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Focusing a radially polarized annular Gaussian beam with a gradient Mikaelian’s microlens is simulated
using a radial version of the FDTD method (finite-difference time domain), in which Maxwell’s equations
in the cylindrical coordinates are solved in the MATLAB 7.0 environment. We show that the focal spot size
(the area with larger-than half-maximum intensity) can be made as small as 0.126k2, with focal spot
diameter being 0.40k.
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1. Introduction

In the recent years, great interest has been expressed in sharp
focusing of laser light and reaching a minimal focal spot size be-
yond the diffraction limits. Decreasing the focal spot size is critical
in lithography, optical memory and micromanipulation. For exam-
ple, in a recent paper [1] it was shown that radially polarized sharp
laser beams could be used to accelerate protons and carbon nuclei
in medical applications. In Ref. [2] (see also the list of references in
[2]) the application of focused laser beams in optical microscopy
and optical coherent tomography was discussed. The radially
polarized laser beams can easily be generated using, for example,
interferometers [3] or a segmented half-wave plate [4,5].

Recently, record-breaking results in sharp focusing have been
reported. In Ref. [5] a microobjective Leika plan, apo 100�, of
numerical aperture NA = 0.9, was used to focus in air a radially
polarized laser beam into a spot size of half-maximum intensity
(where the intensity exceeds its half-maximum, half-maximum
area, HMA) equal to HMA = 0.16k2 and with spot diameter (Full
Width at Half-Maximum, FWHM) FWHM = 0.451k, where k is the
wavelength in free space. The experiment used a fundamental
He–Ne laser mode of wavelength 632.8 nm, with an annular mask
obstructing the central part (3 mm in diameter) of the 3.6-mm
incident beam. In more recent publications [6], still better result
was reported. In Ref. [6], a parabolic mirror (19 mm in diameter
and NA = 0.999) was utilized to experimentally focus a radially
polarized laser beam of wavelength 632.8 nm into a focal spot of
ll rights reserved.

ev).
HMA = 0.134k2. The intensity distribution in the focal plane was
measured using a 40-nm fluorescent bead. The focal spot diameter
was reported to be 0.45k. Note that this value can be reduced still
further, since the numerical simulation based on Debye’s theory
and Richards–Wolf’s equations showed [7] that using a conven-
tional diffraction lens or a parabolic mirror of NA = 0.98, the radi-
ally polarized hollow Gaussian beam of amplitude r exp(�r2/w2)
(r is the radial coordinate and w is the Gaussian beam waist radius)
could be focused into a spot of HMA = 0.210k2 or HMA = 0.157k2,
respectively. For a parabolic mirror of NA = 1 the calculations con-
ducted in Ref. [7] showed that the focal spot size can be further re-
duced to a value less than HMA = 0.154k2. If the Gaussian beam is
bounded by a narrow annular diaphragm (resulting in a partial loss
of the light energy), then the focal spot size can be decreased to
HMA = 0.101k2. By comparison, in the paraxial scalar approxima-
tion, the focal spot size for the Airy disk is HMA = 0.204k2.

In this paper, we numerically simulate focusing a radially polar-
ized annular Gaussian beam exp(�(r � r0)2/w2) with a cylindrical
Mikaelian’s microlens of diameter 12 lm and thickness 10 lm.
We show that the focal spot size (the area with larger-than half-
maximum intensity) is equal to HMA = 0.126k2. Compared with
the results reported in Refs. [5–7], this is the best result, to the best
of our knowledge, obtained so far by means of refractive optics.

1.1. The radial FDTD method

For the rigorous calculation of light diffraction by axially sym-
metric optical elements, Prather and Shi [8] proposed an FDTD-
method version, which solved Maxwell’s equations in the cylindri-
cal coordinates. However, the diffraction of the radially polarized
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light was not discussed in Ref. [8]. In this section, we discuss an
FDTD-method version specially designed to calculate the diffrac-
tion of a radially polarized laser beam by axially symmetric mic-
rooptics elements. For the radially polarized incident beam, the
electric field vector is directed along the radial coordinate in a cylin-
drical coordinate system. Let a monochromatic radially polarized
electromagnetic wave propagating along the optical axis z is inci-
dent normally onto an axially symmetric refractive optical element.
To derive the wave propagation equation, Maxwell’s equations can
be expressed in the cylindrical coordinates (r,/, z) as follows:
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where Ec, Hc are the electric and magnetic field strengths, respec-
tively (c = r, z, / are the axial components) and r is the distance to
the symmetry axis.

All the components are expanded into the Fourier series in
terms of the polar angle / as

Ecðr; z;/; tÞ ¼
Ec0ðr; z; tÞ
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The amplitudes of the electric and magnetic fields in Eqs. (7) and (8)
are independent of the polar angle /.

