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Quantum size level structure of narrow-gap semiconductor nanocrystals: Effect of band coupling
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We study the size dependence of electron and hole quantum size levels in spherical semiconductor nanoc-
rystals. An analytical theory of the quantum size levels within a spherical eight-band Pidgeon and Brown
model has been developed, which takes into account both the coupling of conduction and valence bands and
the complex structure of the valence band in nanocrystals with an infinite potential barrier. We show that in
narrow gap semiconductors band mixing must always be taken into account and that it may be important even
in wide gap semiconductors, because the mixing is governed by the square root of the ratio of the quantization
energy to the energy gap. The strength of the coupling also depends on the ratio of the contributions of remote
bands to the effective masses of the electron and the light hole. As a result level structure is very sensitive, in
general, to the energy band parameters. The calculated level structure for narrow gap InSb, moderate gap
CdTe, and wide gap CdS nanocrystals are preseff1.63-18208)01236-3

[. INTRODUCTION a fourfold degenerate subbahg, describing the dispersion
of the light and heavy-hole branches for nonzkrand the

The optical properties of nanosize semiconductor crystalspin-orbit split off subband™;. The simple parabolic band
have attracted the attention of many investigators because @pproximation is useful only for obtaining a qualitative un-
their potential applications? The ability to tune their ab- derstanding and not for a quantitative description of the op-
sorption and photoluminescence spectra over a very widtical properties of real semiconductors. The optical proper-
range of energy, as much as 1.2 eV, by varying the crystdies of small nanocrystals arise from transitions between the
tunable lasers and light-emitting diodes. For example cdshust be calculated taking into account the real band structure
nanocrystals have been fabricated with energy gaps varyingund in these semiconductors.
from 1.8 eV, the bulk value, up to 3 eV, covering the whole If one is interested in the behavior of holes only near the

visible optical spectrum.Another property of these nanoc- g)dpe OL;?: \fﬁles,n%eer?ca;;d;th?gxmqeaﬁLgr:“?ﬁigrﬁgg; rzgﬂ(:;ihss
rystals, a strong nonlinear optical respofiSds important ol qt o .aramzter : angpL hich determine the effec.
for many applications. y Wo p Sy1 Y-, whi i

Both linear and nonlinear optical properties of small semi-
conductor nanocrystals arise as a result of transitions be- E
tween electron and hole quantum size levglSL'’s). The 8 band PB model
Coulomb energy of the electron and hole interaction is on the
order of e’/ ka, wherea is the crystal radius and is the ]
: parabolic
approxim.

dielectric constant of the semiconductor. Because the quan-
tization energy increases with decreasing size as$, lthe
Coulomb energy, which grows only asal/becomes a small
correction to the quantization energies of electrons and holes
in small crystals, and reduces transition energies by only a :
relatively small amount. The first theoretical analyses of : e | LK model -
nanocrystal absorption spectra in this “strong confinement” L ‘
regime was made using a parabolic approximation to the A /
conduction and valence bant6The absorption spectra ob- .

tained are very simple: fiw,=E4+ E"(a)+ES(a) H r,
—1.8%/ka, whereEy is the energy gagg%(a)~1/a2are | | T
the energies of theth hole and electron QSL's, respectively,
and the Coulomb correction is calculated in first-order per-
turbation theory.

However, there are no semiconductors with such simple
parabolic conduction and valence bands. Figure 1 shows a FiG. 1. The bulk band structure of a typical direct gap semicon-
band structure typical for semiconductors having cubic Orguctor with cubic or zinc-blende lattice structure and band edge at
zinc-blende lattice symmetry, e.g., GaAs, InAs, CdSe, CdTethe I' point of the Brillouin zone. The boxes show the region of
CdS, or InSh. The conduction band is parabolic only at thepplicability of different models used for the calculation of electron
bottom of the band. The top of the valence band consists adnd hole QSL's.

