara frequenciesVn52pTn to function
analytic at Imv.0 is performed.

Assuming that electrons interact by means of a we
short-range interaction~range shorter thanvFmin(t,1/T),
V(r )) it is sufficient to consider the lowest order of the pe
turbation theory. The perturbation theory can be convenie
expressed in terms of Feinman diagrams. The lowest o
diagrams for the interaction correction to the conductiv
are shown on Fig. 9. The Hartree term corresponds to
diagrams ‘‘a,’’ while the Fock contribution corresponds
diagrams ‘‘b.’’ Evaluation of the correction consists of tw
main steps:~i! analytic continuation to real time, and~ii !
disorder averaging. While these two steps can be perform
in any order without affecting the result, it is more conv
nient ~for technical reasons! to start with step~i!.

Although analytic continuation in Eq.~3.1! is now a text-
book task, we include a brief discussion of the standard p
cedure in the Appendix to make the paper self-contain
After the continuation any physical quantity is expressed
terms of exact~i.e., not averaged over disorder! retarded and
advanced Green’s functions of the electronic system, wh
are defined as

G12
R(A)~e!5(

j

C j* ~rW1!C j~rW2!

e2e j6ı0
, ~3.2!

wherej labels the exact eigenstates of the system ande j are
the exact eigenvalues, counted from the Fermi energy

e

4-7
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S 2¹2

2m
1U~rW ! DC j~rW !5~e j1eF!C j~rW !.

HereU(rW) is the disorder potential.
The resulting expression for the correction to the symm

ric part of the conductivity~the Hall conductivity will be
discussed in a separate publication14! can be written as16

dsab5E
2`

` dV

8p2 F ]

]V S V coth
V

2TD G E d2r 3d2r 4

3Im$V~rW32rW4!~BF
ab~V;rW3 ,rW4!

22BH
ab~V;rW3 ,rW4!1$a↔b%!%, ~3.3!

where the extra factor of 2 in the Hartree term is due to
summation over electron spin. Here we denoted product
four Green’s functions asBF(H) . For the Fock term we have

BF
ab~V;rW3 ,rW4!

5E d2r 1d2r 5

V $Ĵ1
aG15

R ~e!Ĵ5
bG53

A ~e!G34
R ~e2V!G41

A ~e!

~3.4a!

1 Ĵ1
aG15

A ~e!Ĵ5
bG53

R ~e!G34
R ~e2V!G41

R ~e!
~3.4b!

12Ĵ1
aG13

R ~e!G35
R ~e2V!Ĵ5

bG54
R ~e2V!G41

A ~e!
~3.4c!

2 Ĵ1
aG15

A ~e!Ĵ5
bG53

A ~e!G34
R ~e2V!G41

A ~e!
~3.4d!

2 Ĵ1
aG13

A ~e!G35
R ~e2V!Ĵ5

bG54
R ~e2V!G41

A ~e!%,
~3.4e!

where V is the area of the system. Equations~3.4c! and
~3.4e! come from the diagram ‘‘b3’’ on Fig. 9 and the rest

FIG. 9. Interaction correction to conductivity in the lowest ord
of perturbation theory. Here solid lines correspond to Matsub

Green’s functions2G( i en ;rW1 ,rW2) and the wavy line represents th

interaction potential2V(rW12rW2).
21420
t-

e
of

Eq. ~3.4! correspond to diagrams ‘‘b1’’ and ‘‘b2.’’ For the
Hartree term the expression is similar,

BH
ab~V;rW3 ,rW4!

5E d2r 1d2r 5

V
3$Ĵ1

aG15
R ~e!Ĵ5

bG53
A ~e!G44

R ~e2V!G31
A ~e! ~3.5a!

1 Ĵ1
aG15

A ~e!Ĵ5
bG53

R ~e!G44
R ~e2V!G31

R ~e!
~3.5b!

12Ĵ1
aG13

R ~e!G45
R ~e2V!Ĵ5

bG54
R ~e2V!G31

A ~e!
~3.5c!

2 Ĵ1
aG15

A ~e!Ĵ5
bG53

A ~e!G44
R ~e2V!G31

A ~e!
~3.5d!

2 Ĵ1
aG13

A ~e!G45
R ~e2V!Ĵ5

bG54
R ~e2V!G31

A ~e!%.
~3.5e!

Again, Eqs. ~3.5c! and ~3.5e! correspond to the diagram
‘‘a3’’ in Fig. 9. The current operator is defined as

f 1~rW !JŴ f 2~rW !5
ie

2m
@~¹W f 1! f 22~ f 1¹W f 2!#2

eAW ~rW !

m
f 1~rW ! f 2~rW !.

~3.6!

In the above expressions terms corresponding to diagr
‘‘b3’’ and ‘‘a3’’ on Fig. 9 allow for at least one of the spatia
integrations to be performed with the help of the identity

E drW5G35
R ~e!Ĵ5

bG54
R ~e!52 ie~rW32rW4!bG34

R ~e!. ~3.7!

Now it is clear that Hartree terms Eqs.~3.5c! and ~3.5e!
vanish identically, since there the identity~3.7! should be
applied with coordinatesrW3 andrW4 being equal to each othe
In the Fock terms Eqs.~3.4e! and~3.4c! one needs to furthe
multiply the result of Eq.~3.7! by the interaction potentia
V(rW32rW4). In the case of the short range interaction poten
this also gives vanishing contribution. Thus we conclu
that the diagram ‘‘a3’’ on Fig. 9 does not contribute for an
form of the interaction, while the diagram ‘‘b3’’ vanishes fo
the short-range interaction.

The same identity can also be applied to terms Eqs.~3.4d!
and ~3.5d!, which also vanish by the same reason. Thus
task of averaging over disorder is now simplified because
only need to average two Fock terms Eqs.~3.4a! and ~3.4b!
and two Hartree terms Eqs.~3.5a! and~3.5b!. These expres-
sions contain only Green’s functions of noninteracting el
trons and can be averaged using the standard diagramm
technique of the theory of disordered systems~see Ref. 1 for
review!. The diagrams for averaged quantities can be c
structed using the four ‘‘building blocks’’~we use the mo-
mentum representation since translational invariance is
stored after averaging!.

a

4-8
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~1! The average electronic Green’s function~denoted as a
solid line; there should be no confusion with the previous
of the solid line for exact Green’s functions before avera
ing!, which in momentum space can be written as

^GR(A)&~k,e!5
1

e2jk6
i

2t

. ~3.8!

~2! The disorder potential, which is assumed to be Gau
ian with the correlator

^U~rW1!U~rW2!&5
1

2pnt
d~rW12rW2!.

In the diagrams this correlator is represented by the do
line.

~3! The dressed interaction vertexG (q and V are mo-
mentum and frequency of the interaction propagator!, which
represents a geometric series in disorder potential show
Fig. 10.

G~qW ;V!511
1/t

S2
1

t

, ~3.9a!

where we denote

S5AS iV1
1

t
D 2

1vF
2q2. ~3.9b!

~4! The averaged product of a retarded and an advan
Green’s functions~sometimes referred to as the diffuson!,
where we have summed up a geometric series shown on
11.

Using these building blocks we can average the produ
of Green’s functions as shown on Fig. 12. It is convenien
write the averagedBF(H) in the momentum representatio
The productBF , which appears in the Fock term, can
viewed as a function of coordinates of the two interact
vertices and can be transformed to the momentum spac

FIG. 10. Dressed interaction vertex.

FIG. 11. Diffuson-geometric series of impurity lines.
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^BF~V;rW1 ,rW2!&5E d2q

~2p!2
eiqW (rW32rW4)^BF~q,V!&.

~3.10!

Using the explicit expressions Eqs.~3.8! and ~3.9! we can
write the analytic form of the averagedBF

BF~q,V!

sD
5

~G221!t

S
1

G~G11!

vF
2q2

S iV1
1

t

S
21D 2

.

~3.11!

In the absence of magnetic field,BF(H)
ab 5dabBF(H) , which is

why we did not include the Greek indices in Eq.~3.11!.
The Hartree contribution is considered analogously. O

can write

^BH~V;rW1 ,rW2!&5E du1

~2p!

du2

~2p!

d2q

~2p!2
eikF(nW 12nW 2)(rW12rW2)

3BH~V;nW 1 ,nW 2 ,qW !, ~3.12!

wherenW i5(cosui ,sinui) indictates the direction of the mo
mentum. Then, disorder averaging ofBH(V;nW 1 ,nW 2 ,qW ) is per-
formed with the help of the same diagrams~see Fig. 12! but
the expression for the vertices changed as indicated in
figure caption.

Accordingly, the expression for the dressed vertex~3.9a!,
see also Fig. 10, is changed to

GH~nW ,nW k ;qW ;V!52pd~nW nW k
ˆ

!1
1

SH

S

St21
,

SH~nW ,qW ;V!5 iV2 ivFqW nW 11/t, ~3.13!

wherenW k corresponds to the direction of the momentumk on
Fig. 10. The final expression forBH is similar to Eq.~3.11!

FIG. 12. Averaged product of four Green’s functions. The wa

lines indicated(pW in2pW out1qW ) for the Fock contributionBF(q)

and 2pd(pW in2pW out1qW )d@nW pW in
ˆ

# for the Hartree contribution
BH(q,n1 ,n2).
4-9
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BH~V;nW 1 ,nW 2 ,qW !

sD

52
22pd~nW 1nW 2

ˆ
!t

S
1

t

SE du3

2p
GH~nW 1 ,nW 3!GH~nW 2 ,n3!

1E du3

2p E du4

2p
~nW 3nW 4!

GH~nW 1 ,n3!GH~nW 2 ,n4!

SH~nW 3!SH~nW 4!

1~nW 1nW 2!
G

SH~nW 1!SH~nW 2!
, ~3.14!

and we suppressed the argumentsq,V in the right-hand-side
of the equation. We note in passing, that by construction
Eqs.~3.4a!, ~3.4b!, ~3.5a!, and~3.5b! that

BF~V;rW,rW !5BH~V;rW,rW !,

and, therefore, according to Eqs.~3.10! and ~3.12! the
relation

BF~V;qW !5E du1

2p

du2

2p
BH~V;nW 1 ,nW 2 ,qW !

must hold@this can be easily verified using explicit expr
sions~3.11! and ~3.14!#.

We are now prepared to calculate the temperature de
dence of the conductivity from Eq.~3.3!. We substitute Eqs
~3.11! and ~3.14! into Eq. ~3.3!. As we will see, the main
contribution to the temperature dependence is provided
wave vectorsqT.max@T,(T/t)1/2#/vF . On the other hand the

potential V(rW) has a range much shorter than 1/qT . This
enables us to use the following approximations:

E d2r 3d2r 4

V V~rW32rW4!eiqW (rW32rW4)'V~0!,

E d2r 3d2r 4

V V~rW32rW4!eikF(nW 12nW 2)(rW32rW4)

'VS 2kF sin
nW 1nW 2
ˆ

2
D ,

where V(k) in the right-hand-side of the above equatio
denotes the Fourier transform of the interaction potential

Altogether, we now write the conductivity correction a
21420
f

n-

y

ds5E
2`

` dV

8p2

]

]V S V coth
V

2TD E d2q

~2p!2

3ImH V0~0!BF~q,V!22E du1

2p E du2

2p

3V0S 2kF sin
nW 1nW 2
ˆ

2
D BH~V;nW 1 ,nW 2 ,qW !J . ~3.15!

Evaluating this integral~where we only keep the temperatu
dependent part, see Sec. III F for details! one arrives to the
same result Eq.~2.14!, but with the coefficient in the form
Eq. ~2.15!, in agreement with the discussion of Sec. II.

Let us now turn to the case of the Coulomb potenti
where the scheme of the calculation~as described so far!
breaks down. In the Fock term we haveV(0), which di-
verges for the Coulomb interaction@V(q);1/q#. To obtain
meaningful results one needs to take into account the ef
of dynamical screening. The Hartree term seems to w
better since using just the static screening makes the re
finite. However, this is wrong also, since in this case d
grams with extra interaction lines do not contain any sm
ness @see, e.g., Fig. 13; there the correction
;V(2kF)V(0)#. Thus one can not justify the perturbatio
theory in the interaction potential. The way out of this pro
lem is the standard theory of Landau Fermi liquid, which w
briefly discuss in the following subsection.

