
VOLUME 87, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 29 OCTOBER 2001

187203-1
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We show that dislocations should be the main source of spin tunneling in Mn12 crystals. Long range
strains caused by dislocations produce broad distribution of relaxation times that has been seen in many
experiments. When the external magnetic field is applied along the c axis of the crystal, local rotations
of the magnetic anisotropy axis due to dislocations result in the effective local transverse magnetic field
that unfreezes odd tunneling resonances. Scaling law is derived that provides universal description of
spin tunneling for all resonances.
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Mn12 acetate crystals exibit quantum magnetic phenom-
ena at macroscopic scale. They have a centered tetragonal
structure with a � 17.319 Å and c � 12.388 Å as lattice
parameters [1,2]. Spin-10 Mn12 molecules at the sites of
the lattice show magnetic bistablity due to the 65 K barrier
between the spin-up and spin-down states [3]. Quantiza-
tion of spin levels manifests itself in a spectacular step-
wise magnetic hysteresis [4]. Other observations include
memory effects [5], nonexponential relaxation [5–7], and
a peculiar crossover between thermal and quantum behav-
ior [6,8]. Theoretical models explain tunneling in Mn12
by phonons [9–11], nuclear spins, dipolar fields, fourth-
order magnetic anisotropy [12], Landau-Zener effect, etc.
Explanation of some observations remains controversial
though.

First, there is no agreement among researchers on what
causes tunneling in Mn12. The fourth-order transverse
anisotropy cannot account for odd resonances. Besides, it
is too weak, as are hyperfine and dipolar fields, to provide
the actual tunneling rate. Second, the time dependence of
the magnetic relaxation in Mn12 has not been understood.
If all Mn12 molecules were subject to the same crystal field,
the magnetic relaxation would be strictly exponential in
time. In reality the relaxation deviates from the exponen-
tial in the kelvin range and is clearly nonexponential in the
subkelvin range [5,6].

In this Letter we show that dislocations, undoubtedly
present in Mn12 crystals, provide long range deformations
(see Fig. 1) which should be the main source of spin tun-
neling. Local rotations of the anisotropy axes due to dis-
locations are responsible for odd tunneling resonances.
Broad distribution of deformations causes broad distribu-
tion of tunneling rates. We compute the relaxation law in
a crystal with dislocations and show that it obeys scaling
that can be tested in experiment.

We study Hamiltonian

H � 2DS2
z 2 HzSz 1 Hme , (1)

where Sz is the z component of the spin operator, S � 10,
D � 0.65 K, Hz is the magnetic field applied along the z
axis (c axis of the crystal), and Hme is the magnetoelastic
0031-9007�01�87(18)�187203(4)$15.00
coupling. The Hamiltonian of Mn12 also contains crystal
fields of fourth order on the spin operator, magnetic dipole
interactions, and hyperfine interactions. We neglect them
in order to emphasize the effect of dislocations and use
[10,12]
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FIG. 1. (a) Edge dislocation with the axis along the Y direction
and the extra plane in the positive Z direction; (b) contour plot
of the strength of the transverse anisotropy E of Eq. (5) created
by a randomized array of dislocations.
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Hme � g1D�´xx 2 ´yy� �S2
x 2 S2

y � 1 g2D´xy�Sx, Sy �
1 g3D�´xz�Sx, Sz� 1 ´yz�Sy, Sz ��
1 g4D�vxz�Sx, Sz � 1 vyz�Sy, Sz �� , (2)

where

eab �
1
2

µ
≠ua

≠xb

1
≠ub

≠xa

∂
, vab �

1
2

µ
≠ua

≠xb

2
≠ub

≠xa

∂
(3)

are linear deformation tensors, with u being the
displacement.

The full classification of relevant elastic deformations
due to different types of dislocations will be done else-
where. In this Letter, we will illustrate the effect of static
deformations on tunneling by considering a typical ex-
ample of edge dislocations running along the y axis, per-
pendicular to the anisotropy direction (see Fig. 1a) [13].
For the YZ extra crystallographic plane inserted at z . 0
one obtains (see, e.g., Ref. [14]) ´xy � ´yz � vyz � 0,

´xz �
a

2p

x

x2 1 z2 , vxz �
a

4p

x�x2 2 z2�
�1 2 s� �x2 1 z2�2 ,

´xx 2 ´yy �
a

4p
z

�2s 2 3� �x2 1 z2� 1 2z2

�1 2 s� �x2 1 z2�2 ,

(4)

where 0 , s , 1�2 is the Poisson elastic coefficient (we
will use s � 0.25). If the extra plane is inserted at z , 0,
the above expressions change their sign.