6 band model
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tive masses of the lightm,=my/(y;+2"), and heavy, tum size level structure of spherical nanocrystals of zinc-
mhhzmo/(ﬁ—ZyL) holes, respectively, wherm, is the  blende semiconductors taking into account the mixing of the
free-electron mass. Hole levels were calculated within thigonduction and valence bands. The calculation is done using
model in Refs. 8 and 9. However, excited hole levels are nothe spherical eight-band Luttinger-Kohn Hamiltonian for
adequately described in this model and we have to take intganocrystals surrounded by an infinitely high potential bar-
account all three hole bands: the so-called six-band modefier. The results of these calculations show that the coupling
Using the hole levels calculated within this latter motfel, of the conduction and the valence bands strongly modifies
the excitation spectra of CdSe nanocrystals obtained ithe level structure not only in narrow gap semiconductors,
absorption'! hole burning'? and photoluminescence excita- Where the spectrum clearly cannot be described without con-
tion experiments'®* were described very well. The six- sidering the 8-band model, but may also be important in
band model, however, does not take the coupling betweef¢latively wideband semiconductor$or example, it can
the conduction and valence bands into account, but considegfiange the order of the hole band edge levels in.InP
the confined electron and hole levels as independent. Intu- In Sec. Il we examine the spherical eight-band Luttinger-
ition would say that this is a good approach for wide gapKohn Hamiltonian and derive equations for the dispersion of
semiconductors, such as CdSe and CdS, but certainly is ngtectrons and holes and for their radial wave functions. The
appropriate for narrow gap semiconductors where the corsolutions of the radial equations and analytic expressions for
duction and valence bands are strongly coupled. A multibanéhe level energies are given in Sec. lll. There we discuss the
effective-mass approximation appropriate for narrow gapanergy parameters that govern the effect of the conduction
semiconductors was proposed by Pidgeon and Blo#B) band on the hole levels and, conversely, the effect of the
to describe Landau levels in InSb, and was successfully use¢lence band on the electron levels. In Sec. IV the size de-
in all other zinc-blende semiconductofsee, for example, Pendence of the QSL'’s are presented for several semiconduc-
the review by Aggarwaf). This eight-band model, which tor nanocrystals. Conclusions are drawn in Sec. V.
simultaneously takes into account the nonparabolicity of the
electron- and light-hole dispersion and the complex structure
of the valence band, describes the energy band structure
around thel” point of the Brillouin zone very wel(see Fig. We calculate the positions of the QSL’s assuming that the
1). The importance of this model for the lowest symmetrycrystals are spherical and neglecting the warping of the va-
QSL’s in spherical nanocrystals was also shown by Sercdence band connected with the cubic symmetry of the zinc-
and Vahald. Similar calculations for cubic semiconductors blende semiconductor lattice structure. The eight-band
having their band edge at the point of the Brillouin zone  Luttinger-Kohn Hamiltonian, which describes the electron
were done by Kang and Wigé. and hole motion inside the nanocrystal, has the following
In this paper we present a theoretical study of the quanform in spherical approximation:

Il. SEPARATION OF VARIABLES
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The operators in the Hamiltonian are expressed in terms of . E, L E,
projections of the momentum operatgy,, ,=—iAV, ,: y=v+t 6_Eg Yi=7v+t 3_Eg )
— H 2_ .2 2
P==Px=1Py,  PL=PxF Py, Diagonalization of Eq(1) gives the dispersion of the con-
duction and valence bands. For the heavy-hole band, we find
P=5mP? Q=5 (p?~2p}) @
2mg" 2my -t 2 Enn(P)=(y1—27)Ek, (6)
~iy3 V3 whereEx = p?/2m, is the kinetic energy of a free electron.
L= ypzp—, M= L4 2 For the coupled spectra of the other three light hole, spin-

orbit hole, and electron bands, the disperdit{p) is given
The Hamiltonian takes exact account of the coupling beby the equation

tween the six valence and two conduction bands, separate

by an energy gafe,. The magnitude of the coupling is CEE_EQ_“EK]{[E+71EK+A][E+(71+27)EK]

described by the Kane matrix elemevit —i(S|p,|Z)/m,

2A
2
and A is the spin-orbit splitting of the valence band. The —8(vEx)?} —EpEx| E+ ?) —Ep(y1—27)E=0.
Bloch functions of the conduction and valence bau§i§z, 7
respectively, have the following fordf: @)

If one neglects the contribution of the remote bands to the
c . i ) valence band dispersiony&0, y,=0) this equation de-
Up="ST7, u3,2,,3,2=E(X—IY)l, scribes the dispersion of the light holes and electrons in the
Kane modef°

v 1 : E—E,— aEx)(E+A)E—E Ex(E+2A/3)=0. (8
Uc—l/zzsl- U3/2,3/2:E(X+|Y)T, ( g K)( ) pEk( ) 8

