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Two electrons subject to the Coulomb interaction and confined by an anisotropic harmonic potential can be
viewed in two ways. One is the “Hooke’s atom,” much used in density functional theory �DFT�, but with the
addition of an external magnetic field. The other is as a heliumlike three-dimensional quantum dot. Though
some results on the systems are known in both the DFT and quantum dot literature, exact analytical solutions
have been lacking for nonzero anisotropy �nonzero B�. For certain specific confinement strengths, we develop
such solutions in closed form, hence include electron exchange and correlation exactly. As with the zero-field
Hooke’s atom, those solutions can be the ground or excited states.
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I. INTRODUCTION

In density functional theory �DFT�, the need for accurate
approximations to the electronic exchange-correlation energy
EXC has motivated many studies of a model system often
called Hooke’s atom �HA� in the DFT literature. The basic
HA is two electrons interacting by the Coulomb potential but
confined by a harmonic potential rather than nuclear-electron
attraction. This system is significant for DFT because, for
certain values of the confining coupling constant, exact ana-
lytical solutions for various states of the HA are known
�1–4�. Because the DFT universal functional is independent
of the external potential and the HA differs from atomic He
only by that potential, exact solutions of the HA allow con-
struction of the exact EXC functional and comparative tests of
approximate functionals. Because much less is known about
the approximate functionals in current density functional
theory �5� than ordinary DFT, it would be of considerable
value to the advancement of CDFT to have corresponding
solutions for the HA in an external magnetic field.

When the HA is placed in an external magnetic field, its
lateral confinement can exceed its vertical confinement. Taut
�6� gave analytical solutions for a two-dimensional �2D� HA
in a perpendicular B field. It is well known that the magnetic
field can greatly complicate the motion of a Columbic sys-
tem. Even for the one-electron system �H atom�, substantial
effort is required to get highly accurate results in a B field
�7–9�. Only recently have calculations on the He atom in a
high field been pushed beyond the Hartree-Fock approxima-
tion �10�. When the nuclear attraction in the He atom is
replaced by a harmonic potential, exact analytical results can
serve as a stringent check on the accuracy of those correlated
calculations.

The 2D HA in an external B field studied by Taut �6� can
equally well be viewed as a model 2D quantum dot �QD�.
The ability to fabricate and probe such confined, few-
electron systems �examples include Refs. �11,12�� has stimu-
lated numerous theoretical studies on these “artificial atoms.”
Reference �13� is a recent review. However, even the sim-
plest nontrivial system, QD He, poses a significant challenge
to theorists. Extensive numerical calculations have been
done on the 2D He QD at different levels of approximation
for the correlation energy �14–16�. To obtain a better quan-

titative description, especially for a small dot �17�, allowance
for electron motion in the third dimension is necessary. By
considering such three-dimensional �3D� systems, Bruce and
Maksym �18� obtained confinement energies consistent with
the experimental data of Tarucha et al. �12�. Without the 3D
contributions the results are off by 50%. Numerical studies
of 3D QD He continue, for example, the recent coupled-
channel calculation by Lin and Jiang �19�.

Though highly accurate numerical solutions for QD He
can be obtained readily, nevertheless analytical results are
still sought, because the physical picture they provide is
more illuminating than sheer numerics alone. The main ob-
stacle to obtaining analytic solutions is the two-electron Cou-
lomb repulsion term in the Hamiltonian, especially in the
absence of what otherwise would be spherical symmetry
�central field model�. Thus the QD literature has several
treatments in which the interaction is altered �sometimes
quite drastically� to enable extraction of approximate analyti-
cal solutions for a 2D QD. See, for example, Refs. �20,21�.
For the 3D He QD in a magnetic field, Nazmitdinov et al.
�22� concluded that the “…problem is in general noninte-
grable” �22�b��, discussed the circular 2D and spherical 3D
cases as integrable, then treated the case of a 3D dot strongly
localized in z with a classical decoupling of the z and x-y
followed by WKB quantization. They also found that, for
some special cases, the problem is separable in a parabolic
coordinate system �22� and provided numerical results
�22�c�� but not closed analytical forms. Here we develop
exact analytical solutions for some confinement frequencies
in a nonzero field without altering the interaction.

