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Based on Brownian ratchets, a counterintuitive phenomenon has recently emerged —namely, that two
losing games can yield, when combined, a paradoxical tendency to win. A restriction of this phenomenon
is that the rules depend on the current capital of the player. Here we present new games where all the
rules depend only on the history of the game and not on the capital. This new history-dependent structure
significantly increases the parameter space for which the effect operates.
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In the early 1990s it was shown that a Brownian particle
in a periodic and asymmetric potential moves to the right
(say) in a systematic way when the potential is switched
on and off, either periodically or randomly [1,2]. This
so-called flashing ratchet is in the class of phenomena
known as Brownian ratchets [3]. The flashing ratchet can
be viewed as the combination of two dynamics: Brownian
motion in an asymmetric potential and Brownian motion
on a flat potential. In each of these two cases, the par-
ticle does not exhibit any systematic motion. However,
when they are alternated the particle moves to the right.
The effect persists even if we add a uniform external force
pointing to the left. In that case, the two dynamics dis-
cussed above yield motion to the left but when they are
combined, the particle moves to the right.

It has recently been shown, in the seminal papers [4–7],
that a discrete-time version of the flashing ratchet can
be interpreted as simple gambling games. Here we have
two losing games which become winning when combined.
These games are the simplest situation of a paradoxical
mechanism which, we believe, can be present in many situ-
ations of interest. The apparent paradox points out that if
one combines two dynamics in which a given variable de-
creases the same variable can increase in the resulting dy-
namics. Examples of related phenomena include enzyme
transport analyzed by a four-state rate model [8], finance
models where capital grows by investing in an asset with
negative typical growth rate [9], stability produced by com-
bining unstable systems [10], counterintuitive drift in the
physics of granular flow [11], the combination of declining
branching processes producing an increase [12], and coun-
terintuitive drift in switched diffusion processes in random
media [13].

The games originally described in [4–7] are expressed
in terms of tossing biased coins. The games rely on a state-
dependent rule based on the player’s capital and two losing
games can surprisingly combine to win. This effect was
shown to be essentially a discrete-time Brownian ratchet
[4]. This is of interest to information theorists who have
long studied the problem of producing a fair game from
biased coins [14] and winning games from fair games [15],
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inspired by the work of von Neumann [16]—the games we
are discussing go a step further, demonstrating a winning
expectation produced from losing games and have recently
been analyzed from the point of view of information theory
[17]. Seigman [18,19] has reinterpreted the capital of the
games in terms of electron occupancies in energy levels,
recasting the problem in terms of rate equations. Similarly,
Van den Broeck et al. [7] have likened the analysis of the
transition probabilities of the games to Onsager’s treatment
of reaction rates in circular chemical reactions [20]. It has
been suggested in [6] that an area of interest to quantum
information theory would be to recast the games in terms of
quantum probability amplitudes along the lines of [21–23].
Quantum ratchets have now been experimentally realized
[24] and thus quantum game theory based on ratchets is of
interest.

However, one of the limitations of the game paradox
and its applicability to further situations is that it relies on a
modulo rule based on the capital of the player. The modulo
arithmetic rule is quite natural for an interpretation of the
paradox in terms of energy levels; however, for processes
in biology and biophysics it is unnatural. Applicability of
the paradox to population genetics, evolution, and econom-
ics has been suggested [25] and thus a desirable version of
the paradox would be to have rules independent of capital.

In this Letter we present a new interpretation of the para-
dox in terms of good and bad biased coins which are played
more or less often when the two games are combined. This
interpretation allows us to introduce an important modifi-
cation to the original games, namely, games which do not
depend on the capital but only on the recent history of wins
and losses.

The two original games are as follows. The player has
some capital X�t�, t � 0, 1, 2, . . . . In game A the capital
is increased by one with probability p and decreased by
one with probability 1 2 p. In game B, the rules are

Prob. of win Prob. of loss

X�t��3 [ � p1 1 2 p1

X�t��3 ” � p2 1 2 p2
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Here “win” means increasing the capital by one and
“loss” means decreasing it by one. For the choice,
p � 1�2 2 e, p1 � 1�10 2 e, and p2 � 3�4 2 e, with
e . 0, the two games have a tendency to lose. More
precisely �X�t�� is a decreasing function of the number
of runs t. However, if in each run we randomly choose
the game we play, then, for e small enough, �X�t�� is an
increasing function of t.