B. Soft modes

As we already discussed, the main contribution to
temperature dependence of physical quantities comes f
the processes characterized by spatial scales much la
than the Fermi wavelengthlF . Therefore, there is a scal
separation in the problem; all the Fermi liquid parameter21

Fi are established at small distances of the order oflF , and
are not affected by disorder if the relationeFt*1 holds. On
the other hand, all the temperature and disorder depend
is determined by infrared behavior of the system whereFi
can be considered as fixed.

Therefore, our first step is to identify the terms in th
interaction Hamiltonian, which may produce the biggest co

FIG. 13. ~a! Single impurity contribution to the Hartree term
see Sec. III F for a detailed discussion.~b! Second order correction
to the Hartree term~a!.
4-10
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tributions at temperatures much smaller than the Fermi
ergy. This procedure contains nothing new in comparis
with the standard identification of singlet, triplet, and Coop
channels, see Ref. 22, and we present here the main ste
make the paper self-contained.

The original interaction Hamiltonian has the form

Ĥ int5(
qW ,pW i

V~q!

2
cs1

† ~pW 1!cs2

† ~pW 2!cs2
~pW 21qW !cs1

~pW 12qW !,

and we imply summation over repeated spin indices. S
modes of the system correspond to the situation when tw
the fermionic operators have momenta close to each o
The difference of the momentaq* defines the scale 1/q*
@lF , which is the smallest lengthscale allowed in t
theory. Therefore, we explicitly separate the Hamilton
into a part that contains all the soft modes~first three terms!
and a correctiondĤ, which does not contain such pairs
fermionic operators

Ĥ int5Ĥr1Ĥs1Ĥpp1dĤ. ~3.16!

The explicit expressions for the entries of the Hamilton
~3.16! are the following. The interaction in the singlet cha
nel ~charge dynamics! is described by

Ĥr5
1

2 (
uqW u,q* ,pW i

FV~q!1
Fr~nW 1nW 2
ˆ

!

n
G

3@cs1

† ~pW 1!cs1
~pW 12qW !#@cs2

† ~pW 2!cs2
~pW 21qW !#,

~3.17!

wherenW i5pW i /upi u, the dimensionless parameterFr(nW 1nW 2
ˆ ) is

related to the original interaction potentialV(q) by

Fr~u!52
n

2
VS 2kFsin

u

2D , ~3.18!

and n is the thermodynamic density of states of no
interacting electrons~introduced here to makeFr dimension-
less!.

Interaction in the triplet channel~spin density dynamics!
is governed by

Ĥs5
1

2 (
pW i

uqW u,q*

(
j 5x,y,z

Fs~nW 1nW 2
ˆ

!

n

3@cs1

† ~pW 1!ŝs1s2

j cs2
~pW 12qW !#

3@cs3

† ~pW 2!ŝs3s4

j cs4
~pW 21qW !#, ~3.19!

where parametersFs(nW 1nW 2
ˆ ) are

Fs~u!52
n

2
VS 2kFsin

u

2D . ~3.20!

Finally, the Hamiltonian
21420
n-
n
r
s to

ft
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-

Ĥpp5 (
uqW u,q* ,pW i

H Fe~nW 1nW 2
ˆ

!

n
@cs1

† ~pW 1!ŝs1s2

y cs2

† ~qW 2pW 1!#

3@cs3
~pW 2!ŝs3s4

y cs4
~qW 2pW 2!#

1 (
j 5x,y,z

Fo~nW 1nW 2
ˆ

!

n
@cs1

† ~pW 1!s̃s1s2

j cs2

† ~qW 2pW 1!#

3@cs3
~pW 2!~ s̃ j !s4s3

† cs4
~qW 2pW 2!#J ~3.21!

describes singletFe and tripletFo pairing fluctuations. The
parameters in this Hamiltonian are

Fe,o~u!5
n

4 FVS 2kFsin
u

2D6VS 2kFcos
u

2D G , ~3.22!

where plus and minus signs correspond to even~e! and odd
~o! pairing, respectively. Hereŝs1s2

j are the elements of the

Pauli matrices in spin space

ŝx5S 0 1

1 0D , ŝy5S 0 2 i

i 0 D , ŝz5S 1 0

0 21D ,

and s̃ j5ŝyŝ j .
Deriving Eqs.~3.17!–~3.22!, we used the condition,q*

!kF . This condition allowed us to make the following ap
proximation:

~pW 12pW 2!2'4kF
2sin2S nW 1nW 1

ˆ

2
D .

We also used the identity

2ds1s2
ds3s4

5ds1s3
ds2s4

1ŝs1s3

j ŝs4s2

j

5ŝs1s3

y ŝs2s4

y 1s̃s1s3

j ~ s̃ j !s4s2

† .

So far, the representation~3.16! of original interaction is
exact. The only advantage of this representation is tha
explicitly separates the termdH which does not contain cou
pling to the low energy excitations of the fermionic syste
Therefore, the contribution ofdH to physical quantities is
regular and not infrared divergent@such as (T/vFq*) 2#.
Therefore, for the electron system with weak short ran
interaction,dH can be disregarded at all.

Moreover, even if the interaction is not weak or lon
range,dH can be treated in all the orders of perturbati
theory without generating a soft mode. If this term does
break the translational symmetry at short distances, its o
effect is to renormalize the interaction parametersF ’s in Eqs.
~3.17!, ~3.19!, and~3.21! and the Fermi velocity in the non
interacting part of the Hamiltonian. For instance, one obta
for the two-dimensional electron gas with the Coulomb
teractionV(q)52pe2/(kuqu)
4-11
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Fr~u!5Fs~u!52
1

2

r s

&Usin
u

2U1r s

, ~3.23!

where

r s[
&e2

k \vF

~3.24!

is the conventional parameter characterizing interac
strength andk is the low frequency dielectric constant of th
host material. Expression~3.23! is applicable only forr s
!1, however, keeping it in denominator is legitimate f
small angle scattering.

For stronger interactionr s*1, but still far from the
Wigner crystal instability23 r s&37 exact calculation of the
parametersF from the first principles~as well as their ex-
plicit expressions in terms ofr s) is not possible. Neverthe
less, to study the behavior of the system at distances m
larger thanlF , one can still disregard the termdH in Eq.
~3.16!. Then parametersF are no longer bound by Eqs
~3.18!, ~3.20!, and~3.22! @or by Eq.~3.23! for the Coulomb
interaction# but rather should be treated as starting para
eters for the low-energy theory. The form of Eqs.~3.17!,
~3.19!, and ~3.21! is guarded by symmetries of the syste
Eq. ~3.17! is guarded by translational symmetry and cha
conservation; Eq.~3.19! is guarded by translational symme
try and symmetry with respect to spin rotations; and E

FIG. 14. Conductivity diagrams, group I. Diagrams~a!, ~b!, and
~d! were evaluated for the short range interaction in Sec. III A.
the diffusive regime~Ref. 1! only diagrams~a!,~d!,~e!, were consid-
ered atv,qvF!1/t.
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~3.21! is guarded by all above symmetries and the electr
hole symmetry, which holds approximately at low energie

All the consideration above essentially repeats the ba
of the Landau Fermi-liquid theory.21 We reiterate, that this
theory does not imply that the interaction is weak; the o
assumption here is that no symmetry is broken at small
tances.

C. Disorder averaging

To study the interaction correction to conductivity due
charge and triplet channel interactions introduced in the p
vious subsection, we follow the same route as in the cas
the short-range interaction. In particular, the charge chan
correction is a direct generalization of the Fock term. W
start, however, with the discussion of disorder averaging

The correction to conductivity Eq.~3.3! represents the
first order perturbation theory in the original potentialV(q),
valid when the potential is weak. For stronger coupling
make use of the effective Hamiltonian Eq.~3.16!. Although
the diagrams for conductivity look similar to the Fock ter
‘‘b’’ on Fig. 9, their content is now quite different. First, th
wavy line now represents the propagator for one of the s
modes in Eq.~3.16!. Therefore the expression for the co
ductivity Eq. ~3.3! should be rewritten as

dsab52E
2`

` dV

8p2 F ]

]V S V coth
V

2TD G
3ImE d2r 3d2r 4

V $@D A~V,rW3 ,rW4!1TrD̂T
A~V,rW3 ,rW4!#

3~BF
ab~V,rW3 ,rW4!1$a↔b%!%, ~3.25!

whereD A and D̂T
A are advanced propagators for charge a

triplet channels@D̂T is a 333 matrix as follows from Eq.
~3.19!, see also Sec. III E# andBF is the product of electronic
Green’s functions given by Eq.~3.4!, the same as in the Foc
term. Deriving Eq.~3.25! we assumed that the spin rotation
symmetry is preserved, i.e., no Zeeman splitting or the sp
orbit interaction is present. We also neglected the dep
dence of the interaction propagators on the direction of

FIG. 15. Conductivity diagrams, group II. Diagrams~a! and~b!
were evaluated for the short range interaction in Sec. III A. In
diffusive regime~Ref. 1! only diagrams~a!,~d!,~e!, were considered
at v,qvF!1/t.
4-12
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electron momenta. Lifting of those two assumptions
straightforward but it will not be done in the present pap
To the leading order in 1/kFl we can average the propagato
independently ofBF ~see, e.g., Ref. 1!. Here we proceed with
averagingBF and the discussion of the propagators follow

We have already averaged the productBF of four Green’s
functions for the case of the short-range potential. There
three terms Eqs.~3.4e!, ~3.4c!, and~3.4d! vanished due to the
particular form of the potential. Now we have to take the
terms into account and consider the full set of diagra
shown on Figs. 14 and 15. These diagrams can be evalu
in exactly the same way as those in Sec. III A~where we
considered a subset of these diagrams!.

As a result, the averagedBF has a form similar to Eq.
~3.11! and can again be expressed in terms of the dres
vertexG @see Eq.~3.9!#. We are still interested in the longi
tudinal conductivity and thus disregard the Hall contributio
Thus, after averaging the correction Eq.~3.25! takes the form

ds52e2vF
2pnE

2`

` dV

4p2

]

]V S V coth
V

2TD E d2q

~2p!2

3Im$@D A~V,q!1Tr D̂T
A~V,q!#B̃F~V,q!%,

B̃F~V,q!52

2tS iV1
1

t DG

S3
1

~G221!t2

S

1

vF
2q222S iV1

1

t D 2

S5

G2

2
1

tG~G11!

vF
2q2

3S iV1
1

t

S
21D 2

2
2G2

S3
S iV1

1

t

S
21D

1
G3vF

2q2

tS6
, ~3.26!

where quantitiesG andS are defined in Eq.~3.9!.
It is important to emphasize that

B̃F~V,q50!50 ~3.27!

@to see this one should use explicit expressions~3.9! in Eq.
~3.26!#. This property is not accidental—it is guarded by t
gauge invariance of the system: no interaction with zero m
mentum transfer can affect the value of the closed loop.

To proceed further with the actual calculation of the c
rection ~3.26! we need to specify the interaction propagat
It will be done in the following two subsections.

D. Charge channel

In this section we discuss the charge channel correct
described by the Hamiltonian~3.17!. Because the effective
interaction is characterized by the momentum transfer m
smaller than the Fermi wave vector, the random phase
21420
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proximation ~RPA!, see Fig. 16, is applicable. To simplif
further considerations, we approximate the Fermi liquid p
rameterFr by its zero angular harmonic

Fr~u!'F0
r , ~3.28!

this approximation does not affect the final result because
the long range nature of the Coulomb potentialV(q→0)
→`.

Consequently, we write the charge channel propagato
the form

D A~V,q!52
nV~q!1F0

r

n1~nV~q!1F0
r!PA

, ~3.29a!

where the polarization operator is given by

PA~V,q!5nF 12
iV

S2
1

t
G , ~3.29b!

using the notation~3.9b!. The polarization operator~3.29b!
differs from the more standard one~used, for instance, in
Ref. 16! since the diffusion approximation has not be
made yet. Indeed, expanding the polarization operator
small V and q we can recover the usual diffusive form. I
terms of the scattering time it corresponds to the limitTt
!1. We do not do that here since we want to calculate
conductivity for all values ofTt.