For a radially polarized monochromatic plane wave, propagat-
ing along optical axis z, we can write Einc � Einc

r ¼ cos xt, where
x is the circular light frequency. In this case, only three compo-
nents of the electromagnetic field (7) and (8) are non-zero: Er,0,
Ez,0, H/,0. These are the radial and longitudinal components of
the electric field and the azimuthal component of the magnetic
field. The zero index means that all three components are indepen-
dent on the azimuthal angle /. Therefore, six Maxwell’s equations.
(1)–(6) for radially polarized light reduce to three equations:
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where e and l are the relative electric and magnetic permeabilities
of the optical element material (further, l = 1), e0 and l0 are the
electric and magnetic permeabilities of vacuum, r is the relative
conductivity (further, r = 0). Conditionally stable, explicit difference
equations that approximate Eqs. (9) and (10) are given by
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where Dt, Dr, Dz are the sampling steps for the corresponding axes;
n, i, j are the integer indices of nodes in the coordinate grid t, r, z. The
time step Dt must satisfy the condition [8]

cDt �minðDr;DzÞffiffiffi
2
p ; ð15Þ

where c is the speed of light in vacuum. The radiation was coupled
into the computation domain using a hard source model. To these
ends, the Er component was assumed to change in time as

En
r;0ði; jÞ ¼ E0ði; jÞ sinðxDtnÞ: ð16Þ

In the difference equations (12)–(14) we used Yee grid with half-
integer steps [9]. The boundary conditions were chosen in the form
of a perfectly matched layer [10]. Peculiarities of calculating the
field on the optical axis (r = 0) can be found in Ref. [8].

2. Simulation results

Using Eqs. (12)–(14), we simulated focusing the radially polar-
ized Gaussian beam propagating along the optical axis and incident
onto a gradient Mikaelian’s microlens with cylindrical symmetry.
The refractive index in the gradient lens changes as a secant [11]:

nðrÞ ¼ n0½ch
pr
2L

� �
��1 ð17Þ

where n0 is the refractive index on the axis and L is the lens axial
thickness. The lens radius R is derived from Eq. (17), considering
that n(R) = 1.

Fig. 1 shows the radial section of the Mikaelian’s microlens
(n0 = 1.5): the radius along the radial axis is R = 6 lm, the thickness
along the optical axis (vertical axis in Fig. 1) is L = 10 lm. The cal-
culation domain size is 20 lm � 8 lm, the sampling step of k/50 is
Fig. 1. Size of the gradient axially symmetric Mikaelian’s microlens.
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the same for the r- and z-axes, and for the time axis, t is p/50x (see
Eq. (15)). The operating wavelength is k = 1 lm.

Fig. 2 shows a plausible optical setup to focus the laser light
using a microlens. The linearly polarized fundamental mode of la-
ser L (Gaussian beam) passes through interferometer I (or a seg-
mented half-wave plate), becoming radially polarized, and is
then imaged with spherical lens SL. Note that a microlens ML is
placed in the imaging plane of Gaussian beam (Fig. 1). ML is fabri-
cated in a glass substrate using, for example, e-beam lithography
and ion-beam etching. To image the radially polarized Gaussian
beam of radius w0 = 1 mm (at the output of interferometer I) as a
Gaussian beam of radius w = 7 lm in the plane of microlens ML,
Fig. 2. Optical setup to focus the radially symmetric Gaussian beam with a
microlens.

Fig. 3. Snapshot distributions of the amplitude Er (a) and Ez (b) for diffraction of the
radially polarized Gaussian beam by the gradient Mikaelian’s microlens (the lens
base is placed between 7 lm and 17 lm on the vertical axis).

Fig. 4. Radial intensity distribution in the focal plane (immediately behind the lens
surface, z = 7 lm) of the gradient Mikaelian’s microlens illuminated by the radially
polarized Gaussian beam: |Er|2 + |Ez|2 (curve 1); |Er|2 (curve 2); |Ez|2 (curve 3).

Fig. 5. Snapshot distributions of the amplitude Er (a) and Ez (b) for diffraction of the
radially polarized annular Gaussian beam (black line: the beam waist) by the
gradient Mikaelian’s microlens.



Fig. 6. Radial intensity distributions in the focal plane (immediately behind the lens
surface, z = 7 lm) of the gradient Mikaelian’s microlens illuminated by the radially
polarized annular Gaussian beam: |Er|2 + |Ez|2 (curve 1); |Er|2 (curve 2); |Ez|2 (curve 3).
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we can make use a lens SL of focus f = 10 mm. Then, the image is
formed at the distance z2 [12]:
Fig. 7. The FWHM (in terms of wavelengths (k)) of the focal spot as a function of: (a) the
illuminating beam. The rest simulation parameters are the same as in Fig. 3.
z2 ¼ f þ ðz1 � f Þf 2

ðz1 � f Þ2 þ z2
0

ð18Þ

where z0 ¼ kw2
0=2 is a Rayleigh distance, z1 is a distance from Gauss-

ian beam with w0 to SL. In our case: z0 = 3145 mm (k = 1 lm),
z1 = 1430 mm and z2 = 10.02 mm.

