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We study two-dimensional transport of quasirelativistic electronic excitations in graphene in the presence of
Coulomb impurities and topological structural defects described by static long-range-correlated random scalar
and vector potentials, respectively. Our results for the transport and cyclotron rates as well as the decay rate of
the Friedel oscillations provide the means of identifying the dominant scattering mechanism in graphene. We
also discuss the properties of zero-energy states and pertinent localization scenarios.
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In recent years, the theory of electron localization in two
dimensions �2D� has been extended to the situation where,
instead of �or in addition to� a random potential �RP�, there
exists a random magnetic field �RMF�. This type of problem
emerges in the context of compressible quantum Hall states,1

finite-temperature dynamics of spin liquid states in Mott
insulators,2 and the vortex line liquid phase in high-Tc
cuprates,3 to name a few.

The recently discovered graphene provides yet another
application of this disorder model. Although a number of
different �anti�localization-related phenomena in graphene
have already been discussed,4,5 these studies were limited to
the case of short-range �albeit, possibly, arbitrarily strong�
disorder. Despite its technical convenience, however, the lat-
ter assumption is not applicable to graphene, as suggested by
such experimental evidence as the linear electron density de-
pendence of the conductivity,6 which appears to be inconsis-
tent with the predictions based on the model of short-range
disorder.7

The recent work of Ref. 7 invoked the effect of long-
range Coulomb impurities residing in the SiO2 substrate in
order to explain the data of Ref. 6. Independently, it has also
been pointed out that besides the Coulomb �“scalar”� RP,
graphene possesses a “vector” �RMF� disorder representing
topological defects, such as disclinations �isolated pentagon
and heptagon rings�, dislocations �pairs of adjacent penta-
gons and heptagons�, and Stone-Wales defects �double
pairs�.8 The presence of structural defects in free-standing
graphene is inevitable due to the intrinsic thermodynamic
instability of 2D crystals.

In previous work, the RMF in graphene was repeatedly
treated as being short range in terms of the vector potential
�rather than the magnetic field itself�, which simplification
facilitates the use of the powerful machinery of the renormal-
ization group8 and 2D conformal field theory.9

By contrast, in the present Rapid Communication we
study the effects of a genuine long-range-correlated RP and
RMF on electron transport in graphene and contrast the re-
sults with those pertaining to the conventional 2D electron
gas �2DEG� with parabolic electron dispersion. The main
goal of our analysis is to develop the means of ascertaining
the dominant mechanism of elastic scattering in graphene.

The low-energy Dirac-like quasiparticle excitations resid-
ing near two conical points �K and K�� in the hexagonal
Brillouin zone of graphene are described in terms of the �re-
tarded� Green function

ĜR��,p� =
�� + �R��̂0 + v�̂p

�� + �R�2 − v2p2 , �1�

where v is the Fermi velocity and the 4�4 �̂ matrices �̂�

= �i1 � �3 ,1 � �2 ,−�3 � �1� act in the space of the Dirac
bispinors 	= (	K�A� ,	K�B� ,	K��A� ,	K��B�) composed of
the values of the electron wave function on the A and B
sublattices of the bipartite lattice of graphene.

These Dirac fermions are subject to random scalar �s� and
vector �v� fields whose spatial correlations are controlled by
the Gaussian averages

�a��q�a
�− q�� = ��0�
0ws�q� + ��i�
jwv�q���ij −
qiqj

q2 � . �2�

The variances ws,v�q�=4�2s,v /q2 are proportional to the ar-
eal densities of the Coulomb impurities �s=g2ni where g
=e2 /�0v is the Coulomb interaction parameter� and topologi-
cal defects �v�nd�, respectively.

Strictly speaking, in the case of graphene the vector field
a� becomes a 4�4 matrix,10 thus endowing Eq. �2� with the
structure of a 16�16 matrix. It appears, however, that this
technical complication does not affect any of the qualitative
results presented below and, therefore, we will use Eq. �2� as
is from now on.

A preliminary insight into the problem can be gained by
attempting to compute the fermion self-energy in the frame-
work of the customary self-consistent Born approximation
�SCBA�

�̂�
R��,p� =� dq

�2��2

w��q�

ĜR��,p + q�−1 + �̂�
R��,p + q�

. �3�

In the case of the RP, the singular behavior of ws�q� at q
→0 gets replaced by ws�q�=s / �q+��2 due to the Debye
screening. The corresponding Debye momentum �=4gpF
proportional to the Fermi surface radius pF= ��ne�1/2, where
ne is the density of excess electrons with respect to half
filling, renders the corresponding quasiparticle width finite:

�s = Im Tr�̂0�̂s
R��,�/v� �

v2s

�
min	1

g
,

1

g2
 . �4�

By contrast, a calculation of the self-energy associated with
the RMF is impeded by the lack of screening for the random
vector potential, which results in an infrared divergence:

PHYSICAL REVIEW B 75, 241406�R� �2007�

RAPID COMMUNICATIONS

1098-0121/2007/75�24�/241406�4� ©2007 The American Physical Society241406-1

http://dx.doi.org/10.1103/PhysRevB.75.241406


�v = Im Tr�̂0�̂v
R��,�/v� � vv

1/2�ln L �5�

where L is the size of the system.
This intrinsic divergence cannot be avoided even if one

proceeds beyond the SCBA, for it stems from the non-gauge-

invariant nature of the fermion Green function ĜR�t ,r� for
r�0. Taken at its face value, the divergent self-energy �5� is
indicative of a strongly non-Lorentzian form of the RMF-
averaged Green function.11

It is worth mentioning that, unlike in the previously dis-
cussed examples of the RMF problem involving some aux-
iliary fermions that are different from physical electrons,1–3

in the present case there is no physical ground for replacing
the original Green function �1� with a gauge-invariant ampli-

tude such as, e.g., ĜR�t ,r�= �	�t ,r�exp�−i�Ca�r��dr��
�	†�0,0��.

Nonetheless, Eq. �3� can be used to evaluate the Drude
transport rates in both RP and RMF cases. Inserting the fac-
tor 1−cos � related to the transferred momentum q
=2p sin � /2 into the integrand in Eq. �3� and putting �=�F
=vpF, one obtains the first-order Born estimates

��
tr =� dq

�2��2���F − vp + q�w��q��1 − cos �� , �6�

which both turn out to be finite,

�s
tr �

v2s

�F
min	1,

1

g2
, �v
tr �

v2v

�F
, �7�

and inversely proportional to ne
1/2, thereby giving rise to the

Drude conductivity ��ne, in agreement with experiment6

�note that the experimentally relevant value of the Coulomb
coupling is g�1�, and in contrast to the situation in the
conventional 2DEG where the transport rate ��

tr�� /m de-
pends on the band mass m, thus yielding ��ne

1/2.
To make further progress, we employ a path-integral rep-

resentation of the Dirac fermion Green function which was
devised in Ref. 12:

GR
„�,ra��r�… = �

0

�

dt�
r�0�=0

r�t�=r

Dr Dp

� exp�iŜ0�t� + i�
0

t

d��a0�r��

−
dr

d�
�A + a�r��� �8�

where A� represents the external field �if any� and the free
Dirac action reads

Ŝ0�t� = �
0

t

d�	��̂0 + p�dr

d�
− �̂�
 . �9�

In Eq. �8�, the usual ordering of �̂ matrices with respect to
the proper time � must be performed according to the order
of their appearance in the series expansion of the exponent.
In contrast to various approximate �e.g., Bloch-Nordsieck�
representations, the integration over the momentum p���

conjugate to the spatial coordinate r��� allows one to account
for the spinor structure of the fermion propagator �1� exactly.

Averaging over the disorder variables introduces a prod-
uct of the “Debye-Waller” attenuation factors into the inte-
grand in Eq. �8� �here u�= �1,dr /d���

W��r���� = exp�−
1

2
� dq

�2��2�
0

t

d��
0

t

d��

� u����u
�����a��q�a
�− q��eiq�r���−r������ . �10�

Despite its generally non-gauge-invariant nature, the ampli-
tude �8� does appear to be gauge invariant for closed trajec-
tories �r=0�, thus allowing one to analyze such magne-
totransport effects as de Haas–van Alfven �dHvA�
�Shubnikov–de Hass �SdH�� oscillations of the density of
states �hence magnetization, etc.� and conductivity in a weak
uniform external magnetic field B�s,v.

Evaluating Eq. �8� on the semiclassical trajectories which
dominate the path integral and correspond to multiple repeti-
tions of the Larmor orbit of radius Rc=� /vB, one obtains a
field-dependent density of states


��B� = 
��0� �
n=−�

�

e2�inA���−n2�S1���, �11�

where A���=��2 /B is the area of the Larmor orbit and the
attenuation factor contributes as

�S1��� = − �
�=s,v

ln W� = ��s

B
+

v�2

v2B2� , �12�

which allows one to identify the proper cyclotron rates

�s
cycl � vs

1/2, �v
cycl � ��2v2v�1/4, �13�

associated with the linear and quadratic �in powers of 1 /B�
Dingle plots, respectively. These results should be contrasted
with their “nonrelativistic” counterparts ��s

cycl�s /m ,�v
cycl

���v /m�1/2�.
The path integral technique is also well suited for analyz-

ing various gauge-invariant two-particle amplitudes. For one,
the ballistic Drude conductivity manifesting the transport
rates �7� can be found by computing the average

�ĜR�� ,r�ĜA�� ,−r�� in the semiclassical approximation.
Expanding the corresponding path integral about a proper
semiclassical trajectory �see below�, one can systematically
study ballistic corrections to the Drude conductivity. Due to
the long-range nature of the RMF disorder, these corrections
do not appear to be logarithmic and, therefore, are not
readily amenable to a simple resummation via renormaliza-
tion group �compare with the case of short-range disorder5�.