The form of the propagator~3.29! and expression for the
conductivity correction~3.26! suggests that there could b
two contributions. First, the propagator Eq.~3.29! has a pole
which corresponds to the 2D plasmon. However, the p
mon dispersion relation is

~vFqpl!
2nV~qpl!52VS V1

i

t D ,

i.e., (vFqpl)
2!uV(V1 i /t)u at all distances larger than th

screening radius. According to the gauge invariance con
tion ~3.27! this contribution is strongly suppressed„by a fac-
tor of the order of max@T,(T/t)1/2#dsc/vF , with dsc being the
screening radiusnV(1/dsc)51… and we will not take it into
account.

FIG. 16. Interaction propagator in the~a! singlet and~b! triplet
channel.
4-13
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Second, at frequencies smaller than the plasmon
quency we can neglect the unity in the denominator in
~3.29!, which corresponds to the unitary limit, i.e.,

D A52
1

PA
52

1

n

S2
1

t

S2
1

t
2 iV

. ~3.30!

Thus the original couplingV(q) as well as the renormaliza
tion of the coupling by the Fermi liquid parameter Eq.~3.17!
does not affect the resulting propagator. In other words
propagator becomes universal.

It is important to emphasize that Eq.~3.30! gives the up-
per bound for the strength of the repulsive interaction. Thi
guaranteed by stability of the electron system with respec
the Wigner crystallization, i.e., by the conditionnV(q)1F0

r

.0 at q,q*. Therefore, we always have

nV1F0
r

n1~nV1F0
r!P

,
1

P
,

so that Eq.~3.30! is indeed the upper bound for the prop
gator Eq.~3.29a!. Note, that the above condition is satisfie
regardless of the sign ofF0

r . In particular, it is possible to
have F0

r,21 so that the so-called compressibility of th
systemn/(11F0

r) is negative. This fact, however, has not
ing to do with stability of the Fermi liquid and does n
affect transport phenomena.24

Using the propagator Eq.~3.30! in the expression for the
correction Eq.~3.26! we obtain after momentum integratio

dsC52e2tE
0

`dV

2p

]

]V S V coth
V

2TD
3H 2

p
arctanVt1

1

pVt
1

Vt

2p
H~Vt!ln 2

1
1

p
@11H~Vt!#arctan

1

Vt
1

Vt

4p

3F1

2
1H~Vt!G lnS 11

1

V2t2D J , ~3.31!

where the dimensionless functionH(x) is defined as

H~x!5
1

41x2
.

In the frequency integral Eq.~3.31! we single out the first
two terms as being dominant in the ballistic and diffusi
limits respectively with the rest being the crossover functi
The diffusive limit is given by
21420
e-
.

e

is
to

.

dsC~Tt!1!52e2tE
0

`dV

2p

]

]V S V coth
V

2TD 1

pVt

52
e2

2p2
lnS EF

T D . ~3.32!

In the opposite limit we can replace arctanVt by p/2. Then
the integral is divergent in the ultraviolet, but that large co
stant can be incorporated in the definition oft. This is done
as follows:

E
0

`

dV
]

]V S V coth
V

2TD→22T1EFcoth
EF

2T
, ~3.33!

whereEF is put for the upper limit of the integral. This i
consistent with the approximations in momentum integ
tion, where one typically relies on fast convergence in or
to set the integration limit~otherwise determined by th
Fermi energy! to infinity and to set all momenta in the nu
merator to the Fermi momentum in magnitude. Since we
interested in temperaturesT!EF , the second term is essen
tially a temperature independent~although infinite! constant.
The temperature dependent correction to the conductivit
determined by the first term. As a result

dsC~Tt@1!52e2tE
0

`dV

2p

]

]V S V coth
V

2TD5e2
Tt

p
.

~3.34!

Integrating the full expression Eq.~3.31! we find the cor-
rection valid at all values ofTt,

dsC52
e2

2p2
lnS EF

T D1e2
Tt

p F12
3

8
f ~Tt!G , ~3.35!

where the dimensionless functionf (x) is defined as a dimen
sionless integral

f ~x!5
8

3E0

`

dzF ]

]z
~z cothz!21G

3H xz

p
H~2xz!ln 21

1

p
@11H~2xz!#arctan

1

2xz

1
xz

2p F1

2
1H~2xz!G lnS 11

1

~2xz!2D
1

2

p
arctanVt21J . ~3.36!

The factor 3/8 is introduced for convenience, so thatf (0)
51. The integral can be evaluated analytical in the two li
iting cases and the result is given by Eq.~2.17!. In the inter-
mediate regime the integral can be evaluated numeric
and the result is plotted on Fig. 5.
4-14
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E. Triplet channel

In this section we discuss the correction in the trip
channel. Similar to the case of the charge channel, we n
to derive the interaction propagator in the triplet channel a
then use Eq.~3.26!. As follows from the Hamiltonian Eq
~3.19!, the triplet channel propagator is now a 333 matrix.
Apart from this minor complication, the propagator can
found using the same RPA approximation as the one use
Sec. III D, see Fig. 16.

Similarly to the charge channel, we take the Fermi liqu
coupling F̂s to be independent of electron momenta

Fs~u!'F0
s . ~3.37!

Unlike the case of the charge channel, this approxima
slightly affects final results@see discussion after Eqs.~2.16!
for the drawbacks of this approximation as well as for
remedies#. Then the matrix equation for the triplet propag
tor has the form

@DT# i j 52d i j

F0
s

n
2

F0
s

n (
k5x,y,z

P̂ ik@DT#k j , ~3.38!

wherei , j 5x,y,z.
In the absence of the magnetic field and spin-orbit sc

tering each electronic Green’s function is a diagonal ma
in the spin space, and therefore

P ik
A ~q,V!5d ikPA~q,V!, ~3.39!

where PA(q,V) is the polarization operator given by Eq
~3.29b!. Altogether, using Eq.~3.39! in the equation~3.38!,
we find the triplet channel propagator as

@D T
A~V,q!# i j 52d i j

F0
s

n1F0
sPA~V,q!

. ~3.40!

Before we continue, let us discuss the validity of the a
proximation Eq.~3.37!. Consider the situation close to th
Stoner instabilityF0

s→21. In this case the pole of th
propagator Eq.~3.40! describes a magnetic excitation in th
system. In the ballistic case (q.1/l ) it is a slow, over-
damped spin wave

2 iv'~11F0
s!vFuqu.

The main contribution to the temperature dependent cond
tivity correction comes from this pole atv;T. The corre-
sponding typical momenta arek* ;T/@(11F0

s)vF#. Al-
though we are using the momentum independentF0

s , it is
known25 that fluctuations in the triplet channel produce
nonanalytic correction to the spin susceptibility, so up to
numerical coefficientFs'F0

s(12uqu/kF). Such momentum
dependence can only be neglected ifk* <kF(11F0

s). This
translates into a limitation for the temperature range wh
the results listed in Sec. II B are valid:26

T!T* '~11F0
s!2EF . ~3.41!

At higher temperaturesT.T* our theory is not applicable.
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Having discussed the validity of the approach, we proce
with the straightforward calculation: one has to substitute
propagator Eq.~3.40! into the expression for the correctio
Eq. ~3.26! and evaluate the integral. The result of the m
mentum integration is given by

dsT523e2tE
2`

` dV

4p

]

]V SV coth
V

2TD H S 12
1

F0
s

ln~11F0
s!D

3
1

pVt
1

F0
s

~11F0
s!

F 2

p
arctanVt1

Vt

2p
$@H~Vt!

1h1~Vt!# ln 21h4~Vt!%1
1

p
@11H~Vt!

1~Vt!2h3~Vt!#arctan
1

Vt
1

Vt

4p

3F1

2
1H~Vt!1h2~Vt!G lnS 11

1

V2t2D G J , ~3.42a!

where we introduce notations

h1~x!5H̃~x;112F0
s!@516F0

s24~213F0
s!H~x!#,

~3.42b!

h2~x!5h1~x!1H̃~x;F0
s!

3F2
1

2
~11F0

s!1F0
sx2S 1

2
2~11F0

s!H̃~x;F0
s! D G ,
~3.42c!

h3~x!5H̃~x;112F0
s!@2122F0

s1~213F0
s!H~x!#

1
F0

s

2
H̃~x;F0

s!@11F0
sx2H̃~x;F0

s!#, ~3.42d!

h4~x!5H̃~x;F0
s!F5F0

s23

2
1

12~F0
s!2

F0
s

ln~11F0
s!G

1h5~x!
11F0

s

F0
s

ln~11F0
s!, ~3.42e!

h5~x!5~2F0
s21!H̃~x;112F0

s!1H̃2~x;F0
s!

3F S 1

2
22F0

sD ~11F0
s!22~F0

s!2x2S 1

2
12F0

sD G .
~3.42f!

Here we introduce a dimensionless functionH̃(x;y)

H̃~x;y!5
1

~11y!21~xy!2
,

which is related to the functionH(x) introduced in Sec. III D
simply by H(x)5H̃(x;1).
4-15
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The expression in brackets turns into its counterpart in
charge channel in the unitary limit (F0

s→`). Its first term
describes the diffusive limit described in Ref. 1~the formal
difference in the coefficient stems from the difference in
definition of the coupling constant!. The frequency integral is
evaluated in the same way as in Eq.~3.32!. Similar to our
discussion of the charge channel correction@see, e.g., Eq.
~3.34!#, we identify the second term in Eq.~3.42a! with the
ballistic limit ~which we discuss in more detail in the ne
section!. The intermediate temperature regime is describ
by the expression@which appeared previously in Sec. II B
Eq. ~2.16c!#:

dsT523S 12
1

F0
s

ln~11F0
s!D e2

2p2
lnS EF

T D
1

3F0
s

~11F0
s!

e2
Tt

p F12
3

8
t~Tt;F0

s!G , ~3.43!

where the dimensionless functiont(x;F0
s) is defined as

t~x;F0
s!5

8

3E0

`

dzF ]

]z
~z cothz!21G

3H xz

p
$@H~2xz!1h1~2xz!# ln 21h4~2xz!%

1
1

p
@11H~2xz!14x2z2h3~2xz!#arctan

1

2xz

1
xz

2p F1

2
1H~2xz!1h2~2xz!G lnS 11

1

~2xz!2D
1F 2

p
arctan~2xz!21G J . ~3.44!

Except for the limiting cases@see Eq.~2.18!# the integral in
Eq. ~3.44! has to be evaluated numerically. We plot the res
for several values ofF0

s in Fig. 6.

F. Single impurity limit

In the previous sections we obtained the expression
the correction to conductivity averaged over disorder.
complete the calculation we needed to separately averag
interaction propagator and use the result to evaluate the
tegral in Eq.~3.26!. In doing this we assumed that the d
mensionless conductance of the system is large or in term
the scattering timetEF@1. We have not, however, assume
anything about the relative value of the scattering rate
temperature. In other words, the correction Eq.~3.26! is valid
in both the diffusiveTt!1 and ballisticTt@1 limits. It also
describes the cross-over behavior at intermediate temp
tures.

The temperature behavior of the interaction correction
the limiting cases can of course be obtained from the gen
result Eq.~2.16!. As we pointed out in Sec. II B, in the dif
fusive limit our results coincide with the standard theo
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Ref. 1. On the other hand the correction in the ballistic lim
is subject to conflicting claims in literature.6,27Unfortunately,
neither result is completely correct. Therefore we discuss
ballistic limit in some detail, starting with diagrams befo
averaging~i.e., diagrams on Figs. 9!. This way we are able to
point out exactly which diagram produces the dominant
sult and which diagrams were missed in existing theories

We begin by discussing the Hartree term. This contrib
tion was considered in Ref. 6 in the framework of the te
perature dependent dielectric function. The physical idea
that electrons tend to screen the charged impurities and
modify the scattering rate. In what follows we show whic
diagrams describe this process and how to calculate the
sulting correction, which appears to be the same~up to a
numerical factor miscalculated in Ref. 6; see below for d
tailed explanation!. The important difference between th
two approaches is that the impurity screening picture
scribed only the direct~Hartree! interaction, while missing
on the exchange part. The latter was later considered in
27. We think that this consideration is erroneous, and
discuss the Fock term in Sec. III F 2.