Because of the terms of the type SxSz, etc., in the Hamil-
tonian, the local easy axis deviates from the z direction. In
a locally rotated coordinate system (x0, y0, z0) that restores
the normal form of the crystal field, saving terms linear on
deformation, one obtains

H � 2DS2
z0 2 HzSz 0 1 E�S2

x 0 2 S2
y 0� 2 Hx 0Sx 0 , (5)

where

E � g1D�´xx 2 ´yy�, Hx 0 �
1
2 �g3´xz 1 g4vxz�Hz .

(6)

A few observations are in order. Dislocation generates the
transverse anisotropy of strength E that decays as 1�r [see
Eq. (4)] on the distance from the dislocation core. Because
of the slow decay of E, a single dislocation produces spin
tunneling at a large number of crystal sites. According
to Eq. (6) the field applied along the c axis of the crystal
generates the transverse field due to the local rotation of
the easy axis by the dislocation.

For numerical work we choose g1 � g2 � g3 � g4 � 1
(see, e.g., Ref. [11] and references therein). Figure 1b
shows a typical pattern of the transverse anisotropy pro-
duced by an array of edge dislocations, obtained by ran-
domization of the quadratic lattice of dislocations with
alternating orientation of the extra plane.

Because of the dislocations the local energy barrier be-
tween spin-up and spin-down states is lower than in the
187203-2
ideal crystal. It can be calculated perturbatively from
Eq. (5). In addition to the barrier reduction for a classi-
cal spin, the barrier in the quantum case is further lowered
at the discrete values of Hz,

Hzk � k
p

D2 2 E2, k � 0, 61, . . . , 62S (7)

that provide resonant tunneling between matching spin
levels m and m0 � 2m 2 k [4,9,15]. At Hz � Hzk the
effective height of the barrier,

Ueff � D�S2 2 m2
b� 2 Hz�S 1 mb� , (8)

is determined by m � mb , 0 that corresponds to the low-
est pair of levels, m and m0, whose tunneling splitting,
Dmm0 , is greater than the sum of their widths, Gmm0 �
Gm 1 Gm0. Equation (8), even though it accounts for only
one tunneling pair of levels, is a good approximation for
the relaxation problem (see discussion after Eq. (5.15) and
Fig. 5 of Ref. [9]). The splitting is determined by high
powers of E and Hx 0 , and, thus, strongly depends on co-
ordinates [see Eq. (2.6) of Ref. [9] for the effect of the
transverse field and Eq. (4) of Ref. [16] for the effect of
transverse anisotropy]. Consequently, the dependence of
mb on Gmm0 is weak. In the kelvin range we will use the
experimental value Gmm0 � 200 Oe [17].

To illustrate the barrier reduction by dislocations in
the thermally activated regime (kelvin range), we numeri-
cally diagonalized Eq. (5) for the 100 3 100 Mn12 lattice
around a single edge dislocation at T � 2 K and H � 0.
We determine tunneling levels mb and the effective bar-
riers Ueff

i from Eq. (8) for all sites i of the pattern and
construct the relaxation curve

R�t� �
1
N

X
i

exp�2ai t�t� , (9)

where ai � e�U`2Ueff
i ��T , U` � DS2 is the unperturbed

barrier, and t � t0eU`�T is the relaxation time far from
the dislocation. One can see from Fig. 2 that the effect
of dislocations on relaxation is profound. Even for one
dislocation per 100 3 100 sites in the XZ plane, which
corresponds to the concentration of dislocations as small
as c � 1024, more than half of the Mn12 molecules relax
faster than in the ideal crystal.

At temperatures below 1 K, where spin relaxation oc-
curs via tunneling from the ground state, the influence
of dislocations becomes even more dramatic. In contrast
to the small barrier reduction in the thermally activated
regime, here the role of dislocations is to provide the main
source of spin relaxation. The resulting level splittings
are distributed over many decades. Figure 3a shows dis-
tributions of the ground-state level splittings obtained nu-
merically for a randomized array of edge dislocations with
concentration c � 1022 for k � 0 and k � 8 resonances.
Since outside dislocation cores the perturbations of the
uniaxial Hamiltonian are small, one can scale the split-
ting distributions for even values of k using the pertur-
bative Eq. (4) of Ref. [16] for the ground-state splitting
(m � 2S, m0 � 2m 2 k � S 2 k),
187203-2
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FIG. 2. Relaxation curves for the 100 3 100 Mn12 lattice
around a single edge dislocation along the y axis at T � 2 K
and H � 0. Faster relaxation of Mn12 molecules caused by the
dislocation leads to a nonexponential form of R�t�t�, where t
is the relaxation time for an ideal sample. Dashed line: Pure
thermal exponential in the ideal Mn12 crystal. Inset: Tunneling
levels mb � 0, 21, 22, 23, and 24 at different points of the
lattice (mb � 0 in the small lightmost regions corresponds to
the 65 K barrier in an ideal crystal).