Fig. 3 shows snapshot diffraction patterns of the amplitude dis-
tribution Er (a)and Ez (b) of the Gaussian beam Er,0 = exp (�r2/w2) of
waist radius w = 7 lm propagating along the optical axis. In Fig. 3,
a horizontal line with the ‘‘source” caption depicts the waist plane
of the Gaussian beam incident on the microlens. The microlens po-
sition is indicated as a dotted line. Fig. 4 shows (in relative units)
the radial distribution of the intensity: |Er|2 + |Ez|2 (curve 1), |Er|2

(curve 2), and |Ez|2 (curve 3) in the focal plane (immediately behind
the lens surface, z = 7 lm). The focal spot diameter is
FWHM = 0.48k and the size is HMA = 0.181k2. Let us compare the
focal spot under discussion with the focal spot of the Airy disk,
which is described by the Bessel function of the first order,
2J1(x)/x. At the half-maximum intensity, the width of the Airy disk
is FWHM = 0.51k/NA. The minimal size of the Airy disk is achieved
when the numerical aperture is maximal, NA = 1, amounting to
HMA = 0.204k2. Thus, for a gradient microlens (Fig. 1) the size of
the focal spot (Fig. 4, curve 1) is smaller than the diffraction limit
of resolution. Note that the numerical aperture of the gradient
refractive index on the axis n0; (b)the microlens radius R; and (c) the radius w of the



Fig. 8. A binary Mikaelian’s lens as a plausible replacement of the gradient lens in
Fig. 1.

Fig. 9. Radial intensity distributions in the focal plane (immediately behind the lens
surface, z = 7 lm) of the binary Mikaelian’s microlens (Fig. 8) illuminated by the
radially polarized Gaussian beam: |Er|2 + |Ez|2 (curve 1); |Er|2 (curve 2); |Ez|2 (curve
3).

Fig. 10. Full intensity |Er|2 + |Ez|2 on the optical axis for the binary lens of Fig. 8. The
simulation parameters are the same as in Fig. 9.

V.V. Kotlyar, S.S. Stafeev / Optics Communications 282 (2009) 459–464 463
microlens (Fig. 1) can be assessed using the relation NA = R/
(L2+R2)1/2 = 0.514. The focal spot of a conventional refractive lens
with such a NA will be twice as large as the minimal size of the Airy
disk (FWHM = 0.51k). It can also be seen from Fig. 4 that the full
intensity |Er|2 + |Ez|2 in the focal spot is practically equal to the
intensity of the axial electric component |Ez|2, whereas the inten-
sity of the radial component |Er|2 amounts to 10% of the maximum
of the full intensity.

To further improve this result (Fig. 4), we illuminated the
microlens (Fig. 1) by the annular Gaussian beam exp (�(r � r0)2/
w2), where r0 = 5.5 lm and w = 1.5 lm. In Fig. 5 we show the snap-
shot patterns of the amplitude distributions Er (a) and Ez (b) for this
case. The black horizontal line is the source of the annular Gaussian
beam. The location of the lens is indicated with a dotted line. Fig. 6
shows the radial intensity distributions |Er|2 + |Ez|2 (curve 1), |Er|2

(curve 2) and |Ez|2 (curve 3) in the focal plane. The focal spot diam-
eter is FWHM = 0.40k, and the size is HMA = 0.126k2. Fig. 6 sug-
gests that the curve of full intensity |Er|2 + |Ez|2 nearly coincides
with that of the axial field component |Ez|2, while the maximal va-
lue of the radial component |Er|2 amounts to less than 5% of the
maximal value of full intensity.

The focal spot size (compare Fig. 6 and Fig. 4) is decreased by
1.44 and the diameter by 1.2, but the intensity in the focus is also
decreased (by 1.06) and the lateral intensity is increased (by 1.3).
The focal spot shown in Fig. 6 has a smaller size as compared with
the focal spot size in Refs. [5–7].