1. Single impurity limit for Hartree term

The goal of this discussion is to show which diagram
correspond to the ballistic limit of the Hartree term~as dis-
cussed in Sec. II! and how it relates to other interaction co
rections we discuss in this paper. The Hartree term co
sponds to averaging the two diagrams on Fig. 9, where
wavy line represents a weak interaction potential. In this c
the diagram ‘‘a3’’ of Fig. 9 is equal to zero even before t
averaging~as a total derivative! and we only need to averag
the diagrams ‘‘a1’’ and ‘‘a2.’’ The rigorous procedure wou
involve dressing the interaction vertices according to Fig.

FIG. 17. Single impurity diagrams for Hartree channel.

FIG. 18. Fock channel diagrams without impurity lines.
4-16
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and adding diffusons Fig. 11 as it was done in Sec. III A~see
Fig. 12!, evaluating the resulting expression, and finally ta
ing the limit Tt→`. However, the same result can be o
tained by making the expansion by noticing that impur
line brings smallness 1/Tt. Therefore, high temperature lim
may be studied by considering diagrams on Fig. 17 direc
Such approach is completely equivalent to that of Ref. 6. T
result @which can also be obtained from the general expr
sion Eq.~2.16c!# is similar to the one obtained in Ref. 6~the
difference is the extra factor of ln2 found in Ref. 6 due to
error in this reference, which consists in putting the ene
of the scattered electron on the Fermi shell rather than i
grating over it!:

dsH524sDS T

EF
D @2nD~2kF!# ~3.45!

@for weak couplingD(2kF)[2V(2kF)#. The factor of 4 in
Eq. ~3.45! can be interpreted as a result of a summation o
four spin configurations. Although correct for weak couplin
this factor should be modified when stronger interaction
considered, see discussion above.

FIG. 19. Single impurity diagrams for Fock channel with t
impurity line dressing one interaction vertex.

FIG. 20. Single impurity diagrams for Fock channel with t
impurity line connecting a retarded and an advanced Green’s f
tions across the diagram.
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2. Fock contribution

In the similar manner one can discuss the single impu
contribution to the Fock term. Again, for weak interaction w
could simply expand the result of disorder averaging for
Fock term Eq.~3.11! to the leading order in 1/Tt. For Cou-
lomb interaction we would expand Eq.~3.26!, since in Eq.
~3.11! the special form of the delta-function potential w
utilized to eliminate the diagram ‘‘b3’’ on Fig. 9. Diagram
matically, such expansions equivalent to direct evaluation
diagrams without impurity lines~but with averaged electron
Green’s functions! shown in Fig. 3 and diagrams with onl
one impurity line shown on Figs. 19–21.

The evaluation of the single impurity diagrams for th
Fock term is straightforward and is completely analogous
the Hartree term discussed in the previous subsection.
result can be written as

sF5
e2tT

p
. ~3.46!

This result contradicts~even in sign! that of Ref. 27. Here we
briefly discuss the reason for this contradiction. We not
that one has to be careful to keep track of gauge invaria
while evaluating diagrams for the Fock term. Gauge inva
ance manifests itself in the fact that any interaction at z
momentum gives no contribution to physical quantitie
which are expressed diagrammatically as closed loops,
Eq. ~3.27!. This is indeed the case for Eq.~3.26!, where we
summed up all the diagrams. On the other hand, any in
vidual diagram is not gauge invariant. In particular, ea
subset of diagrams in Figs. 18–21 is not gauge invaria
Therefore to obtain the result Eq.~3.46! from these diagrams
one has to disregard terms which contain higher than sec
powers of the scattering rate 1/t. As we already mentioned
the contribution from the plasmon pole is small due to t
condition ~3.27!. However, in Ref. 27 it was claimed othe
wise. Namely, diagrams in Fig. 18 were claimed to be i
portant for the plasmon correction and to give a large res
while diagrams in Figs. 19–21 were alleged to be not imp
tant for the plasmon correction. This claim explicitly violate
gauge invariance and leads to incorrect conclusions. In
ticular, the plasmon contribution to the conductivity w
overestimated by a factor of order of (vF /dsT).(EF /T).

IV. KINETIC EQUATION APPROACH

Our purpose in this section is to put the treatment of
interaction effects in disordered systems into the framew

c-

FIG. 21. The single impurity diagram for Fock channel with t
impurity line connecting two advanced Green’s functions.
4-17
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of the kinetic equation. Even though at this point this will n
produce any further physical results, this proves to be m
convenient for practical calculations of more sophistica
quantities, such as the Hall coefficient, the thermal cond
tivity, energy relaxation, etc. The kinetic equation approa
is also applicable for the description of nonlinear effects. T
main technical advantage of the kinetic equation is tha
operates with gauge invariant quantities from the very beg
ning, unlike the perturbation theory, where each diagr
taken separately is not gauge invariant~and may produce
nonphysical divergences!.

We will present the final form of the kinetic equation
Sec. IV A, and show how to operate with this equation
the conductivity calculation in Sec. IV B. The derivation
this equation based on the Keldysh technique for nonequ
rium systems28 is presented in Sec. IV C.

A. Final form of the kinetic equation

As usual in the kinetic equation approach, averages
observable quantities are expressed as certain integrals o
distribution functionf (t;e,rW,nW ). For instance, the average
density is

r~ t,rW !5nE
2`

`

de^ f ~ t;e,rW,nW !&n ~4.1a!

and the average current is

JW~ t,rW !5envFE
2`

`

de^nW f ~ t;e,rW,nW !&n ~4.1b!

and so on. Heren is the density of states~entering into linear
specific heat of the clean system! at the Fermi surface andvF

is the Fermi velocity,nW 5(cosu,sinu) is the unit vector in the
direction of the electron momentum and angular averagin
introduced as

^•••&n5E du

2p
•••.

The Boltzmann-like equation for the distribution functio
has the form

F ] t1vFnW ¹W 1evF~nW EW !
]

]e
1vW cS nW 3

]

]nW
D G f 5St$ f %,

~4.2!

whereEW denotes the external electric field andvW c is a vector
with the magnitude equal to the cyclotron frequency cor
sponding to an external magnetic field perpendicular to
plane and the direction along the field.

Equations~4.1! and ~4.2! neglect energy dependence
the velocity of electrons, which makes it inapplicable f
quantities associated with electron-hole asymmetry, suc
the thermopower. On the other hand, any component of
thermal and electrical conductivities is still within our d
scription.

All of the interaction effects are taken into account in t
collision integral
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St$ f %5Stel$ f %1Stin$ f %. ~4.3!

The elastic part of the collision integral describes scatter
of electrons by static impurities~we assume pointlike scat
tering; generalization to the finite range is straightforward! as
well as by the self-consistent field generated by all the ot
electrons:

Stel$ f %52
f ~ t;e,rW,nW !2^ f ~ t;e,rW,nW !&n

t
1I 0~ t;e,nW ,rW !

3^ f ~ t;e,rW,nW !&n1naI 1
ab~ t;e,rW !^nb f ~ t;e,rW,nW !&n .

~4.4!

The effect of the self-consistent field is described by the
two terms, where we introduce notations

I 0~ t;e,nW ,rW !52
8

tE dv

2p H naK0
ab~v!^nb f ~ t;e2v,rW,nW !&n

1
naL0

ab~v!

2 F¹b1eEb

]

]eG^ f ~ t;e2v,rW,nW !&nJ
~4.5a!

I 1
ab~ t;e,rW !52

8

tE dv

2p
K1

ab~v!^ f ~ t;e2v,rW,nW !&n .

~4.5b!

The collision integral Eq.~4.4! preserves the number of pa
ticles on a given energy shell: integrating Stel$ f (t;e,rW,nW )%
over directions ofnW gives zero for any value ofe @see also
Eq. ~4.58!#.

The term I 1 expresses enhanced momentum relaxat
due to static disorder. The physics of this term was discus
in detail in Sec. II. The termI 0 describes electron scatterin
by nonequilibrium nonlocal Focklike potential created by
other electrons. This process is responsible for generatio
the finite drift velocity of electrons. One can easily see th
I 0 vanishes in the equilibrium situationf (e,nW ,rW)5 f @e

1ew(rW)#, ¹aw52Ea .
The kernelsK0 , K1, andL0 entering into Eqs.~4.5! can

be expressed in terms of interaction propagators and
propagators describing semiclassical dynamics of n
interacting electrons. Explicitly,

K1
ab~v!5ImE d2q

~2p!2
DR~v,qW !

3H ^naD&^Dnb&2
dab

2 S ^D&^D&1 i
]

]v
^D& D J ,

~4.6a!
4-18



n
t

he

th
e

lib

o-
x-

the
nd
ion
-

f
ns

ear
lude
not
al
ed

to
r-
ob-

he
ion
are

tic
ki-
es

re
tic
he
the
he
uc-
n
c-

-
he

e is
lso
is

id-

ne

INTERACTION CORRECTIONS AT INTERMEDIATE . . . PHYSICAL REVIEW B 64 214204
K0
ab~v!5ImE d2q

~2p!2
DR~v,qW !

3H^n aDnb&^D&2
i

vF

]

]qa
^Dnb&2^Dna&^Dnb&J,

~4.6b!

L0
ab~v!52ReE d2q

~2p!2
DR~v,qW !H ^D&

]

]qb
^naD&

2^Dna&
]

]qb
^D&2 K Dna

]

]qb
D L J . ~4.6c!

Here,D R(v)5D A(2v) denotes the retarded interactio
propagator@see, i.e., Eq.~3.30!# and we introduce the shor
hand notation for the angular averaging

^aDb&[E dudu8

~2p!2
a~nW !D~nW ,nW 8;v,q!b~nW 8!,

^aDbDc&[E dudu8du9

~2p!3

3a~nW !D~nW ,nW 8!b~nW 8!D~nW 8,nW 9!c~nW 9!

for arbitrary functionsa,b. The functionD(nW ,nW 8;v,qW ) de-
scribes the classical motion of a particle on the energy s
eF in a magnetic field

F2 iv1 ivFnW qW 1vW cS nW 3
]

]nW
D GD~nW ,nW 8;v,qW !

1
1

t
@D~nW ,nW 8;v,qW !2^D~nW ,nW 8;v,qW !&n#52pd~nW nW 8

ˆ
!.

~4.7!

As we have already mentioned, the elastic part of
collision integral is nulled by a distribution function of th
form f @e1ew(rW)# for an arbitraryf. It is the inelastic term
that is responsible for establishing the local thermal equi
rium and it has the standard form

Stin$ f %5E dvE de1A~v! f ~e1!@12 f ~e12v!#

3$2 f ~e!@12 f ~e1v!#1@12 f ~e!# f ~e2v!%

~4.8a!

f ~e!5^ f ~ t;e,rW,nW !&n .

The kernelA(v) describes matrix elements for inelastic pr
cesses in both ballistic and diffusive limits. The explicit e
pression for this kernel is
21420
ll

e

-

A~v!5
2n

p E d2q

~2p!2
@Rê D&#2uDR~v,qW !u2, ~4.8b!

where^D& is given by the solution to Eq.~4.7! averaged over
angles.

The above equations are written for the interaction in
singlet channel only. In a situation where both triplet a
singlet channels are present, but the distribution funct
does not have a spin structure~no Zeeman splitting or non
equilibrium spin occupation present!, one has to replace

D R→D R1TrD̂T
R ~4.9!

in Eqs.~4.6! and

uD Ru2→uD Ru21Tr$D̂T
R@D̂T

R#†% ~4.10!

in Eq. ~4.8b!.
Equations~4.2!–~4.8! constitute the complete system o

transport equations with the leading interaction correctio
taken into account. They may be used to study both lin
and nonlinear response. We reiterate that they do not inc
effects of electron-hole asymmetry and in this form can
produce finite thermopower. The Hall effect, the therm
conductivity, and energy relaxation, however, are includ
and will be studied in a subsequent publication.14 In the fol-
lowing subsection we apply the kinetic equation approach
study the interaction correction to the conductivity at inte
mediate and low temperatures and reproduce the results
tained in Sec. III by means of diagrammatic technique. T
reason for doing so is to show how the kinetic equat
works and to demonstrate explicitly that both approaches
equivalent.