An explanation of this paradox is as follows. First, let
us imagine the above rules as implemented by three biased
coins, A, B1, and B2, with probability for tails p, p1, and
p2, respectively. We see that A and B1 are “bad coins,”
whereas B2 is a “good coin” for the player. When game
B is played alone, at first sight one would say that B1 is
used one-third of the time. However, this is not the case.
When the capital is a multiple of 3, X�t� � 3n, there is a
high probability of losing; i.e., X�t 1 1� � 3n 2 1 is the
most likely value for the capital at t 1 1. If this is the
case, we have to use coin B2 in the t 1 1 run and the most
likely outcome is now a win. Therefore, the most likely
capital at t 1 2 is again X�t 1 2� � 3n. We see that the
probability of X�t� being a multiple of 3 is bigger than 1�3,
due to the very rules of game B. The precise value of the
equilibrium probability can be calculated by defining the
Markov process Y �t� � X�t� mod3, which takes on only
three values, Y �t� � 0, 1, 2. The stationary distribution
for Y �t�, when e � 0 is given by p0 � 5

13 , p1 � 2
13 , and

p2 � 6
13 . The fairness of the game is indicated by p0p1 1

�p1 1 p2�p2 � 1�2.
When coin A comes to play, the stationary distribution

changes. For instance, if games A and B are switched at
random, one has p

0
0 �

245
709 , p

0
1 �

180
709 , and p

0
2 �

284
709 . The

game is no longer fair because p
0
0 � 245�709 � 0.346 is

closer to 1�3 than p0 � 0.385, for the bad coin and now
the good coin, B2, is played more often than before. The
effect persists even if coin A is bad, leading to the paradox.

This interpretation helps us to find a new version of the
paradox with capital-independent games. Game A is the
same as before and we introduce game B0 which is played
with four coins: B0

1, B0
2, B0

3, and B0
4. Which coin is used

now depends on the history of the game:

Before last Last Coin Prob. of win Prob. of loss
t 2 2 t 2 1 at t at t at t

Loss Loss B0
1 p1 1 2 p1

Loss Win B0
2 p2 1 2 p2

Win Loss B0
3 p3 1 2 p3

Win Win B0
4 p4 1 2 p4

This is in fact the most general game depending on the
outcome of the two last runs. The paradox could even
be reproduced with this type of game if the bad coins in
game B0 are played more often than what is expected in a
completely random game, i.e., one-quarter of the time.

Notice that the capital X�t� in game B0 is not a Markov-
ian process. However, one can define the vector
Y �t� �

µ
X�t� 2 X�t 2 1�

X�t 2 1� 2 X�t 2 2�

∂
, (1)

which can take four values �61, 61� and does form a
Markov chain. The transition probabilities are easily
obtained from the rules of game B0. Let p1�t�, p2�t�,
p3�t�, and p4�t� be the probabilities that Y �t� is �21, 21�,
�1, 21�, �21, 1�, and �1, 1�, respectively. The proba-
bility distribution �p�t� verifies the evolution equation:
�p�t 1 1� � A �p�t�, where the matrix A is given by the
transition probabilities and reads

A �

0
BBBB@

1 2 p1 0 1 2 p3 0
p1 0 p3 0
0 1 2 p2 0 1 2 p4
0 p2 0 p4

1
CCCCA . (2)

The stationary distribution �pst of this Markov chain is
by definition invariant under the action of the matrix A,
i.e., �pstA � �pst. This distribution reads

�pst �
1
N

0
BBBB@

�1 2 p3� �1 2 p4�
�1 2 p4�p1
�1 2 p4�p1

p1p2

1
CCCCA , (3)

where N is a normalization constant.
In the stationary regime, the probability to win in a

generic run is

pwin �
4X

i�1

pst,ipi

�
p1�p2 1 1 2 p4�

�1 2 p4� �2p1 1 1 2 p3� 1 p1p2
, (4)

which can be rewritten as pwin � 1��2 1 c�s�, with s �
p1�p2 1 1 2 p4� . 0 for any choice of the rules, and
c � �1 2 p4� �1 2 p3� 2 p1p2.

Therefore, the tendency of game B0 obeys the following
rule: if c , 0, B0 is winning; if c � 0, B0 is fair; and if
c . 0, B0 is losing. Again, here losing, winning, and fair
mean that �X�t�� is, respectively, a decreasing, increasing,
or constant function of t.

Since when game B0 is combined with game A the vec-
tor Y �t� as defined in Eq. (1) is still a Markov chain, the
same procedure applies. The probabilities of winning are
now replaced by p0

i � �pi 1 p��2. Summarizing, to re-
produce the paradox with capital-independent games we
have to find a set of five numbers, p and pi (i � 1, 2, 3, 4),
such that

1 2 p . p ,

�1 2 p4� �1 2 p3� . p1p2 , (5)

�2 2 p4 2 p� �2 2 p3 2 p� , �p1 1 p� �p2 1 p� ,

where the third equation is just the second with p0
i and the

inequality reversed (to make the combined game winning
instead of losing).