Note that attempts to realize an exact annular Gaussian beam
defined by exp (�(r � r0)2/w2) have failed. In practice, however,
there are several alternatives. A thin metallic film with an annular
diaphragm can be preliminary sprayed onto a microlens bulk sub-
strate. The modeling we conducted has shown that when focusing
a Gaussian beam of waist radius 7 lm bounded by a circular dia-
phragm of radii R1 = 4 lm and R2 = 7 lm, the FWHM of the result-
ing focal spot will be almost the same as that in Figs. 5 and 6, with
the maximal intensity being two times smaller. An annular laser
beam can also be experimentally generated with a conical axicon
placed between the lens SL and the microscope ML in the optical
configuration of Fig. 2. Another technique for generating the annu-
lar Gaussian beam was presented in Ref. [7]. In this work, the mod-
eling was conducted using a beam r exp(�r2/w2), which can be
generated with an amplitude mask whose transmittance is chang-
ing linearly with radius from zero to unity. In Ref. [13], the sharp
focusing was modeled using an annular Bessel–Gauss beam in
the form J1(2r) exp(�r2).

Such a beam cannot be implemented with an amplitude mask be-
cause the Bessel function can take both positive and negative values.

Fig. 7a shows the FWHM of the focal spot as a function of the
refractive index n0 on the lens optical axis in Eq. (17), the rest sim-
ulation parameters being the same as in Figs. 3 and 4. Note that the
lens radius was also changed to satisfy the condition n(R) = 1.
Hence it is seen that with increasing n0 the FWHM of the focal spot
is decreasing. From Fig. 7a it also follows that the focal spot be-
comes smaller than the diffraction limit (of the Airy disk,
FWHM = 0.51k) at n0 > 1.45. Fig. 7b shows the FWHM as a function
of lens radius R at a fixed refractive index on the axis, n0 = 1.5, the
rest simulation parameters being the same as in Fig. 3. From Fig. 7b
it follows that with increasing lens radius, the focal spot diameter
is decreasing, so that the diffraction limit can be overcome at
R > 5.4 lm. Note that the refractive index of the lens at the edge
is n(5.4) = 1.08. Fig. 7c shows the FWHM in terms of wavelengths
versus the Gaussian beam radius w (the rest simulation parameters
being the same as in Fig. 3). Fig. 7c suggests that the focal spot be-
comes smaller than the diffraction limit at w>5.5 lm. It is notewor-
thy that if the Gaussian beam radius is being further increased,
becoming larger than the lens radius (w > 6 lm), the focal spot
diameter continues to decrease. This decrease occurs until the min-
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imal value of the FWHM = 0.45k is reached at the Gaussian beam
radius of w = 15 lm. Further increase in the Gaussian beam radius
(the lens parameters are constant) does not result in the decrease
of the focal spot size.

The gradient microlens can be realized as a photonic crystal lens
using microlithography technology [14]. A binary version of the
gradient lens with cylindrical symmetry represents a fragment of
Bragg’s optical fiber (Fig. 8) [15]. Fig. 8 shows a binary Mikaelian’s
lens with e same geometric parameters as in Fig. 1. Within each
discretization step Dr = 0.5 lm, the width x(r) of the lens material
along the radial coordinate r was chosen from the condition

xðrÞ ¼ Dr
nðrÞ � 1
n0 � 1

� �
ð19Þ

where n0 and n(r) were taken from Eq. (17). Fig. 9 shows (in relative
units) the radial distributions of the intensity: |Er|2 + |Ez|2 (curve 1),
|Er|2 (curve 2) and |Ez|2 (curve 3) in the focal plane (immediately be-
hind the binary lens plane in Fig. 8) when the lens is illuminated by
a radially polarized Gaussian beam of radius w = 7 lm and wave-
length k = 1 lm. The refractive index of the binary lens material in
Fig. 8 is n = 1.5. From Fig. 9 it is seen that when the gradient lens
(Fig. 1) is replaced with a binary lens (Fig. 8) the maximal intensity
of the focal spot is insignificantly decreased (by 20%), whereas the
focal spot size remains practically unchanged (nearly the same as
in Fig. 4). Fig. 10 shows the longitudinal axial distribution of the full
intensity |Er|2 + |Ez|2 for the binary lens (Fig. 8). From Fig. 10, it is
seen that the depth of focus (distance between the adjacent local
intensity minima along the optical axis) approximately equals the
wavelength, with the intensity maximum attained just behind the
lens plane (the location of the lens is shown in Fig. 10).

3. Conclusions

In this study, we have obtained the following results:

– We have considered a radial variant of the FDTD-method
designed for solving Maxwell’s equations in the cylindrical
coordinates for radially polarized light, realizing it in the
MATLAB 7.0 environment.

– Focusing the radially polarized annular Gaussian beam with
a gradient Mikaelian’s microlens has been simulated and it
has been shown that the focal spot size (the area with lar-
ger-than half-maximum intensity) can be reduced to
0.126k2, with the spot diameter being 0.40k. These results
surpass those reported in Refs. [5,6].
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