Closing our description of the structure of the kine
equation, we discuss the range of its applicability. Any
netic equation implies that the distribution function chang
slowly on the spatial scale of the Fermi wavelengthlF and
on the time scale 1/eF . In our case, the conditions are mo
restrictive. First, in the interaction correction to the elas
collision integral we take into account only the effect of t
interaction on the zeroth and first angular harmonics of
distribution function. This implies that the equation gives t
correct description for the interaction effects on the cond
tivity and diffusion, whereas it is not correct for descriptio
of the quantities involving higher angular harmonics. Se
ond, we made a gradient expansion in Eq.~4.5a! and only
took into account terms linear in the electric field. This im
plies that the distribution function changes slowly on t
spatial scaleLT5min@\vF /T,vF(\t/T)1/2#, and on the time
scale of the order of\/T. The electric field expansion is
justified by the conditioneELT!T. One can check that both
these conditions are satisfied, if the energy relaxation tim
much longer than the time for the elastic collisions. We a
did not include quantum effects of the magnetic field. This
justified atvc!max(T/\,t21).

Finally, the interaction part of Eq.~4.4! is calculated in the
first loop approximation. It means, that it has to be cons
ered as the first order correction to 1/t. If one is interested in
the next order interaction correction to the elastic part, o
4-19
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should take into account the second loop correction, whic
not considered in the present paper. On the contrary, the
elastic part~4.8! can be considered in all orders to find th
zero angular momentum part of the distribution function;
only assumption here is the validity of the Fermi-liquid d
scription at energies smaller thaneF .

B. Conductivity calculation

In order to calculate the conductivity at zero magne
field vc50 we look for the solution of Eqs.~4.2!–~4.4! in
the form

f ~nW ,e!5 f F~e!1nW GW ~e!, ~4.11!

where f F(e)51/(ee/T11) is the Fermi distribution function
~all the energies are counted from the Fermi level!, andG is
the quantity to be found and it is proportional to the elect
field.

We substitute Eq.~4.11! into Eqs.~4.2!, ~4.4!, ~4.5!, and
~4.8!. The inelastic part of the collision integral@see Eq.
~4.8!# obviously vanishes, as effects of the heating are p
portional to at least the second power of the electric field.
a result, we obtain an equation forG:

evFEa

] f F~e!

]e
52

Ga~e!

t
2

4

tE dv

2p
@K1

ab~v! f F~e2v!

3Gb~e!1K0
ab~v! f F~e!Gb~e2v!#

2
4 f F~e!

t E dv

2p
L0

ab~v!eEb

]

]e
f F~e2v!.

~4.12!

We solve Eq.~4.12! by iterations. As usual for kinetic equa
tions, the solution is expressed in terms of the unpertur
distribution function f F(e) and the kernels, which in this
case are given by Eq.~4.6!:

Ga~e!52evFtEa

] f F~e!

]e
14evFtE dv

2p FK1
ab~v! f F~e2v!

3
] f F~e!

]e
1K0

ab~v! f F~e!
] f F~e2v!

]e GEb

24 f F~e!E dv

2p
L0

ab~v!eEb

]

]e
f F~e2v!. ~4.13!

Substituting Eqs.~4.13! into Eq.~4.11! and the result into Eq
~4.1b!, we integrate overe and find the conductivity

s5sD1ds, ~4.14a!

ds

sD
5E

2`

` dv

p

]

]v S v coth
v

2TD FK0~v!2K1~v!2
L0~v!

vFt G ,
~4.14b!

where the Drude conductivity issD5e2nvF
2t/2. Here we

used the fact that in the absence of the magnetic field all
kernels are diagonal,Ki

ab5dabKi , L0
ab5dabL0. We also

used the identities
21420
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2E
2`

`

de f F~e!
] f F~e2v!

]e
5211

]

]v S v coth
v

2TD ,

E
2`

`

dvKi~v!5E
2`

`

dvL0~v!50.

In order to derive explicit expressions for the kernelsKi
andL0 we have to solve Eq.~4.7! for the functionD in the
absence of the magnetic field. The result can be written

D~nW ,nW 8;v,qW !52pd~nW nW 8
ˆ

!D0~nW ,v,qW !

1D0~nW ,v,qW !D0~nW 8,v,qW !
C

Ct21
,

~4.15!

whereD0 denotes the solution of Eq.~4.7! without the an-
gular averaged term~and in the absence of the magne
field!

D0~nW ,v,qW !5
1

2 iv1 ivFnW qW 11/t
.

Here we used the short-hand notation

C5A~2 iv11/t!21vF
2q2,

which is similar to the notationS used in Sec. III@in fact,
C5S* , see Eq.~3.9b!#. Substituting Eq.~4.15! into Eqs.
~4.6a!–~4.6c! and performing the angular integration we a
rive to

K1~v!52ImE qdq

4p
D R~v,q!

3H 1

vF
2q2 S C2~2 iv11/t!

C21/t D 2

1
C2~2 iv11/t!

C~C21/t!2 J ,

~4.16a!

K0~v!5ImE qdq

4p
D R~v,q!

3H C2~2 iv11/t!

C~C21/t!2
1

@C2~2 iv11/t!#2

C~C21/t!

1

vF
2q2J ,

~4.16b!

L0~v!

vFt
52ImE qdq

4p
D R~v,q!

3H 3

2t

vF
2q2

C3~C21/t!2
1

vF
2q2

C3

1/t2

~C21/t!3J .

~4.16c!

Together with the conductivity correction Eq.~4.14b! the
above expressions Eq.~4.16! are identical to Eq.~3.26! ob-
tained in Sec. III by means of the standard perturbat
4-20
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theory. Thus the kinetic equation approach is complet
equivalent to such diagrammatic calculation.

Integration over the wave vectorq requires the knowledge
of the interaction propagator. Substituting Eq.~3.30! for the
singlet channel and Eq.~3.40! for the triplet channel and
performing the straightforward integration we arrive to t
results in Sec. II B.

C. Derivation of the kinetic equation

In this section we derive the kinetic equation discussed
Sec. IV A. For simplicity we show the derivation for the ca
of the singlet channel interaction Eq.~3.17!. The case of the
triplet channel can be treated in the same manner with m
differences~introduction of extra spin indices! described in
the end of this section. To keep the discussion at the s
level as in Sec. III, we treat the Fermi-liquid parameterFr in
Eq. ~3.17! as a constant, similar to our treatment of the trip
channel in Sec. III E.

1. Keldysh formalism

Here we summarize the results originally obtained
Keldysh28 that enable us to calculate correlation functions
any nonequilibrium distribution. Let us first consider
Green’s function of electrons before disorder averaging. T
electron-electron interaction is described by the Hamilton
Eq. ~3.17!. In the path-integral formulation it can be deco
pled from fermion operators using an auxiliary bosonic fie
f. Then the Green’s function can be written as

Ĝ~x1 ,x2!5E @Df#Ĝ~x1 ,x2uf!e2 iSB[f] , ~4.17!

with the action defined as

SB@f#5E
2`

`

dtd2r H 1

2
fTV0

21s3fJ 1 i ln Z@f#,

~4.18!

where 2V0 is the ~bare; following Eq.~3.17! V05V(q)
1F0

r/n) electron-electron interaction propagator andZ is the
partition function

Z@f#5^TCe2 iSF[f,c]& ~4.19!

SF@f,c#5E
2`

`

dtd2r $c†faĝac%, ~4.20!

where ŝz5diag(21,1) is the Pauli matrix in the Keldysh
space.

In the above expressions all the fields are defined on
Keldysh time contour shown in Fig. 22. In particular, th

FIG. 22. The Keldysh contour.
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fermionic fieldsc† and c ~as well as the bosonic fieldf)
can be treated as doublets

c5S c1

c2
D , ~4.21!

where we adopt the notation that fields with a2 (1) sub-
script ~also referred to by Greek letters in this section! reside
on the lower~upper! part of the contour on Fig.~22!. The
time dependent fermionic operatorsc are taken in the inter-
action represntation

2 i ] tc~ t !5@Ĥ1~ t !;c~ t !#,

whereĤ1 is the one-electron Hamiltonian which includes t
static disorder potential as well as external fields.

Consequently, the Green’s function in Eq.~4.17! is a 2
32 matrix. Time ordering along the contour is denoted
Eq. ~4.19! by TC . Matricesĝa in Eq. ~4.20! are defined as

ĝ15S 21 0

0 0D , ĝ25S 0 0

0 1D .

The Green’s functionĜ(x1 ,x2uf) in Eq. ~4.17! is given
by

Ĝ~x1 ,x2uf!5
1

Z@f#
^TCca

†~x1!cb~x2!e2 iSF[f,c]&.

~4.22!

Here, as well as in Eq.~4.19! the angular bracketŝ•••&
denote quantum-mechanical averaging. In this section
will use the short hand notation

xi[~ t i ,rW i !.

The bosonic action Eq.~4.18! can be treated in the sadd
point approximation

^e2 iSB[f]&5e2 iF [f] , ~4.23a!

F@f#5F@f50#1
1

2
fTP̂f1O~f3!, ~4.23b!

whereP is the electronic polarization operator, defined a

Pab~x1 ,x2!5
d2F

dfa~x1!dfb~x2!
U

f50

. ~4.24!

The quadratic expansion in Eq.~4.23b! is justified, provided
that the fieldsf are slowly changing on the scale muc
larger thanlF .

Let us now average the Green’s function Eq.~4.17! over
disorder:

^Ĝ~x1 ,x2!&dis5E @Df#^Ĝ~x1 ,x2uf!&dise
2 i ^SB[f] &dis,

~4.25!

where ^•••&dis hereafter denotes averaging over disord
Here we average the electronic Green’s function Eq.~4.22!
4-21
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separately from the bosonic action Eq.~4.23!. This approxi-
mation means that we neglect correlations between me
copic fluctuations of the polarizability in Eq.~4.23b! and the
fermionic operators in Eq.~4.22! ~which describe the motion
of conduction electrons!. This is the same approximation w
used in Sec. III. It is justified by the well known fact th
mesoscopic fluctuations are smaller than average quan
by a factor of the order 1/(EFt)2.

It is convenient31 to rotate the Keldysh basis as follows

Ĝ→ 1

2
ŝxS 1 21

1 1 D ĜS 1 1

21 1D . ~4.26!

In the new basis the Green’s function Eq.~4.22! has the form

Ĝ~x1 ,x2uf!5S GR~x1 ,x2uf! GK~x1 ,x2uf!

GZ~x1 ,x2uf! GA~x1 ,x2uf!
D .

~4.27!

After the averaging over the bosonic field and over the d
order according to Eq.~4.25! the entries in Eq.~4.27! ac-
quires the following meaning/where after integrating ov
the bosonic fieldf the diagonal elementsGR(A) become the
retarded~advanced! Green’s functions of the electron syste

^GR~ t1 ,t2!&52 ih~ t12t2!^c~ t1!c†~ t2!1c†~ t2!c~ t1!&,

^GA~ t1 ,t2!&5 ih~ t22t1!^c~ t1!c†~ t2!1c†~ t2!c~ t1!&,

whereh(t) is the Heaviside step function. The lower diag
nal element vanishes due to the causality,

^GZ~ t1 ,t2!&50,

even before the disorder averaging. Finally, the upper
diagonal element~the so-called Keldysh Green’s function! is
related to the one particle density matrix

^GK~ t1 ,t2!&52 i ^c~ t1!c†~ t2!2c†~ t2!c~ t1!&,
~4.28!

the quantum mechanical averaging is performed with an
bitrary distribution function to be found from the solution
the kinetic equation.

The bosonic field in the rotated basis has the two com
nents

f1(2)5
1

2
~f16f2! ~4.29!

which are described by the propagators

^f1~ t1 ,rW1!f1~ t2 ,rW2!&5
i

2
D K~ t1 ,t2 ;rW1 ,rW2!, ~4.30a!

^f1~ t1 ,rW1!f2~ t2 ,rW2!&5
i

2
D R~ t1 ,t2 ;rW1 ,rW2!, ~4.30b!

^f2~ t1 ,rW1!f1~ t2 ,rW2!&5
i

2
D A~ t1 ,t2 ;rW1 ,rW2!, ~4.30c!

^f2~ t1 ,rW1!f2~ t2 ,rW2!&50. ~4.30d!
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The coupling Eq. ~4.20! between the fermionic and
bosonic fields in the rotated basis has the form

c†faĝac→c†S f1 f2

f2 f1
Dc. ~4.31!

The propagators Eq.~4.30! are solutions of the Dyson equa
tions

D̂~1,2!5D̂0~1,2!1E d3d4D̂0~1,3!P̂~3,4!D̂~4,2!