One of the coins in game B0 must be bad and used more
often than one-quarter of the time. It cannot be either
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B0
1 or B0

4 because the probability of using these coins
depends on whether the game is losing or winning (if B0

1
is played more often than B0

4, it is obvious that the game
is losing). The bad coins should be B0

2 and B0
3. Let us set

p � 1�2 2 e, p1 � 9�10 2 e, p2 � p3 � 1�4 2 e,
and p4 � 7�10 2 e. With these numbers, one can see
that the two first inequalities in Eq. (5) are always satisfied
if e . 0, whereas the third is satisfied if e , 1�168 �
0.005 95— i.e., the paradox occurs when 0 , e ,

1�168, for our chosen parameter set in this example.
The simulation in Fig. 1 shows that as games A and B0

evolve individually the capital declines, as expected (i.e.,
they are losing games). On the same graph we see the re-
markable result that when A and B0 are alternated either
randomly or periodically, the capital now increases. This
reproduces the paradoxical behavior first observed in the
original games [4], but now without state dependence on
capital. The slopes of the curves corresponding to game
B0 and to the random combination can easily be calculated
as �X�t 1 1�� 2 �X�t�� � 2pwin 2 1, with pwin given by
Eq. (4). The old and new games have a fundamental dif-
ference in that the old ones can be interpreted in terms of
a random walk in a periodic environment [19] or a Brown-
ian particle in a periodic potential, whereas the rules of the
present games are homogeneous. We could say that the pe-
riodic structure of the original games has been transferred
to the memory of the rules in the new games. Therefore,
the paradox needs at least one of these two ingredients:
inhomogeneity or non-Markovianity [26].
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FIG. 1. Evolution of capital with play. The lower two curves
show that games A and B0 lose when individually played. [2,2]
indicates game A played 2 times followed by game B0 played
2 times and so on. The top curve indicates random switching
between games A and B0. Capital surprisingly increases in the
random or periodic cases. Simulations are carried out with e �
0.003, with averaging over 500 000 ensembles. p � 1�2 2
e, p1 � 9�10 2 e, p2 � p3 � 1�4 2 e, and p4 � 7�10 2 e.
There are four possible initial conditions — these affect the off-
sets but not the slopes — all the above curves are the average of
the four cases.
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Consider now a periodic combination of games A and
B0. Figure 2 shows the capital after 500 games —where
game A is played a times and game B0 is played b times.
We can observe that the resulting capital is greater when
the games are switched more frequently. This behavior
agrees with that of the original games [4]. Note that in
Fig. 2 changing the value of e affects only the vertical
capital displacement; thus setting e � 0 pushes the graph
into the positive region.

For the randomized games, we can now observe the vol-
ume of parameter space for which the paradox takes ef-
fect, by plotting the surfaces that represent the boundaries
of the inequalities in Eq. (5). This is shown in Fig. 3,
where for convenience we have set p2 � p3 to produce
the graph in three variables. The volumes enclosed by the
surfaces marked Q1, . . . , Q4 are the regions of parameter
space for which the paradox takes effect. Regions Q1 and
Q3 are where two losing games combine to win. On the
other hand, Q2 and Q4 represent the reverse effect where
two winning games combine to lose. This conjugate re-
gion can be simply thought of in terms of changing the
sign of the capital, so that the perspective of the concepts
“win” and “lose” reverse. This was observed in the original
capital-dependent games [27]; however, the conjugate re-
gions were symmetrical. What is now interesting is that
the new history-dependent games have asymmetrical con-
jugate regions, as can be seen in Fig. 3.

Another important comparison between the new history-
dependent games and the original capital-dependent games
is that the volume of parameter space is now bigger. A
numerical mesh analysis on Fig. 3 revealed that the new
games have a parameter space about 50 times larger than
the original games reported in [27]. For applications such
as in biophysics, it is important to find such gaming models
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FIG. 2. Value of capital after 500 games. Games A and B0 are
periodically mixed. Game A is played a times, followed by B0

played b times, and so on. Games are played with e � 0 and
500 000 ensemble averages have been taken. p � 1�2, p1 �
9�10, p2 � p3 � 1�4, and p4 � 7�10.
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FIG. 3. Parameter space for game B0 when p � 1�2. We see
there are four volumes labeled Q1, Q2, Q3, and Q4, bounded by
the inequalities in Eq. (5). The paradox of two losing games that
win if randomly combined occurs if the parameters lie within the
volumes marked Q1 and Q3. In regions Q2 and Q4 the reverse
effect occurs where games A and B are individually winning,
but the randomized combination is losing.

with large and hence robust parameter spaces. Although it
appears that the rates of winning from the slopes of Fig. 1
are about a factor of 2 lower than the original games, this
is only the case for the particular chosen parameters. The
50 times increase in parameter space is favorable for ap-
plications in modeling evolutionary processes in biology,
for example, where a weak payoff can gradually accumu-
late over a long period of time.

In summary, we have shown that the apparently para-
doxical effect where two losing games can cooperate to
win does work with a history-based state-dependent rule
rather than the original restriction of a modulo capital-
based state dependence. This, together with an increased
parameter space, opens up the phenomenon to a wider
range of possible application areas. This suggests that fu-
ture investigation of further types of history-based rules
and other types of state dependencies may be fruitful.
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