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The pendulum analogy has been generalized in a form suitable for the case of an

off-Bragg position. It is shown that, by introducing a time variation of the

pendula masses, this analogy can be supplied to simulate the X-ray dynamical

diffraction by a one-dimensional regularly deformed crystal. The correspon-

dence between the adiabatic invariants of the new mechanical system and the

invariants of the Eikonal approximation of the X-ray dynamical theory is

established

1. Introduction

The mechanical system of two coupled pendula is a very

helpful analogy in X-ray dynamical diffraction. The well

known interpretation of the PendelloÈsung phenomenon as a

beating process follows from this analogy. However, the

original mechanical system proposed by Ewald (1965) is not

suitable in the case of an off-Bragg position and cannot take

into account a regular crystal deformation. (By a regular

deformation, we mean a bending, a single dislocation, an

acoustic wave etc.) Therefore, the generalization of the

mechanical system and of the pendulum analogy is a problem

of interest in X-ray dynamical diffraction by regularly

deformed crystals. It is possible that new physical approaches

to various important aspects of the dynamical theory, such as

interbranch scattering, might be obtained with the help of a

generalized pendulum analogy. In this paper, we consider a

mechanical system corresponding to the case of one-dimen-

sional (1D) regular deformations. The adiabatic invariance of

this mechanical system is examined and it allows us to analyse

in detail the invariants of the Eikonal approximation of the

X-ray dynamical theory, in the case of a slightly deformed

crystal (Kato, 1963a).

2. Generalized pendulum analogy and local
corresponding relations

Let us consider the mechanical system of two coupled

pendula. However, in contradiction to the Ewald model, we

assume that the pendula masses m1,2 can be different from

each other and that they depend on the time t. Without any

loss of generality, we choose m2 > m1. Then, the appropriate

Lagrange function can be represented in the following form:

L � _'2
1=!

2
1 � _'2

2=!
2
2 ÿ !2

0�'2
1=!

2
1 � '2

2=!
2
2� ÿ �'1 ÿ '2�2: �1�

Here '1,2 are the pendula angle variables, !0 � �g=l�1=2 and

!1;2 � ��=m1;2�1=2, where g, � and l stand for the acceleration

of gravity, the coef®cient of elasticity of the coupling and

the length of the pendula, respectively. Using the present

mechanical model, we can generalize the pendulum analogy of

the X-ray dynamical diffraction in the case of an off-Bragg

position. For this purpose, we will establish a correspondence

between the parameters of the mechanical system and the

parameters of the X-ray dynamical diffraction theory. We will

transform the equations of motion following from (1) to the

Takagi±Taupin form, considering a suf®ciently small time

interval, �t, within which the masses m1,2 can be regarded as

constants. Furthermore, in view of a weak coupling between

the pendula, it is possible to neglect the second-order der-

ivatives in these equations of motion. It is necessary to carry

out the change of the variables '1,2 for `slow' variables ~'1;2 by

means of the following relations for it:

'1;2 � �m1;2�ÿ1=2 expfÿi!Htg ~'1;2: �2�
In expressions (2), we extracted the `sharp' vibrations with

high frequency !H � !0 � �4!0�ÿ1�!2
1 � !2

2� from the ampli-

tudes '1,2. Consequently, to determine the local corresponding

relations, we have the following equations of motion:

_~'1;2 �
i!1!2

2!0

~'2;1 �
i�!2

1 ÿ !2
2�

4!0

~'1;2: �3�

In the case of symmetric transmission and a 1D regularly

deformed crystal, we can write the Takagi±Taupin equations in

the form:

dD0;h

dz
� ÿ i�

�h

Dh;0 expf�ihug ÿ i�

�0

D0;h: �4�

Here, D0,h, h, u, �0 and �h stand for the amplitudes of the

transmitted and diffracted waves, the diffraction vector, the

displacement ®eld oriented along the surface and the extinc-

tion lengths in the forward and diffraction directions, respec-

tively. Moreover, we suppose that the displacement ®eld u

and, consequently, the amplitudes D0,h depend on the crystal
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depth, which is denoted by the z coordinate. Introduce into

consideration the following momenta:

Q0 � k cos �B and

Q1;2 � fk cos �B��W � �W2 � 4�2=�2
h�1=2�g1=2;