If we take =0, then forE<0 Eq.(7) gives the dispersion
of the light, heavy, and spin-orbit split-off holes in wideband

i—[(X+iY)l—22T] semiconductors, but includes nonparabolicity of the holes

Ugjz,1/7= /6 (see for comparison Ref. 10
()
1 [E+7(E)Ex+AJ[E+{7(E)
ug/2,71/2:%[(X_iY)T—FZZl]a +2’)/L(E)}EK]_8[‘)/L(E)EK]2:0, (9)
where here
1
Ui 1= =l (XHIY) [ +ZT], E E
122" 3 YH(E)=y+ 6(E—p—E)’ y'i(E)=y1+3(E—p_E),
i g g 10
Ul 172 ﬁ[ —(X=iY)T+Z1], [see for comparison Eq5)].

The Hamiltonian, Eq(1), neglects the corrugation of the
wherelJ is the Bloch function band-edge angular momentumhole constant-energy surface connected with zinc-blende
(4 for the conduction band for the heavy- and light-hole Symmetry of the crystal lattice. 'I_'his_ asymmetry is reflected
bands, and for the split-off band. The PB model takes into in the dlfferenc_e of the two contributions of remote bands to
account the contribution of the remote bands to the effectivd® hole effective masses; and ys. It has been shown that
masses of the electrons and holes in second-order perturbh-We take y=(2y,+3v3)/5 then energy levels in any
tion theory. The parameter= 1+ 2f includes a piece 2of spherlczzial potential are correct to fI.I’St Qrder in perturbation
the contribution to the electron effective mass. The inversdh€0ry:™ The second order correction is usually small be-
of the electron effective mass, at the bottom of the con- CaUS€Y3~ ¥2<7y2+ 3. _
duction band includes this contribution and a contribution, 1he Hamiltonian in Eq(1) describes the electron- and

from the valence band that is expressed in terms of the Kan@0le-energy spectra only if their typical energies are close
matrix element and the energy gap: enough to the bottom of the conduction band and to the top

of the valence band. In practice this means that the quanti-
zation energy must be smaller than the distance in energy to
) 4 the next higherlower) energy extremum in the conduction
(valence band.
whereEp=2m0V2. The parametersg,; andy account for the In spherical nanocrystals each electron and hole state is
contribution of the remote bands to the hole effective massesharacterized by its parity%), total angular momentum
—L, Q, M, andP include these contributions. The Luttinger =J+L, wherelL is the envelope angular momentum, and
parameters of the valence ban@, y- can similarly be the projection of the total angular momentum=j,. The
written as the sum of contributions from remote bands andvave functions of these states can be written as a linear
from the conduction band: expansion in the eight Bloch functions:

1 1
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1/2 3/2 1/2

Uin(N=R(D™ X 0L+ 3 R0 3 Qusp, tRT X 05U, (11

An explicit analytical angular representation of tefunctions is given in Ref. 22. For the even states,

j+m
2_ij71/sz1/2
j—m 1
2_ij—1/2m+ 12

V3G +mM) (G —m+1)(j—m+2) Y s 12m-312
i(J+3m)VJ—m+1)Yj 1om1
(J=3m)V(j+m+1)Yj om0 ’

iV3(j —m)(j+m+1)(j+M+2)Y s 12ms 312

Qo=

thz Nl

(12

—VG+m)G+m=1)(j+m=2)Y|_zm-31
iV3(j —m)(j+m=1)(j+M)Y;_z2m-172
V3G +mG—m(G-m=1)Y_zomern |

—iVG—m)(j—m=1)(j—m=2)Y|_32m+32

/J—m+1
2(J+1) j+l/2m_1/2
, 13
J+m+1 13
2(J+1) j+l/2,m+1/2

where N;=1/1/2j(2j +2)(2j +3), N,=1/y2j(2j —1)(2j —2), and theY, ,(6,¢) are spherical harmonics as defined in
Edmonds® (Note: Using alternative definitions of, m(8,¢) leads to alternative expressions for the wave funcliGubsti-

tuting these functions into Eql), we obtain four coupled second-order differential equations for the radial functions
Réhin2s(r) of the even states:

thz N2

Qs=

v v
[sg_e_aAj—llﬂR:+% 1+377rAj_+1/2RrT1_EV1_ 77j+Aj+—3/2RrT2+ A 1R =0,

5

= 1+37ZJ CuRe H[yi— v(1=39) 1A 12— &Ry

+y\3[1+ 27 = 3(7)2]A Z R+ yV2(1+39))A L 1R =0,

v + A + 2 + +
- Em- 7 Al_uRe +yV3LL+27n] =30 )2 IA AR+ [yt v(1-3%)]A | _ap—s]R,

+y\V6(1— 7 )A; AR =0,

v
ﬁAjtlIZR::r—’_7V2(1+377j+)Aj+1/2RrJ1r1+7V6(1_77j+) Rt [v1A 4 12— - &]RS =0, (14

where 77J-+= 1/2j, e =2moEg/ﬁ2, 5=2myA/h%, v  are raising and lowering operators for spherical Bessel func-
=2myV/#, e=2myE/%2, andE is the energy of the state. tions, j,(r): A ji(r)=j41(r), andA; ji(r)=j,_1(r); A2
The operators =A" AT, AT2=A_,A, andA, is the Laplacian

g | g 1+1 9 L2901+
-_2 ., A= —- . 16
T A= (15 = T Y ar r2 (18
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Correspondingly, for the odd states the angular wave funcibn®"2s can be written

j—m+1
- Zj—+2Yj +12m-1/2
j+m+1 ’
2j—+2Yj F12mE 172

BG+mG—m+1)(j+m=1)Y|_1om-32
—i(j=3m+1)V(+m)Y;_1om-12

Qc=

th:Nl . - )
(JE3m+D)V(G—mM)Y|_1omr1e
—iV3(j+m+1)(j—m)(j—m=1)Y| 12+ 312
(17)
—J(—m+1)(j—m+2)(j—m+3)Y|sz2m-312
ho —iV3(j+m+1)(j—m+2)(j—m+1)Y 32m-172
Q :Nz y

V3(—m+1)(j+m+1)(j+m+2)Y . 3oms 172
VG +m+1)(j+m+2)(j+m+3) Y1 ame 3

j+m

2_ij—1/2m— 12
_fi—m ’
[ 2—ij —12m+1/2

whereN;=1/\/2j(2j+2)(2j — 1) andN,=1/y2(j +1)(2j + 3)(2j +4). Substituting these functions into EJ), we obtain
four coupled second-order differential equations for the radial functng ,<(r) of the odd states:

Q°=

B v — _ v - _ _ v _
[eg—s—aAHyﬂRc—;E 1—3njA;40Rm+;E 1+njAhﬁmaﬁ+Q§AﬁﬂmRs:o,
v — — — — —
——=V1=3n ALy Re Hyi—v(1+379;)]A) 10— e]Ry;

J6

+yV3[1=2m; =37 )’ 1A ZyaRno— 7V2(1= 37 )Aj_1Rs =0, (18)
v = - = 27A 2 P - - —pA+2 -
E 1+ 73 Ay aRe +7\/3[1_277j =3(n; )IA Sy R T [Lya+ ¥(1+39; ) JAj 32— e ]Rn— yV6(1+ 777 )A 5 Rs =0,

v — — — — — — — —
EAjﬂ/ch = YV2(1=37)Aj 1R = yV6(L1+ 7 VA ZRro t [ 714 -1~ 8~ ]Rs =0,

wheren; =1/(2j+2). In each sefEqs.(14) and(18)] three dard atomic notation for the electron and hole QSLs that are
of the equations, for radial functior®,;,,s connected with ~ solutions of Eqgs(14) and (16): nQ; where| is the total
the valence band, are similar to those obtained for the vaangular momentumQ=S,P,D, ... denotes the spectro-
lence band states in the six-band mofeThe additional scopic notation for the lowest value bfin the wave func-
equation describes the direct coupling between the condudions, described by Eq$12) and(17), andn is the ordinal
tion and the valence bands. number of the level with a given symmetty® The interband

It will be convenient, later in the paper, to use the stan-selection rules follow from the angular dependence of the
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wave functions. The only allowed transitions are fromexpress the solutions of the set of coupled differential Eqgs.
nS(h) hole states tkS,(e) electron states, fromP;(h) (14) and(19) inside the nanocrystal, for any arbitrary energy,
hole states t&P;.(e) electron states, efd:? in the form of spherical Bessel functions. For the even states,

lll. QUANTUM SIZE LEVELS AND WAVE FUNCTIONS RE{(N=CZiij—1aKr), Ry (r)=Cgyjij+uakn),