II. EXACT ANALYTICAL SOLUTIONS

The system Hamiltonian for the case of a magnetic field B
along the z direction reads

H = �
i=1

2 � 1

2me
*�p� i +

e

c
A� �r�i��2

+
me

*

2
���

2 �xi
2 + yi

2� + �	
2zi

2�

+

e2

�

1

�r�1 − r�2�
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Here Hspin=−g*�B�s�1+s�2� ·B� . In the case of the He 3D QD,
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me
* is the effective electron mass, � the effective dielectric

constant of the material, g* the effective Landé factor, and
�� and �	 are the confinement frequencies perpendicular and
parallel to the B field. Using the vector potential in the sym-

metrical gauge A� �r��= 1
2B� �r� for the B field, the appropriate

effective atomic units are �=me
*=e=4��=1. �Notice that

this choice would give “scaled Hartree units,” not a problem
here.� As usual, we introduce center-of-mass �CM� and rela-

tive coordinates R� = 1
2 �r�1+r�2� ,r�=r�1−r�2, respectively. The

Hamiltonian Eq. �1� separates into CM and relative-motion
parts H=HCM+Hrel+Hspin. The solution to the CM part,

HCM= 1
4 ���R / i�+2A� �R� ��2+�2R2, is well known, so we focus

on the relative motion

Hrel = − �2 + ��
2�2 + �z

2z2 +
1

r
+

m

2
�c. �2�

Here �=�x2+y2 , ��=����
2 /4�+ ��c

2 /16� , �z=�	 /2, and
�c=eB /me

*c is the cyclotron frequency.
The HA problem in a B field is recovered by setting me

* to
the bare electron mass me ,�=�0 ,g*=g, and letting ��=�	

=� in Eq. �1�. The corresponding atomic units are the famil-
iar �=me=e=4��0=1 �Hartree atomic units�. In what fol-
lows we designate the case ����	 as the quantum dot or
QD and ��=�	 =� as the Hooke’s atom or HA. For both we
use bare Hartree units, i.e., me

*=me ,�=�0 ,g*=g.
The relative motion eignvalue problem from Eq. �2� gen-

erally cannot be solved analytically in either spherical or
cylindrical coordinates. A special case is ��=�z which re-
stores rotational symmetry. For the QD, this case corre-
sponds to an external magnetic field B= �2me

*c /e���	
2−��

2

�22�. For the HA, it corresponds to vanishing B field �3�.
Since the effective potential in Eq. �2� V�r�=��

2�2+�z
2z2

+ �1/r� is expressed as a combination of cylindrical coordi-
nate variables �� ,z� and the spherical coordinate variable r, it
proves convenient also to express the relative-motion wave
function in those combined, redundant variables 	�r��
=	(� ,z ,r�� ,z� ,
). In part motivated by asymptotics, we
choose the form

	�r�� = e−��z/2�z2−���/2��2
��m�z�zu�r,z�eim
, �3�

where �z=0 for even z parity, 1 for odd z parity. Then
�Hrel−Erel�	�r��=0 yields

�−
�2

�r2 −
�2

�z2 −
2z

r

�2

�z � r
−

2

r
�1 + �z + �m� + ��� − �z�z2

− ��r2�
�

�r
+ 2��zz −

�z

z
� �

�z
+

1

r
− Ẽ
u�r,z� = 0, �4�

where Ẽ=Erel− �m /2��c− �2�z+1��z−2��m�+1���. For the
QD, it is useful to absorb z�z to be in u�r ,z� or, equivalently,
require that u�r ,z� admit both positive and negative z parity.
For the HA, explicit parity is more useful. With the change
of variables, �= 1

2 �r+z� ,�= 1
2 �r−z�, Eq. �4� becomes

FIG. 1. Confinement strengths amenable to analytical solution
of Eq. �2�. Panels �a�–�c� are for m=0, 1, 2, respectively. The
10 symbols �hexagon, square, up triangle, diamond, down triangle,
circle, left triangle, plus sign, right triangle, and x mark� correspond
to integers 1, 2, …, 10 that are the highest order of the polynomial
factor of the relative motion wave functions in z for 1D, in � for
2D, in r for the 3D HA �B=0�, and in t for the QD. For the
3D HA in B�0, those symbols stand for the values of �Nz+�z�
in, for example, Eq. �12�. For the spherical HA, only �z=0 is
included; notice that its odd parity ��z=1,m� and even parity
��z=0,m+1� states are degenerate. For the 2D case, �z=
has been shifted to �z=1. For the 1D case, ��= has been shifted
to ��=1.
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�− �
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��2 − �1 + �m� + 2����z − 2����� �

��
+

�

��
�

+ 2�z��2 �

��
+ �2 �

��
� − Ẽ�� + �� + 1
u��,�� = 0. �5�

It is easy to see that, for the special case �z=2��, which can
be realized in the QD �����	� by imposing an external
field B= �me

*c /e���	
2−4��

2 , Eq. �5� can be separated into two
parts u�� ,��= f1���f2���,

�− t
�2

�t2 − �1 + �m��
�

�t
+ 2�zt

2 �

�t
− Ẽt� f i�t� = cif i�t� , �6�

where i=1,2 and c1+c2=−1. A power series expansion

f i�t� = �
j=0



Bijt
j �7�

yields the recurrence relation

�j + 1��j + 1 + �m��Bi,j+1 = �2�z�j − 1� − Ẽ�Bi,j−1 − ciBi,j .