~4.32!

D̂5S D R D K

0 D AD , P̂5S PR PK

0 PAD
and we introduced the short hand notation (i )[(t i ,rW i). The
bare interaction propagators are

D 0
R5D 0

A52@V~r12r2!1F0
rd~r12r2!#d~ t12t2!,

D 0
K50. ~4.33!

Any classical external field takes identical values on the t
branches of the contour and, hence, in the rotated basis
only a diagonal component.

The matrix Green’s function~4.27! satisfies the equation

H i ] t1
1EF2

@2 i¹W r 1
1AW ext~x1!#2

2m
2f̂~x1!2U~rW1!

2wext~x1!J Ĝ~x1 ,x2uf!5 Îd~x12x2!, ~4.34!

where U(rW) is the potential due to the static disorde
AW ext(x1) andwext(x1) are the vector and scalar potential d
to the external electric and magnetic fields.

eEW 5] tAW ext2¹W wext, eBW 52
1

c
¹W 3AW ext. ~4.35!

Equation~4.34! is the basis for the further consideration. O
can perform the disorder average in Eq.~4.34! in the leading
in 1/(EFt) approximation, which amounts to summatio
over all the nonintersecting impurity lines one obtains

Hi]t1
1EF2

@2i¹W r1
1AW ext~x1!#2

2m
2f̂~x1!2wext~x1!J

3Ĝ~x1 ,x2uf!

5 Îd~x12x2!1E dx3Ŝ~x1 ,x3uf!Ĝ~x3 ,x2uf!; ~4.36!

Ŝ~x1 ,x2uf!5
d~r 12r 2!

2pnt
Ĝ~x1 ,x2uf!.

Equation ~4.36! allows for semiclassical treatment intro
duced in Refs. 29,30, and described in great details in R
31. Since we have already averaged the equation of mo
4-22
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over disorder, the semiclassical approximation now amou
to averaging the Green’s functionĜ(x1 ,x2uf) over the dis-
tance from the Fermi surface. This is done in two steps:

Ĝ~ t1 ,t2 ;pW ;RW !5E d2reiPW •rWĜ~x1 ,x2uf!, ~4.37!

rW5rW12rW2 ; RW 5
1

2
~rW11rW2!,

PW 5pW 2
1

2
@AW ext~ t1 ,RW !1AW ext~ t2 ,RW !#;

ĝ~ t1 ,t2 ;nW ,rW !5
i

pE2`

`

djĜS t1 ,t2 ;nW FpF1
j

vF
G ;rW D . ~4.38!

Since we follow the avenue of Ref. 31, we will skip furth
intermediate steps, and use the semiclassical equation wr
in the next subsection.

2. Eilenberger equation

The dynamics of the electron matrix Green’s function
then described by the Eilenberger equation29

F ]̃ t1vFnW ¹W̃ 1vW cS nW 3
]

]nW
D G ĝ5

ĝ^ĝ&n2^ĝ&nĝ

2t
,

~4.39!

where angular averaging is defined as before

^•••&n5E du

2p
•••, nW 5~cosu,sinu!,

and the covariant derivatives in Eq.~4.39! are defined as

]̃ tĝ5] t1
ĝ1] t2

ĝ1 i ŵ~ t1 ,r !ĝ2 i ĝŵ~ t2 ,r !, ~4.40a!

¹W̃ ĝ5¹W ĝ1 iAŴ ~ t1 ,rW !ĝ2 i ĝAŴ ~ t2 ,rW !. ~4.40b!

Here ĝ is a matrix in Keldysh space,

ĝ~ t1 ,t2 ;nW ,rW !5S gR gK

gZ gAD , ~4.41!

and we will suppress the coordinate and the time argum
unless otherwise is stated. A product of such matrices sh
be understood as a matrix product in Keldysh space an
convolution in time:

@ ĝ~nW ,rW !ĝ~nW 1 ,rW !# i j

[E
2`

`

dt3(
k

@ ĝ~ t1 ,t3 ;nW ,rW !# ik@ ĝ~ t3 ,t2 ;nW 1 ,rW !#k j ,

~4.42!

and solutions of the homogeneous equation~4.39! are subject
to the constraints
21420
ts

ten

ts
ld
a

ĝ~nW ,rW !ĝ~nW ,rW !5 Î K, E
2`

`

dt Tr ĝ~ t,t;nW ,rW !50,

~4.43!

where

@ I K# i j 5d i j d~ t12t2!.

The scalar and vector potentials in Eq.~4.40! have the fol-
lowing structure in the Keldysh space

AŴ ~ t,rW !5S AW ext~ t,rW ! 0

0 AW ext~ t,rW !
D , ~4.44!

ŵ~ t,rW !5S wext~ t,rW !1f1~ t,rW ! f2~ t,rW !

f2~ t,rW ! wext~ t,rW !1f1~ t,rW !
D ,

wherewext andAW ext are the external~classical! potentials due
to the electric fieldEW ,

eEW 5] tAW ext2¹W wext ~4.45!

acting on the electron system, andf1,2(t,rW) are the auxiliary
fluctuating fields decoupling the interaction in the sing
channel. Because the singlet channel describes proce
with small momentum transfers~smaller thanq*, see Sec.
III B !, the fieldsf1,2(t,rW) vary slowly on the scale of the
1/q*.

The condition~4.30d! enforces causality of the physica
response functions. It is worth noticing that the decoupl
of interaction can be performed also using a fluctuating v
tor potential; our choice is strictly a matter of taste.

In this formalism any observable quantity described
one electron operatorO( p̂, r̂ ) is given by @see Eqs.~4.28!
and ~4.38!#

O~ t,rW !52nE du

2p
O~pFnW ,rW !

3 lim
t1→t

Fp2 ^gK~ t1 ,t;nW ,rW !&f1wext~ t,rW !G ,
~4.46!

where^•••&f stands for averaging over both auxiliary field
f1,2 fluctuating according to Eqs.~4.30!. The last term in
brackets is a consequence of the ultraviolet anomaly, an
form is enforced by the requirement of the gauge invarian

Finally, the electronic polarization operators are det
mined @see Eqs.~4.24! and ~4.38!# as variational derivatives
of the solutions to the Eilenberger equation~4.39!:

PR~1,2!5PA~2,1!5nE du

2p
S d121

p^dgK~ t1 ,t1 ;nW ,rW1!&f

2df1~ t2 ,r2!
D ,

~4.47!
4-23
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PK~1,2!5npE du

2p

3
^dgK~ t1 ,t1 ;nW ,rW1!1dgZ~ t1 ,t1 ;nW ,rW1!&f

2df2~ t2 ,rW2!
.

3. Derivation of the kinetic equation

Our goal now is to obtain an equation for the Keldy
function averaged over the fluctuating field

^gK(t1 ,t1 ;nW ,rW1)&f . It is this quantity that determines phys
cal observables, see Eq.~4.46!. We will do this using the
noncrossing approximation for bosonic propagators~i.e., the
first loop approximation for the collision integral!, see Fig.
16. This approximation is justified provided that the resulti
dynamics for the electrons~characterized by timete! is slow
in comparison with motion of relevant bosonic modeTte
@1.

To do so, we notice that only two components of t
matrix ĝ are independent, and the other two are fixed by
constraint ~4.43!. For our purposes, we choose to fix th
diagonal components

gR5A12gKgZ; gA52A12gZgK, ~4.48!

where the square root should be understood in oper
sense: as a sum of its Taylor series, with all arising produ
hereafter being time convolutions, similar to Eq.~4.42!. The
two remaining independent components of the Eilenber
equation have the explicit form

F ]̃ t1vFnW ¹W̃ 1vW cS nW 3
]

]nW
D GgZ

52 i @f1~ t1 ,rW !2f1~ t2 ,rW !#gZ2 if2~ t1 ,rW !gR

1 igAf2~ t2 ,rW !1
1

2t
@gZ^gR&n

2^gZ&ngR1gA^gZ&n2^gA&ngZ#, ~4.49a!

F ]̃ t1vFnW ¹W̃ 1vW cS nW 3
]

]nW
D GgK

52 i @f1~ t1 ,rW !2f1~ t2 ,rW !#gK2 if2~ t1 ,rW !gA

1 igRf2~ t2 ,rW !1
1

2t
@gK^gA&n2^gK&ngA1gR^gK&n

2^gR&ngK#, ~4.49b!

and we redefine the covariant derivatives Eq.~4.40! to in-
clude only the external scalar and vector potentials

] t̃g5] t1
g1] t2

g1 i @wext~ t1 ,r !2wext~ t2 ,r !#g, ~4.50!

¹W̃ g5¹W g1 i @AW ext~ t1 ,r !2AW ext~ t2 ,r !#g.
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Now we are prepared to derive the collision integral. W
notice that due to causalitŷgZ&f50 in all orders of the
perturbation theory. We separate slow and fast degree
freedom as follows:

gK5^gK&f1dgK ; gZ5dgZ , ~4.51!

where dg is the contribution fluctuating with the auxiliar
fields and we calculate it to first order inf. In the same
approximation Eq.~4.48! becomes

gR5d~ t12t2!2
1

2
gKdgZ,

gA52d~ t12t2!1
1

2
dgZgK ~4.52!

@expansion up to the second order indgZ is unnecessary
because terms of such kind vanish due to Eq.~4.30d!#.

We now substitute Eqs.~4.51! and~4.52! into Eqs.~4.49!
and obtain equations governing the behavior of the fluctu
ing parts

F ]̃ t1vFnW ¹W̃ 1vW cS nW 3
]

]nW
D GdgZ2

1

t
@dgZ2^dgZ&n#

522if2~ t1 ,r !d~ t12t2!, ~4.53a!

F ]̃ t1vFnW ¹W̃ 1vW cS nW 3
]

]nW
D GdgK1

1

t
@dgK2^dgK&n#

52if2~ t1 ,r !d~ t12t2!2 i @f1~ t1 ,r !2f1~ t2 ,r !#^gK&f

1
1

4t
@^gK&f^dgZ^gK&f&n2^^gK&n&fdgZ^gK&f#

2
1

4t
@^gK&fdgZ^^gK&n&f2^^gK&fdgZ&n^g

K&f#.

~4.53b!

Solutions to Eqs.~4.53! should be substituted into Eq
~4.49b! for the smooth part. Than the equation for the smo
part should be averaged over the fluctuating fieldsf1,2 with
the help of Eq.~4.30!. As a result

F ]̃ t1vFnW ¹W̃ 1vW cS nW 3
]

]nW
D G ^gK&f

5Stin$^gK&f%1Stel$^g
K&f%. ~4.54!

Here we separate the collision integrals into two contrib
tions. The physical meaning of such separation will be d
cussed shortly. The first, inelastic part has the structure

Stin$^g
K&f%~ t1 ,t2 ;nW ,rW !

52 i ^@f1~ t1 ,rW !2f1~ t2 ,rW !#dgK~ t1 ,t2 ;nW ,rW !&f .

~4.55!

The second, elastic contribution has the form
4-24
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Stel$^g
K&f%~ t1 ,t2 ;nW ;rW !

5
1

t
@^^gK~ t1 ,t2 ;nW ;rW !&f&n2^gK~ t1 ,t2 ;nW ;rW !&f#

1E dt3E du1

2p

3F ^^gK~ t1 ,t3 ;nW 1 ,rW !&fFA~ t3 ,t2 ;nW 1 ,nW ;rW !

2^^gK~ t1 ,t3 ;nW ,rW !&fFA~ t3 ,t2 ;nW ,nW 1 ;rW !#

1Edt3E du1

2p
@FR~ t1 ,t3 ;nW ,nW 1 ;rW !^^gK~ t3 ,t2 ;nW 1 ,rW !&f

2FR~ t1 ,t3 ;nW 1 ,nW ;rW !^^gK~ t3 ,t2 ;nW ,rW !&f#, ~4.56!

where the first term is just the ordinary impurity scatteri
and the remaining terms characterize interaction effects.
kernels in Eq.~4.56! are defined as

FR~ t1 ,t2 ;nW ,nW 1 ;rW !

5
1

4tE dt3^dgK~ t1 ,t3 ;nW ,rW !@dgZ~ t3 ,t2 ;nW 1 ,rW !

