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A QUESTION OF B. PLOTKIN ABOUT THE SEMIGROUP 
OF ENDOMORPHISMS OF A FREE GROUP 

EDWARD FORMANEK 

(Communicated by Stephen D. Smith) 

ABSTRACT. Let F be a free group of finite rank n > 2, let Enrd(F) be the semi- 
group of endomorphisms of F, and let Aut(F) be the group of automorphisms 
of F. 

Theorem. If T: End(F) -- End(F) is an automorphism of End(F), then 
there is an a E Aut(F) such that T(/3) = c o t o ce- for all /3 e End(F). 

For a group G, let Aut(G) denote the group of automorphisms of G, and let 
End(G) denote the semigroup of endomorphisms of G. Note that Aut(G) is the 
group of invertible elements of End(G), so any automorphism of End(G) induces 
an automorphism of Aut(G) by restriction. 

In 1975, J. L. Dyer and the author [2] answered a question of G. Baumslag by 
proving that if F is a free group of finite rank n > 2, then Aut(F) is a complete 
group; that is, the center of Aut(F) is trivial and every automorphism of Aut(F) is 
inner. More recently, new proofs and various generalizations of this theorem have 
been obtained by M. R. Bridson and K. Vogtmann [1], E. Formanek [3], D. G. 
Khramtsov [4], and V. Tolstykh [51. 

While the author was visiting Israel in May, 2000, B. Plotkin asked: What is 
the structure of the group of automorphisms of the semigroup End(F)? Using the 
completeness of Aut(F), it is shown below that every automorphism of End(F) is 
a conjugation by an element of Aut(F). 

Notation. Endomorphisms of F = F(xl,..., x,) will be regarded as functions acting 
on the left. Since an endomorphism a : F -s F is completely determined by its 
values on any free generating set, it can be defined by specifying a (Yi), ..., a (Yn), for 
some free generating set {Yi, ..., Yn} of F. The semigroup operation of End(F) is a 
composition of functions, denoted "o" . Thus (a o ,)B(x) a-oa(/3(x)), and saying that 
T is an automorphism of End(F) means that T: End(F) -> End(F) is a bijection 
satisfying T(ao/3) -T(a) oT(/3), for all a, 3 c End(F). Multiplication in F will be 
denoted by juxtaposition, elements of F will be represented by lower case Roman 
letters, and elements of End(F) will be represented by lower case Greek letters. 
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Theorem. Let F = F(xI, ..., xn) be a free group of finite rank n > 2, and suppose 
that T: End(F) -) End(F) is an automorphism of the semnigroup End(F). Then 
there is an a C Aut(F) such that T(/3) = ae o i o a1 for all 3 c End(F). 

Proof. Since T carries Aut(F) to itself, the completeness of Aut(F) [2, Theorem A] 
implies that there is an a C Aut(F) such that T(/3) = ao/3oa-1 for all i C Aut(F). 
Replacing T by T', where 

T'() =a-1 o T(0i) o a, for all /3C End(F), 

shows that proving the theorem is equivalent to showing 
(*) If T: End(F) -) End(F) is an automorphism of End(F) and 

T(/i) = / for all / C Aut(F), then T(/i) = / for all / C End(F). 

Note that if T satisfies the hypotheses of (*), so does T-1, so any property estab- 
lished for T or T-1 will also hold for the other. 

For a C F, let -Ya C Aut(F) be the inner automorphism of F defined by Ya(x)= 
axa-1, for all x C F. Then for all p C End(F), a,x C F, 

(PO ?a)(X) = p(axa-1) - p(a)p(x)p(a)-1 = (l'p(a) ? p)(X), 

SO p o 'Ya = 'p(a) o p. Now apply T, noting that T(ya) =Ya, by the hypothesis on T 
in (*). This gives 

T(p) 0 a = T(p 0 Ya) = TQ(Yp(a) 0 P) = 'Yp(a) 0 T(p). 

Hence for any x C F, 

T(p) (a)] [T(p) (x)] [T(p) (a)] -1 = T(p) (axa-1) = [T(p) 0 'a (X) 

= [7p(a) 0 T(p)] (x) = p(a) [T(p) (x)] p(a) - 1, 

which implies that p(a)-1[T(p)(a)] centralizes T(p)(F), for all p C End(F), a c F. 
Since any property established for T also holds for T-1, we may replace T by T-1. 
Then substituting T(p) for p gives 

(1) [T(p)(a)j-1p(a) centralizes p(F), for all p C End(F), a c F. 
Now suppose that p C End(F) is such that p(F) is not abelian. Then the 

centralizer of p(F) in F is trivial, so (1) implies that [T(p)](a) = p(a) for all a C F; 
i.e., T(p) = p. Thus we have shown that: 

(2) If p(F) is not abelian, then T(p) = p. 
To establish (*), it remains to show that T(p) = p for endomorphisms p such that 

p(F) is abelian. Abelian subgroups of F are trivial or infinite cyclic. The trivial 
endomorphism (p(x) = 1, for all x c F) is characterized by the multiplicative 
property p o 0- = p for all o- C End(F), so it is fixed by T. Thus all that remains to 
be proved is the following: 

(3) If T: End(F) -) End(F) satisfies the hypotheses of (*) and p C End(F) is 
an endomorphism such that p(F) is infinite cyclic, then T(p) = p. 

To prove (3), consider the endomorphism 3 : F -) F defined by 6(xi) 
XI, 0(X2) = 6(X3) = ... = 6(Xn) = 1. The centralizer of 3(F) = gp(xi) is gp(xi) 
itself, so (1) implies that [T(3)(a)]-16(a) c gp(xi) for all a C F. Hence there are 

integers i1, ...,iin such that T()(x) =3jx, for j =1,...,rn. 
For k = 2, ..., n, let 0k be the automorphism of F defined by 
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Then 6 o ak = , so 

T() o0k =T(6) o T(ak) = T(6 o ok) = T(6) 

and 

xjl+ik) -T(6)(xlxk) = [T(6) oukl](xI) = T(6) (xi) xi, 

so ik = O for k = 2,..., n. Since 3 o 5 =, 

xil T(6) (xi ) =[T(6) o T(6)] (xi ) =xil 
Thus i2 = i1, so i1 = 0 or i1 = 1. The possibility that i1 0 is excluded since T(6) 
would be the trivial endomorphism (T(6)(F) = 1), which we already know is fixed 
by T. Thus i1 = 1, so T(6) = 3. 

Finally, suppose that p c End(F), and that p(F) = gp(w), an infinite cyclic 
group. There is a free basis {yl, ..., Y} for F such that P(YI) = w, P(Y2) P (Y3) 

P(yn) = 1. Let u be the automorphism of F defined by (v(xi) y., (i= 
1,...,In), and let T c End(F) be defined by T(YI) = w, T(y2) T (Yn)T(zY I 
where z is chosen so that gp(w, z) is free of rank two. Computing the images of 
YI, **, Yn shows that p = Tro 3 o o -1 Since T fixes T, I, and 6, it also fixes p, 
which establishes (3) and completes the proof of the theorem. 
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