�5�

where k, �B, W are the wave number of the incident wave, the

Bragg angle, a Bragg deviation parameter (positive, for de®-

niteness), respectively. With the help of these expressions and

of the substitutions

D0;h � expf�i�=2� ihu=2ÿ i�z=�0g ~D0;h;

equations (4) can be represented as follows:

d ~D0;h

dz
� iQ1Q2

2Q0

~Dh;0 �
i�Q2

1 ÿQ2
2�

4Q0

~D0;h: �6�

Comparing (6) and (3), we can ®nd the desirable corre-

sponding relations, which have the form

~'1;2 ! ~D0;h and !0 ! Q0; !1;2 ! Q1;2: �7�

As follows from (7) and (5), the deviation from the Bragg

law, which is determined by W, is equivalent to the difference

between m1 and m2. This means that we can accept W > 0, if

m2 > m1 and W < 0 in the opposite case. Then, the larger

frequency among !1,2 will correspond to the larger momentum

among Q1,2. Obviously, in accordance with the developed

analogy, the variation of the ratio m2=m1 leads to moving the

tiepoints along the branches of the dispersion surface. In the

limiting case m2=m1 � 1, which corresponds to strong defor-

mations, we have Q1=Q2 � 1 or W � �ÿ1
h . It should be

pointed out that the dynamical coupling between pendula is

then broken and the refraction regime happens under such

conditions. Clearly, by supposing the masses m1,2 constant for

any time, we can describe the case of an off-Bragg position for

an ideal crystal. At the same time, as seen from (7), we are able

to simulate the X-ray dynamical diffraction by a 1D regularly

deformed crystal by introducing a time variation of the

pendula masses.

3. The adiabatic invariance and the Eikonal
approximation for X-ray dynamical diffraction

As is well known, the conception of adiabatic invariance may

be applied to any mechanical system under suf®ciently slow

variations of its parameters. In this connection, it is sensible to

study this point for the generalized pendulum model and

to ®nd the appropriate analogy for the X-ray dynamical

diffraction by a regularly deformed crystal. To determine the

adiabatic invariants of the proposed mechanical system, it is

very suitable to use the Lagrange formalism. For this purpose,

we diagonalize the Lagrange function (1) and modify the

equations of motion, which are obtained in so doing, to

harmonic form. It is not dif®cult to establish that such modi-

®cations can be easily realized by means of the following

changes of the variable t in the equations of motion:

d�1 �
!0

2!B

dt (8)

d�2 �
!2

2

!2
1

!0

2!B

dt: (9)

8><>:
Here, !B � �!2

1 � !2
2�=�2!0� is the beat frequency, where

!B << !0, and �1,2 are the new time variables corresponding to

the following equations of motion:

d2 1;2

d�2
1;2

�
2
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1��1� � 2!B��1� and


2��2� � 2!B��2�
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 1,2 are the main coordinates for the Lagrange function, which

are related to variables '1,2 as follows:
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8>><>>:
As is well known (Landau & Lifshitz, 1988), equations (10)

determine the motion under which the action variables are

conserved in the case of adiabatic slow variations of the

frequencies 
1,2 (or masses m1,2). Consequently, the adiabatic

invariants I1,2 are of the form

I1;2 � hEi1;2=
1;2: �13�
Here, hEi1;2 � �1=T1;2�

R T1;2

0 E��1;2� d�1;2 are averaged energies

and T1;2 � 2�=
1;2 are periods of motion in �1,2. Using

expressions (8), (9) and (2), (11), (12), we will calculate the

invariants I1,2 as functions of ~'1;2 and t. We will take into

account that functions ~'1;2, as solutions of the equations of

motion (3), are superpositions of two modes. In the vicinity of

any time t, the ratios �� of the amplitudes of these modes ~'�2
and ~'�1 satisfy the relations

�� � �!1;2=!2;1; �14�
where signs � and ÿ specify the upper and lower modes,

respectively. After a straightforward calculation, with the help

of expressions (14), we obtain the resultant expressions for I1,2

(up to constant factor):

I1;2 � !0�1� !2
1;2=!