Another example of a relevant two-particle amplitude is
given by the correlation function of the electron wave func-
tions’ amplitudes related to the average,13
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�ĜR��,r�ĜR��,− r�� = �
i=1,2

�
0

�

dti�
ri�0�=0

ri�ti�=±r

DriDpi

� eiŜ0�t1�eiŜ0�t2� �
�=s,v

�
i,j=1,2

W��ri��1�

− r j��2�� . �14�

Observe that the product of the Wv factors yields an expo-
nent of the Amperian area of a contour formed by the trajec-
tories r1��� and −r2���.

In the ballistic regime, Eq. �14� receives its main contri-
bution from the pairs of trajectories with single-valued pro-
jections onto the semiclassical straight-path trajectory r�0�

����=r� / t.2,13 Therefore, one can separate out the coordi-
nate variables into the center-of-mass and relative ones
�r±=r1±r2, p±=p1±p2�, expand up to the second order in r−

and p−, and integrate over all the variables except for the
transverse deviation from the straight path x�

− ���, thus arriv-
ing at the disorder-induced correction to the free Dirac action

�S2�t� = �
0

t

d��s��x�
− ����2 + vvx�

− ���� . �15�

Comparing typical values of the free fermion action and the
correction �15�, we find that the condition S0��S, under
which the path integral �14� would be dominated by the tra-
jectories close to r�0����, is readily satisfied in the ballistic
regime ���v�

1/2�.
Thus, in the leading approximation, the amplitude �14� is

given by the product of the free Dirac propagator ĜR�� ,r�
��1+ �̂r /r��� /v3r�1/2 exp�i�r /v� �for �r /v�1� and a Fou-
rier transfrom �over the variable �− p� of the Green function
g�x ,x�� , p�x=x�=0 of the 1D equation of motion in the direc-
tion perpendicular to the classical trajectory,

�v2�x
2 + �� + ivvx + i�sx

2�2 − v2p2�g�x,x��,p� = ��x − x�� .

�16�

The imaginary effective potential appearing in �16� restrains
the transverse Dirac fermion’s motion, unlike a real poten-
tial, which allows for Klein tunneling.

In the pure RP or RMF case, the solution of Eq. �16� can
be presented in the form

gs�0,0�� =
1

�v6�2s�1/4 fs� �

vs
1/2� ,

gv�0,0�� =
1

�v5�v�1/3 fv� ��1/3

v4/3v
2/3� . �17�

In the ballistic regime, the scaling functions fs,v�z� approach
the parabolic cylinder and Airy functions, respectively.

The real-space asymptotic behavior of the irreducible part
of the wavefunction amplitudes’ correlator

L4�	2�r�	2�0�� − 1 =
�Im ĜR��,r�Im ĜR��,− r��

��
����2

� ���
FO

�2r
�1/2

cos�2�r�e−r��
FO

�18�

allows one to identify the rates controlling the spatial decay
of its Friedel-type oscillations,

�s
FO � vs

1/2, �v
FO � v4/3v

2/3

�1/3 , �19�

and contrast them with their nonrelativistic counterparts
��s

FO��s
tr and �v

FO�v
2/3�1/3 /m2/3�.

These rates �equivalently, length scales� are also mani-
fested by other types of Friedel oscillations �which, in prin-
ciple, can be detected in scanning tunneling microscopy
�STM� experiments�, such as those of the electron density
profile induced by an isolated impurity or the Ruderman-
Kittel-Kasuya-Yosida interaction between a pair of magnetic
ions. That is, at distances r�v /��

FO the previously found
behavior ���r��cos�2�r� /r314 changes to

���r� � ���
FO

r5 �1/2

cos�2�r�e−r��
FO

. �20�

Together with the transport �7� and cyclotron �13� rates, the
distinct energy �hence, electron density� dependences pre-
sented in Eq. �19� in experiment, all the rates would naturally
be evaluated at �=�F� can be used to discriminate between
the RP and RMF mechanisms of elastic scattering in
graphene by performing a combination of transport, magne-
tization, and STM measurements.