�8�

A sufficient condition for the summation in Eq. �7� to termi-

nate after n+1 terms is that Bn+1=0 and Ẽ=2n�z. Inversion

of Bn+1�n , �m� ,�z ,ci�=0 to get an expression of ci and impo-
sition of c1+c2=−1 gives the values of �z�n , �m�� required
for a closed solution. Some examples are given in Table I.
Then a back-substitution gives f i�t�, hence 	(� ,z ,r�� ,z� ,
),
with eigenvalue of

Erel,n = �2�n + 1� + �m���z +
m

2
�c. �9�

Some finite-term f i�t� for m=0 are given in Table II.
The foregoing procedure also applies for the noninteract-

ing case by omission of the 1/r term in Eq. �2�. The separa-
tion constraint becomes c1+c2=0, which always can be sat-
isfied for arbitrary �z, so the wave function always is
separable into two parts as in Eq. �6�. Comparing the inter-
acting and noninteracting cases, one immediately realizes
that, at those frequencies found already, the eigenvalue of the
interacting system is degenerate with a higher excited state
of the noninteracting system subject to the same confinement
potentials.

Next we consider another special case, ��=2�z=�.
It corresponds to imposition of an external field B=2�3�
upon a HA ���=�	� with intrinsic confinement strength �.
For nonzero m values, Eq. �4� is not separable as previously
discussed �22�. Instead, we make a direct, double power-
series expansion

TABLE I. Confinement frequencies �z which have analytical solutions to Eq. �2� ���=�z /2, see Eq. �9� for their eigenvalues�.

n �z
a Stateb m=0c m=1 m=2

1 + g 0.1250000 �1� 0.0625000 0.0416667

2 + g 0.0208333 �2� 0.0125000 0.0089286

2 +/− e /g 0.0833333 �3� 0.0500000 0.0357143

3 + g 0.0067407 �4� 0.0045672 0.0034455

3 +/− e /g 0.0164515 �6� 0.0106450 0.0079067

3 +/− e 0.0520416 �7� 0.0383746 0.0298292

3 + e 0.0858519 �5� 0.0475162 0.0335915

4 + g 0.0029597 0.0021683 0.0017053

4 +/− e /g 0.0057990 0.0040530 0.0031256

5 + g 0.0015504 0.0011973 0.0009720

5 +/− e /g 0.0026546 0.0019752 0.0015740

a+=even z parity, −=odd z parity.
bg=ground state, e=excited state.
cNumbers in parentheses are the listing number in Table II.

TABLE II. Some solutions to Eq. �6� for confinement potential ��=�z /2 ,m=0.

No. �z c f�t�

1 1/8 c1=c2=−1/2 1+ t /2

2 1/48 c1=c2=−1/2 1+ t /2+ t2 /24

3 1/12 c1=0,c2=−1 f1�t�=1− t2 /12, f2�t�=1+ t+ t2 /6

4/5
10��73

216
c1=c2=−1/2 f1�t�= f2�t�=1+ t /2− 1��73

144 t2− 83� 11�73
7776 t3

6
10−3�3

292
c1,2=−��20±2�73��z 1−c1,2t+ � 39−19�3

3504 ± 201−53�3
3504�73

�t2�10+3�3±�73+ t�

7
10+3�3

292
c1,2= ���20±2�73��z 1−c1,2t+ � 39+19�3

3504 ± 201+53�3
3504�73

�t2�10−3�3±�73+ t�
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u�r,z� = �
nr,nz=0



Anr,nz
rnrznz �10�

to transform Eq. �4� into a recurrence relation,

− 2�nr + 2���� − �z�Anr+2,nz−2 − �nr + 2��nr + 3 + 2��m� + �z

+ nz��Anr+2,nz
+ Anr+1,nz

+ �2�nr�� + nz�z� − Ẽ�Anr,nz

− �nz + �z + 1��nz + �z + 2�Anr,nz+2 = 0, �11�

where Ai,j =0 for i�0, or j�0, or j=2k+1. We seek values

of Ẽ ,�� ,�z for which the right hand side of Eq. �10� termi-
nates at finite order. Assume the highest power of z that
appears is Nz , �Ai,j�Nz

=0�, where Nz is an even number. For
Nz�2, generally there is no solution to the set of equations
that follow from Eq. �11�. However, a judicious choice, ��

=2�z , Ẽ=2Nz�z, allows us to set Ai,j =0 for 2i+ j�Nz, since
there are �Nz /2�+1 recurrence relations of Eq. �11� with
2nr+nz=Nz that then are satisfied automatically. Now we
find values of �z that correspond to an analytical solution.