2dgZ~ t3 ,t2 ;nW ,rW !#&f ,

FA~ t1 ,t2 ;nW ,nW 1 ;rW !5
1

4tE dt3^@dgZ~ t1 ,t3 ;nW 1 ,rW !

2dgZ~ t1 ,t3 ;nW ,rW !#dgK~ t3 ,t2 ;nW ,rW !&f .

~4.57!

Equations~4.54!, ~4.55!, ~4.56!, ~4.53!, ~4.30!, and ~4.32!
constitute a closed system of kinetic equations. Although s
ficient for description of interaction effects in disorder sy
tems, these equations are inconvenient for analytical ca
lations because the expressions for the collision integral
nonlocal in space and time. To simplify further calculatio
we will use the assumption that̂gK(t1 ,t2 ;n,r )&f is a
smooth function so that a gradient expansion will be p
sible.

Before embarking on such calculation we pause to disc
the physical distinction between the elastic~4.56! and inelas-
tic ~4.55! collision terms. One immediately notices from E
~4.56! that

E du Stel~ t1 ,t2 ;nW ;rW !50, ~4.58!

for any t1 andt2. This indicates that this part of the collisio
integral preserves the number of particles on a given ene
shell @see below for explicit connections between time re
resentation and energy representation Eq.~4.65!#.

The inelastic term~4.55! does not vanish after angula
averaging. Therefore this part does promote electrons
tween energy shells. However, we notice that

Stin$^g
K&f%~ t1 ,t1 ;nW ,r !50, ~4.59!
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for any directionnW . Taking coinciding time arguments i
equivalent to integrating over the whole energy spectr
@see Eq.~4.65!#, so that not only the total number of particle
is conserved, but the total number of particles moving alo
a given directionnW is conserved~i.e., inelastic forward scat-
tering!.

Let us now perform the actual calculation of the collisio
integrals. We solve Eq.~4.53a! and obtain

dgZ~ t1 ,t2 ;nW ,rW !52id~ t12t2!E dr1dt3f2~r1 ,t3!

3E du8

2p
D~ t32t1 ,nW 8,nW ;rW1 ,rW ! ~4.60!

D~ t;nW ,nW 8;rW1 ,rW2!5E dvd2q

~2p!3
eiqW (rW12rW2)2 ivtD~nW ,nW 8;v,qW !,

where the diffuson propagatorD is defined in Eq.~4.7!.
To simplify the analytic solution of Eq.~4.53b!, we as-

sume without loss of generality that^gK&f varies slowly on
the spatial scaleLT5vFmin(1/T,At/T), and also a slow
function of t11t2 on the time scale.1/T. These assump
tions are consistent with the first loop approximation we
ready invoked.

In what follows we will keep only the zeroth and firs
angular harmonics~which is consistent with assumptio
about the spatial smoothness! in the direction dependence o
the Keldysh function

^g~ t1 ,t2 ;nW ,rW !&f'^g~ t1 ,t2 ;nW ,rW !&n

12nW ^nW 8g~ t1 ,t2 ;nW 8,rW !&n8 . ~4.61!

This approximation does not affect results for any relev
quantities. From now on we will suppress the explicit sign
averaging over the fluctuating fields because we will not
dealing with nonaveraged quantities anymore.

We now substitute Eq.~4.61! into the right-hand side of
Eq. ~4.53b! and obtain

dgK~ t1 ,t2 ;nW ,rW !5dg1
K~ t1 ,t2 ;nW ,rW !1dg2

K~ t1 ,t2 ;nW ,rW !.
~4.62!

The first term in Eq.~4.62! is proportional to the fieldf1 and
gives contributions to both the elastic and the inelastic p
of the collision integral. To obtain nonvanishing contributio
to the latter we have to do each one of the following:~i! take
into account the first angular harmonic,~ii ! perform the first
order gradient expansion,~iii ! expand up to the first order in
external fieldsAW ext. The result is
4-25
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dg1
K~ t1 ,t2 ;nW ,rW !

52 i E dt@f1~rW1 ,t12t !2f1~rW1 ,t22t !#E dnW 8

2p

3D~ t,nW ,nW 8;rW,rW1!$^gK~ t12t,t22t;nW 1 ,rW !&nW 1
~4.63a!

12nW 8^nW 1gK~ t12t,t22t;nW 1 ,rW !&nW 1
~4.63b!

1~rW12rW !¹W̃ ^gK~ t12t,t22t;nW 1 ,rW !&nW 1
%,

~4.63c!

where the covariant derivative is defined in Eq.~4.50! and
we neglected higher order derivatives of the external fie
Expansion in the time coordinatet11t2 ~using the covariant
derivative ]̃ t) is not necessary because it produces a ne
gible correction to the inelastic collision integral and do
not affect the elastic one.

The second term in the right-hand side of Eq.~4.62! is
proportional to the fieldf2, and according to Eqs.~4.57! and
~4.30d! it does not contribute to the elastic collision integr
Therefore, it is sufficient to keep only the zeroth angu
component and neglect gradient terms at all. This yields

dg2
K~ t1 ,t2 ;nW ,rW !

5E du8

2p

du9

2p E drW1dtD~ t,nW ,nW 8;rW,rW1!

3H 2if2~rW1 ,t12t !d~ t12t2!

1
i

t
^g~ t12t,t3 ;nW 1 ,rW !&nW 1

^g~ t3 ,t22t;nW 1 ,rW !&nW 1

3@^D~ t42t3 ,nW 9,nW 1 ;rW2 ,rW1!&nW 1

2D~ t42t3 ,nW 9,nW 8;rW2 ,rW1!#f2~rW2 ,t4!J . ~4.64!

As we already mentioned,g(t1 ,t2) has a much faster de
pendence on the differencet12t2 then on the sumt11t2.
Therefore it is more convenient to use a temporal trans
mation of the Green’s function

gK~ t1 ,t2 ;nW ,rW !5E de

2p
gS t11t2

2
,e;nW ,rW Dei e(t22t1),

~4.65!

which defines the precise notion of energye in this context.
We introduce the same transformation for the propagator
auxiliary fields~4.30!

D~ t1 ,t2!5E dv

2p
DS t11t2

2
,v Deiv(t22t1) ~4.66!

The transformed functions have the symmetry prope
~hereafter we omit theK superscript for brevity since we ar
only dealing with the Keldysh function!
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g~ t,e!52g~ t,2e!, ~4.67!

D K~ t,v;rW1 ,rW2!5D K~ t,2v;rW2 ,rW1!,

D R~ t,v;rW1 ,rW2!5D A~ t,2v;rW2 ,rW1!.

Now, we are ready to obtain the explicit form of the co
lision integral. We start with the inelastic contribution an
perform the following three steps:~1! substitute Eq.~4.63a!
and ~4.64! into Eq. ~4.8a!; ~2! average over the fieldsf1,2
with the help of Eq.~4.30!; ~3! perform the temporal trans
formation~4.65! of the result. As a result we obtain with th
help of Eqs.~4.66! and ~4.67! the following form of the
collision integral:

Stin$g
K%~ t,e;rW !52

i

2E d2r 1E dv

2p
D K~ t,v;rW,rW1!

3@^D~v;rW,rW1!&1^D~2v;rW1 ,rW !&#

3@^g~ t,e;nW ,rW !&nW2^g~ t,e2v;nW ,rW !&nW #

1
i

2tE drW1drW2E dv

2p
@D R~ t,v;rW1 ,rW2!

2D A~ t,v;rW2 ,rW1!#@^D~v;rW,rW1!&^D

~2v;rW,rW2!&2^D~v;rW,rW1!D~2v;rW,rW2!&#

3^g~ t,e1v;nW ,rW !&nW^g~ t,e;nW ,rW !&nW , ~4.68!

where the angular averaging of the diffusons is defined a
Eqs.~4.6!.

Now, we have to express the bosonic propagator in te
of the fermionic polarization operators. The polarization o
erators are given by Eqs.~4.47!, where we now substitute
Eqs.~4.60!, ~4.63a!, and~4.64!. After the temporal transfor-
mation ~4.65! we find

PR~v;t,rW1 ,rW2!5PA~2v;t,rW2 ,rW1!

5nFd~rW12rW2!1
i

4
^D~v;rW1 ,rW2!&

3E de@^g~ t,e;nW ,rW !&nW

2^g~ t,e2v;nW ,rW !&nW #G ~4.69a!

5n@d~rW12rW2!1 iv^D~v;rW1 ,rW2!&#,
~4.69b!
4-26
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PK~ t,v;rW1 ,rW2!5
in

4tE drW@^D~v;rW,rW1!&^D~2v;rW,rW2!&

2^D~v;rW,rW1!D~2v;rW,rW2!&#

3E de@^g~ t,e1v;nW ,rW !&nW

3^g~ t,e;nW ,rW !&nW24#. ~4.70!

The last step in the calculation of the interaction propaga
is to solve Eq.~4.32! with the polarization operators Eq
~4.69a!. This givesD R,A in the form given by Eq.~3.29a!
and for the Keldysh component we obtain

D K5D RPKD A. ~4.71a!

Also we can relate the difference of the retarded and
vanced propagators which enters the collision integral
~4.68! to the polarization operators

D R2D A5D R@PR2PA#D A. ~4.71b!

To obtain the final form of the inelastic part of the col
sion integral Eqs.~4.8! we need to substitute Eq.~4.71! into
Eq. ~4.68!, while using Eq.~4.69a! for PR2PA. In addition,
we note that

2

t
@^D~v;q!D~2v;2q!&2^D~v;q!&^D~2v;2q!&#

5^D~v;q!&1^D~2v;2q!&.

Finally, we introduce the gauge invariant distribution fun
tion f as

f ~e,t;nW ,rW !5
1

2
2

1

4
g~e1wext~rW !,t;nW ,rW ! ~4.72!

and obtain Eqs.~4.8!.
The calculation of the elastic part of the collision integ

is completely analogous. We substitute Eqs.~4.63a!–~4.63c!
and Eq.~4.60! into Eqs.~4.57! and average over fluctuatin
fields with the help of Eq.~4.30!. After the temporal trans-
formation ~4.65! we find

FR~e,t;nW 1 ,nW 2 ,rW !

5FA~e,t;nW 1 ,nW 2 ,rW !*

5
i

4tE dv

2pE drW1drW2D R~v,rW1 ,rW2!E dnW 3

2p

dnW 4

2p

3@D~v;nW 3 ,nW 2 ,rW2 ,rW !2D~v;nW 3 ,nW 1 ,rW2 ,rW !#

3D~v;nW 1 ,nW 4 ,rW,rW1!$^g~ t,e2v;nW 8,rW !&nW 8 ~4.73a!
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12nW 4^nW 8g~ t,e2v;nW 1 ,rW !&nW 8 ~4.73b!

1~rW12rW !S ¹W 1
]AW ext

]t

]

]e
D ^g~ t,e2v;nW 8,rW !&nW 8%.

~4.73c!

Deriving Eq. ~4.73! we use the fact that*dvD R(v)D(v)
50.

We substitute Eqs.~4.73! and ~4.61! into Eq. ~4.58!. We
expand the result into angular harmonics. The zeroth ang
harmonic vanishes because of the conservation law~4.58!,
and the first harmonic gives~we write only interaction cor-
rection to the collision integral!

Stel~ t;e;rW !

5
2

tE dv

2p
@naK1

ab~v!^nbg~ t;e,rW,nW !&n

3^g~ t;e2v,rW,nW !&n ~4.74a!

1naK0
ab~v!^nbg~ t;e2v,rW,nW !&n^g~ t;e,rW,nW !&n

~4.74b!

1
naL0

ab~v!

2
^g~ t;e,rW,nW !&n

3S ¹b1
]@Aext#b

]t

]

]e D ^g~ t;e2v,rW,nW !&n]. ~4.74c!

Here the kernelsK andL are given by Eq.~4.6!. Each labeled
separately term in Eqs.~4.74! corresponds to ones in Eqs
~4.73! and in Eqs.~4.63! so the origin of terms can be easi
traced.