In the complementary low-energy limit ���v�
1/2�, the

above eikonal-type approach ceases to be applicable. None-
theless, one can still gain some insight into the localization
properties of the system in question by focusing on zero-
energy states �if any�.

In the �apparently, more challenging� case of a pure RMF,
these states can be explicitly constructed in the form

	±�r� � �1 ± �̂0�� e��r�

e−��r� � �21�

for an arbitrary configuration of the random vector potential
parametrized as ai�r�=�ij� j��r�.

In a finite system, a degree of the wave functions’ local-
ization �or a lack thereof� can be inferred from the inverse
participation ratios

Pn =� � 	�r�2ndr

L2�� 	�r��2dr��n� � v
n , �22�

where the Gaussian averaging over the disorder field ��r�
was performed with the weight P���r���exp
�−�dr��2��2 /2v�.

Equation �22� is in stark contrast with that in the short-
range case where the zero-energy wave functions demon-
strate a prelocalized behavior and the participation ratios ex-
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hibit a multifractal spectrum of anomalous dimensions Pn

�L−an+bn2
.9

Taken at its face value, Eq. �22� is suggestive of a possible
strong localization of the zero-energy states, the apparent
localization length being of order �v

−1/2. If this is indeed the
case, it would also be conceivable that all the states up to the
energy �vv

1/2 might be localized.
A more familiar framework for studying localization, as

manifested by the two-particle amplitudes in the diffusive
regime ��1±�2���

tr�, is provided by the nonlinear � model
�NL�M�. In the strongly doped case ��F���

tr�, a derivation
of the corresponding �supersymmetric� NL�M would closely
follow the solution of the RMF problem for nonrelativistic
spinful fermions with a gyromagnetic ratio equal to 2.15 This
model features the same unitary symmetry as that with only
an orbital coupling to the long-range RMF,16 thus implying
localization of all the states.

In that regard, the argument of Ref. 17 that RMF scatter-
ing suppresses any quantum coherence between pairs of
time-reversed trajectories �which can result in either localiz-
ing or antilocalizing behavior, depending on the relative
strength of the intra- vs intervalley scattering4� would only
apply in the case of a smoothly varying �non-Gaussian�
RMF.

Indeed, as the aforementioned NL�M analysis suggests,
in the case of a Gaussian RMF described by Eq. �2� the onset
of localization is merely postponed until greater length scales
�e��2

v /�v
tr instead of e��v /�v

tr, provided that the bare con-
ductivity ��1�. It should be noted, however, that by mod-
eling the RMF as a random Gaussian variable with the vari-
ance �2�, one misses out on the possibility of delocalized
semiclassical “snake” trajectories, akin to those found in the
case of nonrelativistic fermions in a smoothly varying RMF
with the correlation length greater than v /�.18

In the opposite �undoped, �F���
tr� limit, a systematic

derivation of the NL�M is impeded by the lack of a suitable
expansion parameter, for the bare conductivity takes values

of order �e2 /h. This caveat notwithstanding, it was recently
argued that the NL�M description can be applied all the way
down to �F=0, where the corresponding unitary NL�M ac-
quires a topological term which, in the absence of intervalley
scattering, precludes localization and drives the system into a
critical point characterized by a universal conductivity,19 in
general agreement with the experimental observation of a
robust ���F=0��4e2 /h6.

Considering that the analysis of Ref. 19 was �at least,
seemingly� carried out in the default case of a Gaussian dis-
order described by a momentum-independent correlator, it
would be interesting to see if this conjecture still holds for
the genuine long-range RMF given by Eq. �2�, despite the
apparent localizing behavior of the zero-energy states exhib-
ited by Eq. �22� �a negative result would obviously disfavor
the topological defects as an important scattering mecha-
nism, as far as the possibility of a finite conductivity at �F
=0 is concerned19�.

In summary, we studied the behavior of two-dimensional
Dirac fermions subject to long-range-correlated random sca-
lar and vector potentials which represent the Coulomb impu-
rities and topological structural defects in graphene, respec-
tively. In the ballistic regime of large quasiparticle energies,
we obtain different scattering rates manifested by the Drude
conductivity as well as dHvA �SdH� and Friedel oscillations.
The distinct energy �density� dependencies of such rates pro-
vide a possible means of ascertaining the dominant mecha-
nism of elastic scattering in graphene. Also, in the comple-
mentary low-energy regime, we find a signature of strong
localization due to a long-range RMF and discuss pertinent
�de�localization scenarios.

Our results can also be applied to formally related prob-
lems involving disordered Dirac fermions, including that of
quasiparticle transport in the vortex line liquid phase of cu-
prates.
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