Repeated application of Eq. �11� for each combination of
−1�nr� �Nz /2�−2,Nz−2�nr+1��nz�2, allows us to ex-
press all the coefficients A0�i��Nz/2�,0�j�Nz−2i in terms of

A0,0�j�Nz
�. Invoking Eq. �11� for nz=0,−1�nr� �Nz /2�−1,

gives �Nz /2�+1 homogenous linear equations involving
A0,0�j�Nz

�. To have nontrivial solutions, the determinant of
this set of equations must be zero, a requirement which re-
duces to finding the roots of a polynomial equation in �z.
Table III gives examples of roots that are frequencies that
correspond to closed-form analytical solutions.

For each frequency found in the previous step, the corre-
sponding eigenvector A0,0�j�Nz

� determines the vector of all
the coefficients A0�i��Nz/2�,0�j�Nz−2i. Substitution of them
into Eq. �10� gives the wave function with the relative-
motion energy of

Erel = ��Nz + �z + 2�m�� + 5
2 + �3m�� . �12�

Table IV gives explicitly some of the solutions to Eq. �2�.
One limiting case, �z→, which reduces the system to a

2D problem, was discussed in Ref. �6�. Another limiting
case, ��→, reduces the system to a 1D problem that is
quite easily solved. Together with the two cases treated in
this paper, we have in total five families of analytical solu-
tions for confinement frequencies falling into one of the fol-
lowing five categories: �i� �z→; �ii� �z=2��; �iii� �z=��;
�iv� �z=�� /2; �v� ��→. Within each category, there are

TABLE III. Confinement frequencies �z which have analytical solutions to Eq. �2� ��z=� /2 ,B=2�3�, see Eq. �12� for their
eigenvalues�.

Nz �z
a Stateb m=0c m=1c m=2c

2 + g 0.0833333�1� 0.0500000 0.0357143

2 − g 0.0357143 0.0277778�2� 0.0227273�3�
4 + g 0.0133800�5� 0.0100000 0.0077870

4 − g 0.0070789 0.0059139 0.0050468

4 + e 0.0395861 0.0250000�4� 0.0193869

4 − e 0.0258158 0.0196437 0.0161673

6 + g 0.0040457 0.0034301 0.0029164

6 − g 0.0025458 0.0022352 0.0019779

8 + g 0.0016991 0.0015158 0.0013556

8 − g 0.0011904 0.0010780 0.0009796

10 + g 0.0008658 0.0007924 0.0007270

10 − g 0.0006492 0.0005995 0.0005548

a+=even z parity, −=odd z parity.
bg=ground state, e=excited state.
cNumbers in parentheses are the listing number in Table IV.

TABLE IV. Some solutions to Eq. �2� for confinement potential �=2�z ,B=2�3�.

No. � Relative motion wave function

1 1/6 e−�z2 + 2�2�/24
�1+r /2+z2 /12�

2 1/18 e−�z2 + 2�2�/72
�z�1+r /6+z2 /108�ei


3 1/22 e−�z2 + 2�2�/88
�2z�1+r /8+z2 /176�e2i


4 1/20 e−�z2 + 2�2�/80
��1+r /4−z2 /40+�2 /80−rz2 /160−z4 /3200�ei


5 25−3�17
472 e−��z2 + 2�2�/4�1+ r

2 + 1−22�
48 rz2+ 1+2�

24 r2+ 1−18�
8 z2+ 11−314�

11328 z4�

W. ZHU AND S. B. TRICKEY PHYSICAL REVIEW A 72, 022501 �2005�

022501-4



discrete, denumerable frequencies that have analytical solu-
tions, which could be either the ground state or excited
states. They are summarized in Fig 1.

III. REMARKS

The ansatz we used, Eq. �3�, appears to be closely related
to the asymptotics that underpin the oscillator representation
method �23� though we do not use that scheme. The solu-
tions presented here provide the explicit completion, as far as
we can tell, of the five integrable cases identified by Simo-
nović and Nazmitdinov �22�c��. As in the spherical case �6�,
one cannot guarantee a priori that a particular analytical so-

lution is a ground or excited state. However, careful numeri-
cal calculation of the eigenspectrum, tested for precision
against the analytical solutions for a specified confinement
potential and external field, can resolve that issue. Reference
�22�c�� provides an example. We will discuss our numerical
approach and inversion of exact and numerical results to ob-
tain CDFT functionals for the HA elsewhere.
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