2
2;1�j ~'�1 j2: �15�

Obviously, if we divide the time interval �T into suf®ciently

small subintervals �ti, then expressions (15) will be satis®ed

within �ti too. It follows from this that the appropriate

invariants for the X-ray dynamical diffraction by a 1D regu-

larly deformed crystal can be determined by means of the local

correspondence relations (7). As is easily seen, these invari-

ants denoted by J1,2 have the form

J1;2 � k cos �B�1�Q2
1;2=Q2

2;1�jD�0 j2; �16�
where D�0 and Dÿ0 are the amplitudes of the transmitted

wave®elds for the `upper' and `lower' branches of the

dispersion surface, respectively. As appears from (6), in the



vicinity of any z the expressions for the ratios of the appro-

priate amplitudes of the transmitted and diffracted waves

corresponding to the same branch of the dispersion surface

are analogous to the ratios (14). Using this fact and expres-

sions (16), we can calculate the new ratios between the

amplitudes D�0;h:

P1;2 �
Q1;2jD�0;hj
Q2;1jDÿ0;hj

and R1;2 �
jD�0;hj
jDÿh;0j

;

where P1,2 and R1,2 are constants, which can be obviously

considered as invariants too. However, it is necessary to

remark that two adiabatic invariants only will be independent

among the described constants. Clearly, these invariants are

conserved only under suf®ciently smooth deformations which

correspond to adiabatic slow variations of the parameters of

the mechanical system. This suggests that such invariants are

conserved within the Eikonal approximation of the dynamical

theory, which is valid in the case of suf®ciently smooth

deformations. Using the results obtained by Molodkin &

Shevchenko (2002), with the help of the `lamella' model of a

deformed crystal (Authier, 1961; Kato, 1963b), it is possible to

verify this suggestion. According to these results, the normal

to crystal surface components S� of the Poynting vector

averaged over the period of PendelloÈsung, which correspond

to different branches of the dispersion surface, are invariants

in the Eikonal approximation and equal to constants J1,2,

respectively. Thus, applying the local corresponding relations

(7), we can transform the adiabatic invariants of the general-

ized pendulum model to invariants of the Eikonal approxi-

mation of the X-ray dynamical theory. Besides, we can also

show that the condition of the adiabatic invariance for the

coupled pendula corresponds to the condition of validity of

the Eikonal approximation. Indeed, the condition of applic-

ability of the adiabatic invariance conception for pendula has

the following form:

d�=d�1;2 � �=T1;2; �17�
where we can accept � � �!2

1 � !2
2�=�2!0�. Multiplying the

small factor !B=!0 with the right-hand side of the inequality

(17), we obtain the inequality describing the suf®ciently slow

disturbances of the pendulum vibrations in the regime of the

adiabatic invariance. Using the expressions (8), (9) within a

small interval �t, where we can set t! z and apply the local

corresponding relations (7), it is possible to obtain the

following inequality:

dW=dz� ��=�h�2: �18�
In fact, condition (18) coincides with the condition of validity

of the Eikonal approximation for X-rays, which was obtained

by Authier & Balibar (1970). Hence, we can consider the

Eikonal approximation of the X-ray dynamical theory as an

analogy of the adiabatic invariance concept for mechanical

systems. It should be observed here that the new interpreta-

tion of the X-ray interbranch scattering, which is expressed in

terms of quantum mechanics, follows from it. Taking into

account that the adiabatic analogy is not valid in the case of

the X-ray interbranch scattering, we can consider this process

as a beating transition one, which happens between close

quantum levels in the case of the violation of adiabatic

invariance. Moreover, we suppose that these levels are sepa-

rated by a potential barrier as well. Then, the quantum tran-

sition taking place is due to the `tunnel' effect. The description

of such quantum systems can be found in detail in Landau &

Lifshitz (1989). It should be recalled that Penning (1966) was

the ®rst who paid attention to the link between the X-ray

interbranch scattering and the quantum `tunnel' effect. We

hope also that the proposed quantum model of X-ray inter-

branch scattering will be useful for a deeper insight into this

problem.

4. Conclusions

Here we sum up the main results obtained in this work:

1. The generalized pendulum analogy of the X-ray

dynamical diffraction was developed to describe the case of an

off-Bragg position. A difference between the pendulum

masses was introduced into consideration for this purpose. By

introducing a time variation of these masses, it is possible also

to simulate the X-ray diffraction by a 1D regularly deformed

crystal.

2. We have established an analogy between the adiabatic

invariants of the generalized pendulum model and the

invariants of the X-ray Eikonal approximation. This means

that a direct correspondence exists between the concept of

adiabatic invariance in classical mechanics and the Eikonal

approach of X-ray dynamical diffraction by a regularly

deformed crystal.

3. Using the quantum mechanics analogy, which is based on

the adiabatic invariant model, a new interpretation of the

X-ray interbranch scattering process has been presented. It

consists in the supposition that this process can be considered

as a beating one.
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