Dki � gk

µ
Ei

8D

∂S2k�2

, (10)

where

gk �
8D

��S 2 k�2 2 1�!	2

s
�2S 2 k�! �2S�!

k!
. (11)

Then the distribution of ln�Dki�gk���S 2 k�2� � Ei��8D�
does not depend on k; see Fig. 3b. For k fi 0 there is also
a transverse field Hx0 in addition to the transverse aniso-
tropy E in Eq. (5), which should modify Eq. (10). This
modification, however, is small away from the dislocation
cores. A more significant effect of the transverse field
generated by the dislocations is unfreezing of tunneling
resonances with odd values of k.

Let us study now spin relaxation produced by sweeping
the field Hz through a tunneling resonance. The population
of the metastable state with m � 2S obeys [9]

�N2S � 2
D2

2
G

�´2S 2 ´S2k�2 1 G2 N2S , (12)

where ´2S 2 ´S2k � ykt and yk � �2S 2 k�dHz�dt.
Integrating this equation one obtains the probability for the
molecule to remain in the metastable well after crossing the
resonance, P � exp�2pD2��2yk�	, which coincides with
the Landau-Zener formula. The relaxation curve R�yk�
for a sample with dislocations

R�yk� �
1
N

X
i

exp�2pD2
i ��2yk�	 (13)

at different resonances k is shown in Fig. 4. At odd k re-
laxation is produced by the transverse field Hx 0 in combi-
187203-3
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FIG. 3. (a) Distribution of level splittings (in kelvin) created by
a randomized array of edge dislocations with c � 1022 for reso-
nances with k � 0 and k � 8; (b) scaled representation with gk
of Eq. (11).

nation with the transverse anisotropy. For k � 1 the effect
of Hx0 is still small and the corresponding relaxation curve
is noticeably shifted to the right. Because of the wide dis-
tribution of splittings, the sweeping rate needed to make
different Mn12 molecules to relax stretches over many de-
cades. Consequently, R�yk� can be plotted only on the log
scale. On that scale any individual exponential becomes a
step function, exp�2pD

2
i ��2yk�	 ) u�1 2 pD

2
i ��2yk�	.

Since R�yk � represents the fraction of Mn12 molecules
which have pD2

i , 2yk and, thus, do not relax, R�yk� and
the distribution of splittings are related as the integral and
the derivative. Correspondingly, R�yk� for different k can
be scaled the same way as in Fig. 3b. Deviations from the
perfect scaling in Fig. 4b are due to the transverse field.

The effect of dislocations, even at moderate concentra-
tions, appears to be much stronger than the effect of trans-
verse fields H� from nuclear spins and dipole interactions.
Simple arguments of the perturbation theory show that the
187203-3
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FIG. 4. (a) Spin relaxation as a function of the field sweep
rate yk � �2S 2 k�dHz�dt for a randomized array of edge dis-
locations with c � 1022 at different tunneling resonances k.
(b) Scaled representation with gk of Eq. (11). dHz�dt is mea-
sured in K2 � 1011 T�s.

effect of dislocations becomes comparable with that of H�

at E 
 H2
���DS2�. With the help of Eqs. (4) and (6) one

finds that for c . 1026 the effect of dislocations on tun-
neling is greater than the effect of hyperfine and dipole
fields at almost all crystal sites.

We have shown that dislocations in Mn12 crystals should
be the main source of spin tunneling in the kelvin and sub-
kelvin temperature range. Local rotations of the easy axes
due to dislocations give rise to the effective transverse field
which unfreezes odd resonances. Tunneling lifetimes due
to dislocations are spread over many decades, which re-
sults in the stretched relaxation, especially pronounced in
the subkelvin range. Distribution of the tunneling rates and
the relaxation law obey scaling which does not depend
on the type of crystal defect. That scaling should be seen
in experiment. Eventually, it may also become possible
to observe magnetization patterns on the surface of Mn12
187203-4
crystals, shown in Fig. 1. Similar effects must exist in the
Fe8 molecular nanomagnet where dislocations may explain
the odd tunneling resonances. The effect of dislocations on
even resonances in Fe8 should be less pronounced, how-
ever, because of its strong transverse magnetocrystalline
anisotropy.

We thank Jonathan Friedman for useful remarks. This
work has been supported by the NSF Grant No. 9978882.

Note added.—After this Letter was submitted, four
groups [18–21] informed us about experimental evidence
of the effects discussed here.
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