Finally, we use the gauge invariant distribution functio
~4.72! instead ofg and we arrive to Eqs.~4.5!. Closing this
section, we remark that the above treatment can be ea
generalized to include other channels as well as the hig
angular harmonics of the Fermi-liquid constant. For the la
task one has to introduce angle dependent auxiliary fie

f1,2(rW,nW ,t) and useF0
r→Fr(nW 1nW 2

ˆ ).
The triplet channel requires introduction of the coupli

of the form hW 1,2(rW,t)sŴ , where ŝ j , j 5x,y,z are the Pauli
matrices in the spin space, andhW 1,2(rW,t) are the auxiliary
fields. Accordingly, each bosonic propagator from Eq.~4.30!
becomes a 333 matrix. Equation~4.32! retains the same
form with the matrix multiplication in Keldysh and spi
spaces implied. Equation~4.33! becomes

@D 0
R# i j 5@D 0

A# i j 52F0
sd i j d~rW12rW2!d~ t12t2!,

~4.75!

and Eq.~4.47! is modified to
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GÁBOR ZALA, B. N. NAROZHNY, AND I. L. ALEINER PHYSICAL REVIEW B 64 214204
P i j
R~1,2!5P j i

A~2,1!5nE du

2p S d12d j i 1
p^Trs idgK~ t1 ,t1 ;nW ,rW1!&f

4dh1
j ~ t2 ,rW2!

D , ~4.76!

PK~1,2!5pn5E du

2p

^Trs idgK~ t1 ,t1 ;nW ,rW1!1Trs idgZ~ t1 ,t1 ;nW ,rW1!&f

4dh2
j ~ t2 ,rW2!

,
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where trace is performed in spin space.
Further derivation consists of a repetition of the steps

scribed in this section, and in the absence of the spin st
ture of the distribution function,f i j 5d i j f , results in Eqs.
~4.9! and ~4.10!. The spin-orbit interaction or Zeeman spli
ting by external magnetic field slightly changes the resu
but we will postpone the corresponding analysis until a
ture publication.14

Finally, the Cooper channel interaction~3.21! can be
treated in the same manner by introducing auxiliary fields
the Gorkov-Nambu space. We will not discuss this quest
further in the present paper.

V. CONCLUSIONS

This paper is an attempt to consistently describe the ef
of electron-electron interaction on longitudinal conductiv
of disordered 2D electron gas atT!EF . Our results are
valid for an arbitrary relation betweenT and \/t and are
summarized in Sec. II B. At low temperaturesTt!\ we
reproduce the logarithmically divergent Altshuler-Arono
correction. At higher temperaturesTt.\, i.e., in the ballistic
region, we found the linear temperature dependence in
cord with Refs. 6,27. However, even the sign of the slope
this dependence depends on the strength of electron-ele
interaction in contradiction to the results of Refs. 6,27~see
Secs. II and III F for discussions of this discrepancy!.

We deliberately did not compare the theory with expe
mental data, postponing this comparison until the publicat
of theoretical results for Hall conductivity and magnet
resistance in the parallel field. For comparison with data
tained for Si-MOSFET samples the valley degeneracy sho
be taken into account@the degeneracy may increase the n
merical factor in Eq.~2.16c! by as much as a factor of 5 i
the case of low intervalley scattering#. We also relegate the
corresponding discussion to a separate publication.

Finally, we derived a kinetic equation to describe the
fect of electron-electron interaction at arbitraryTt. The ad-
vantage of this approach is that it turns out to be more c
venient for practical calculations of transport properties
magnetic field as well as thermal transport properties.
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APPENDIX

In this appendix we show in some detail the procedure
analytical continuation that leads to the expression for
interaction correction Eq.~3.3! to the conductivity in terms
of exact Green’s function of noninteracting disordered s
tem. The structure of the current correlator is

E
0

1/T

dt^Tt ĵ a~t! ĵ b~0!&eiVnt

2T(
en

JaG~ i en1 iVn!JbG~ i en! ~A1a!

2T(
en

JaG~ i en1 iVn!Gb~ i en1 iVn ,i en!G~ i en!,

~A1b!

where en5pT(2n11) is the fermionic Matsubara fre
quency,G( i en) is the exact Green’s function of the interac
ing system~diagrams 1 and 2 on Fig. 9 are the first ord
correction to the Green’s function!, Gb( i en1 iVn ,i en) is the
vertex function~not to be confused with disorder averag
interaction vertexG from Sec. III!. Diagrams 3 on Fig. 9 are
the first order correction to the vertex function. The curre
operator is defined in Eq.~3.6!. Note, that we omit the spatia
coordinates and the integration whenever it should cause
confusion.

We perform the analytic continuation in each term~A1a!
and~A1b! separately. In Eq.~A1a! we use the standard pro
cedure

T(
en

~••• !5
1

4p i EC
de tanh

e

2T
~••• !, ~A2!

where integration contour is shown on Fig. 23. We defo
this contour to formC1, use the facts that tanh(e1iVn)/2T
5tanhe/2T, andG(e6 i0)5GR(A)(e) and we obtain

M1~ iVn!5T(
en

JaG~ i en1 iVn!JbG~ i en!

5E de

4p i
tanh

e

2T
$JaG~e1 iVn!Jb@GR~e!

2GA~e!#1Ja@GR~e!2GA~e!#JbG~e2 iVn!%.

~A3!
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In the form ~A3! frequencyV is present only in functions
which may have singularities only on the real axis, so t
the required analytic continuation can be easily performe

M1~v!5M1~ iVn→v1 i0!

5E de

4p i
tanh

e

2T
$JaGR~e1v!Jb@GR~e!2GA~e!#

1Ja@GR~e!2GA~e!#JbGA~e2v!%. ~A4!

FIG. 23. Integration contours for analytic continuation of Eq
~A1!.
21420
t
:

Thus one obtains for the quantity entering into conductiv
~3.1!

N152 lim
v→0

ImS M1~v!

v D
5ReE de

2p
tanh

e

2T
JaGA~e!Jb]eG

A~e!

1E de

4p S d

de
tanh

e

2TD JaGR~e!JbGA~e!. ~A5!

Equation~A5! can be further simplified for the calculation o
the symmetric part of the conductivity

N1
sym5ReE de

8p S d

de
tanh

e

2TD @2JaGA~e!JbGA~e!

1JaGR~e!JbGA~e!1~a↔b!#. ~A6!

Term ~A1b! is considered analogously. We find similarly
Eq. ~A3!

.

btain

h in the
M2~ iVn!5T(
en

JaG~ i en1 iVn!Gb~ i en1 iVn ,i en!G~ i en!

5E de

4p i
tanh

e

2T
$JaG~e1 iVn!@Gb~e1 iVn ,e1 i0!GR~e!2Gb~e1 iVn ,e2 i0!GA~e!#

1Ja@GR~e!Gb~e1 i0,e2 iVn!2GA~e!Gb~e2 i0,e2 iVn!#G~e2 iVn!%. ~A7!

Using analytic properties of the Green’s function and the vertex function, we perform the analytic continuation and o

M2~v!5M2~ iVn→v1 i0!

5 lim
d1→01

lim
d2→01

E de

4p i
tanh

e

2T
$JaGR~e1v!@Gb~e1v1 id1 ,e1 id2!GR~e!2Gb~e1v1 i0,e2 i0!GA~e!#

1Ja@GR~e!Gb~e1 i0,e2v2 i0!2GA~e!Gb~e2 id2 ,e2v2 id1!#GA~e2v!%. ~A8!

In the appropriate frequency limit, we find

N252 lim
v→0

ImS M2~v!

v D5ReE de

2p
tanh

e

2T
JaGA~e!

]

]e1
U

e15e

@ lim
d1→01

lim
d2→01

Gb~e2 id2 ,e12 id1!GA~e1!#

1E de

4p S d

de
tanh

e

2TD JaGR~e!Gb~e1 i0,e2 i0!GA~e!. ~A9!

Further calculation requires specification of the form of the self-energy and the vertex function. We have to find bot
first order in interaction propagator, and expand Eq.~A6! up to the first order:
4-29
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dN1
sym5ReE de

4p S d

de
tanh

e

2TD @2JaGA~e!SA~e!GA~e!JbGA~e!1JaGR~e!JbGA~e!SA~e!GA~e!1~a↔b!#. ~A10!

For brevity we consider only the ‘‘Fock’’ contribution of Fig. 9~b!:

S~ i en!125T(
Vm

D12~ iVm!G12~ i en2 iVm!, ~A11!

whereD is the bosonic propagator, and we restored the notation for spatial coordinates. In the same order

@G~ i en ,i em!b#125T(
Vm

D12~Vm!@G~ i en2 iVm!JbG~ i em2 iVm!#12. ~A12!

After analytic continuation similar to that in the derivation of Eq.~A4! we find

S12
A ~e!52E dV

2p
coth

V

2T
@ ImD 12

A ~V!#G12
A ~e2V!1 i E dV

4p
tanh

e2V

2T
D 12

A ~V!@G12
A ~e2V!2G12

R ~e2V!# ~A13!

and for the vertex function we have two cases

lim
d1→01

lim
d2→01

Gb~e2 id2 ,e12 id1!52E dV

2p
coth

V

2T
@ ImD 12

A ~V!#@GA~e2V!JbGA~e12V!#121 i E dV

4p
tanh

e2V

2T
D 12

A ~V!

3@~GA~e2V!2GR~e2V!!JbGA~e12V!#121 i E dV

4p
tanh

e12V

2T
D 12

A ~V!

3@GR~e2V!Jb~GA~e12V!2GR~e12V!!#12, ~A14a!
nly
ra
ke
-

ion
Gb~e1 i0,e2 i0!

52E dV

2p
coth

V

2T
@ ImD 12

A ~V!#

3@GR~e2V!JbGA~e2V!#12

1 i E dV

4p
tanh

e2V

2T
D 12

R ~V!

3@~GA~e2V!2GR~e2V!!JbGA~e2V!#12

1 i E dV

4p
tanh

e2V

2T
D 12

A ~V!

3@GR~e2V!Jb~GA~e2V!2GR~e2V!!#12.

~A14b!

We now substitute Eq.~A13! into Eq. ~A10!. We use the
fact that the combination containing only retarded or o
advanced Green’s functions vanish upon the disorder ave
ing. Moreover, the average of the combinations li
G(e)G(e2V1)•••G(e2VN) does not depend on the en
ergy e, which enable us to perform the integration overe
using

E de tanh
e2V

2T

d

de
tanh

e

2T
522

d

dV S V coth
V

2TD .

We find usingDA(V)5@DA(2V)#*
21420
g-

dN1
sym5ImE dV

8p2 F d

dV S V coth
V

2TD GD 12
A ~V!

3@JaGA~e!G12
R ~e2V!GA~e!JbGA~e!

2JaGA~e!G12
R ~e2V!GA~e!JbGR~e!

2JaGR~e!G12
R ~e2V!GR~e!JbGA~e!]

2E dV

4p2F V

2T sinh2
V

2T

ImD 12
A ~V!G

3Re@JaGA~e!G12
A ~e2V!GA~e!JbGR~e!#

1~a↔b!. ~A15a!
The same manipulations are performed with substituit

of Eqs.~A14! into Eq. ~A9!. One finds for the symmetrized
part

dN2
sym5ImE dV

8p2 F d

dV S V coth
V

2TD GD 12
A ~V!

3$@GA~e!JaGA~e!#12@GR~e2V!JbGR~e2V!#21

22@GR~e!JaGA~e!#12@GR~e2V!JbGR~e2V!#21%

2E dV

8p2F V

2Tsinh2
V

2T

ImD 12
A ~V!G

3$@GR~e!JaGA~e!#12@GA~e2V!JbGR~e2V!#21%

1~a↔b!. ~A16a!
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Total correction to the conductivity is justN11N2. In the
Hartree-Fock approximationDA52V(q) and we obtain Eq.
~3.3!. In the case for the stronger interaction terms~A15a!
and ~A16a! are added to produce Eq.~3.25! and terms
~A15a!, ~A16a! give rise to the inelastic or so-called depha
ing term

FIG. 24. Cancellation of inelastic term~A17! in the leading
ladder approximation.
a

.
,

r

v

S

n

214204
dsab
deph52E dV

8p2F V

2Tsinh2
V

2T

ImD 12
A ~V!G

3Re$@2JaGA~e!G12
A ~e2V!GA~e!JbGR~e!#

1@GR~e!JaGA~e!#12@GA~e2V!JbGR~e2V!#21%

1~a↔b!. ~A17!

In our leading approximation in 1/EFt this term vanishes,
see Fig. 24. The role of this term in the temperature dep
dence of weak localization correction is discussed in detai
Ref. 16.
.
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