A. General expressions
Rﬁz,j(r)=C;2,jjj—3/2(kr), R;j(r)=cs+,jjj+1/2(kr)-

1. Even states (19)

Noting that the operatord,” are raising and lowering
operators for spherical Bessel functiopgéx) and that the Upon substituting these into E¢l4), one finds that coeffi-
radial LaplacianA, just changes the sign gf(x), one can cientsC™ are the solutions of the system of linear equations:

vk\/1+37]j+ o vk\/1—77j+ o o4 vk
\/E hl, \/E h2,j \/§

[eg—e+ akz]C;j+

vk\/1+37];r
V6

Coj—{ly1—7(1=3n )]k +e}Cpyj+ yk*\3+67; —9(n)")*Cprpy— ¥k*\2+ 67, Cg;=0,

(20)
vky1— 7"
- T'c:,,-+ YK3VB+67 —9(n)2Chyj—{ly2+ ¥(1-37 ) 1K+ &} Cphy + ¥k3\6— 67, CJ; =0,
vk
ﬁc;j— YK2\2+ 67 Cpyj+ yK?\6— 67 Cprpj— [ y1k*+ 5+2]Cg;=0.
|

The condition for there being a nontrivial solution of this (e—eg)e(e+0)
system is that its determinant vanishes. It is important to note C=- (23

a9 (71-27)"
that, in spite of the fact that the coefficiel@§ depend orj, a(y1+47)(n=27)

the determinantal equatiadoes notdepend orj. The deter- ) . .
minantal equation determines the dependence ofi k and and gives three more independent solutighsfor each en-

is identical to the dispersion of the electron- and hoIe-energ?rgy' One of the r020t5 of quz)_ is much larger than _the
spectra in the PB model described by E@.and(7), where othgr two be_cause: >8,8q (Typ|cally.Ep~20 e.V’ wh|!e
k=p/A. One can turn this around, however, and for each typical engrglef, Ey~2 eV). To the first order ire, e it
find again a quartic equation fde®>. One solution comes can be written

from the dispersion of the heavy holes:

2 A= — A+BIA —2 L €78 e+ 6/3
K=o 21 a(y1tdy)  a  (ntdy)
Y1—2y (24)

A second equation, cubic k7, is connected with the disper-
sion of the coupled electron, light and spin-orbit split-of
hole branches of the quasiparticle spectrum:

fThe other two roots can be written

! ! 2
k8+Ak*+Bk?+C=0, (22) k2=-— B-CIA T \/ BZCIAT) _ E. (25)
N 2A’ 2A’ A’
where
P _ In general, Eqs(21) and(22) have four solution&? for each
A= v _ 7% 28(71+Y)+5(71+27), energy. Fork?<0, k is imaginary and the corresponding
a(y1+4y) @ (y1+4y)(y1—27) Bessel functions are functions of an imaginary argument. As
a result, for eack: there are four independent solutions of
_ V(e+2013)+ a(e?+ de) Eq. (14—one for each of thes&?. Expressing the radial
T aly+4y)(v1—2y) wave function as a linear combination of these four indepen-
dent solutions allows us to satisfy all the boundary condi-
_(e—eg)[2e(y1ty)+8(y1+27)] tions for the four component wave function. The solutions of

a(y1+4y)(y1—2y) Eq. (14) can be written



7126 AL. L. EFROS AND M. ROSEN PRB 58

R, (N=C¢(ep)ij-vaker)+Cg (ho)jj-aak-r)+Cg(h)jj-yaker),

o T RANICL(EP k) K AWK ko) | KAk )CE (B gl
(D=5 Ao(ko) Ao(k) Ao(ko)
+V3(1— nr)cr-:hjjJrl/Z(khr)u
o T KA (P satker) | K An(K )G ()i sdkr) KAk )G (e skr)
naj(F) Al Ao(k) Ao(kD) Ao(ky)

+ V1+377j+crfhjjfs/z(khr),

R+-(r)=i kcAs(kc)CZ(Cp)in/z(kcr)+k—As(k—)CZ(h—)J'jH/z(k—f)+k+As(k+)Cc+(h+)ij+1/z(k+r) 26
S NE] Ao(Kep) Ao(k-) Ao(ky) ’
where
Ao(K)=(y1k?*+ 8+e)[(y1+2y)k*+e]—8y%k?,
An(K)=8+e+(y1—27)k?,
AgK)=e+(y;—2y)k% (27)

In a nanocrystal with an infinite potential barrier all the components of the wave function must vanish at the crystal surface:
R;‘j(a)=0. This condition determines the energy of the electron and hole levels for the even states:

Jj—uakea)]j v kra)k ki Ap(ko)Ag(k )| . 6j—3. .
- Ao(K ) Ag(K,) {]j+l/2(ka)1j3/2(kha)+ 2j—+3Jj—3/2(k—a)Jj+1/2(kha)

Jj-vAKe@)jj+ ya(K-a)K Ky Ap(k ) Ag(K-)[ . 6j—3. .
+ Ao(K )Ag(Ky) [Jj+1/2(k+a)lj—3/2(kha)+2j+31j,3,2(k+a)jj+1,2(kha)

B jj—llz(k—a)jj+1/2(kca)kck+Ah(k+)AS(kc)[ 6j—3

Ag(Ko)Ag(Ky) [jj+1/2(k+a)jj—3/2(kha)+ 2j—+3jj_3/2(k+a)jj+1,2(kha)
N jj1/2(ka)jjx;zét:)fj\);cll(:)/&h(kc)f\s(kﬂ{jj+1/2(kca)j1_3,2(kha)+ g—;zjj_m(kca)jjﬂlz(kha)
B jj1/2(k+a)jjxf((ll(((z)f‘j\)(i((c:_)/\h(kc)/\s(k){jjJrl/z(kca)jj3/2(kha)+ g—lzjjg,z(kca)jjwz(kha) —0.

(28)

For negativekg, whena(y;+4v)>0, the argument of the spherical Bessel function is imaginary. For nedetiwe shall
always choose the phase of the square root suchktkati|k|, so thatj;(i|ke|r)=(i)'l;(|kc|r), wherel;(|kr) is the
modified spherical Bessel function of the first kind. Using the condition tkgg>1 and the asymptotic form for the
functionsl;(x), we can simplify Eq(28):
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Jjruakea)k ki Ap(ko)Ag(ky)l . 6]—3. .
- Ao(k ) Ag(KL) [J]Jrllz(ka)JjS/Z(kha)_l’ 2j—+31j—3/2(k—a)lj+1/2(kha)
Jijruakoa)koky Ap(k)Ag(ko)] . 6j—3. .
Aok ) Ao(ky) _Jj+1/2(k+a)1j—3/2(kha)+2j—+31j—3/2(k+a)1j+1/2(kha)
jj—vk_a)|kelk An(k ) Ag(ko)[ . . 6j—3. .
Ao(Ko) Ag(K,) »Jj+1/2(k+a)Jj—3/2(kha)+ 2j—+3]j—3/2(k+a)lj+1/2(kha)
. . . (29
B Jj—1/2(k—a)lj+1/2(k+a)|kc|k+Ah(kc)As(k+){._ (kea)— 6] _3'. (k)
AO(kc)AO(k+) “1—3/2 h 2j+3]J+l/ h
Jj—1kia)|kelkoAp(k_)Ag(ko)[ . . 6j—3. .
- Ao(Ko) Ag(k) [J]+1/2(ka)1j3/2(kha)+ 2j—+3]j—3/2(k—a)lj+1/2(kha)
Jj- 12K @) aa(K-a)ke[k-Ap(ke) Ag(k)[ _6j-3. B
+ Ao(kC)Ao(kf) “j73/2(kha) 2j+3]j+l/2(kha) =0.

Using Eqgs.(24) and(27), one can show that
|kc|As(kc) - |kc|Ah(kc) _ i / o (30)
Ao(ke) Ao(Ke) la] N v (y,+4y)

Agko) Ak
An(kD)  An(ks)

Ask-) . . Agky). ,
An(Ko) Jj+l/2(k,a)ij3/2(k+a)— mjjJrl/z(kJra)]j,yZ(kia)

o e Ak [
“Tal VPt ay Kk Ank| 237

+3(1= 7 )jj+ v knd)jj- 1 k_a)

and finally obtain

Ji+12Ke)jj1a(k_a)jj—ga(kna) +3(1—7]")

(1+37])

XJj+1Aknd)

Ad(ks)
Ak

. Ag(ky)
Jj—zakia)+ m1j+1/2(k+a)

o a Ao(ky) f
“Tal Vit ay i an| (137

+3(1= 7 )jj-vaki@)jj+ 12knd)

Jj—uadkK-@)jjryAkia)jj—zakna)

R
An(ko) Jj—uad k@) jjrp(k-a)jj-zakna)

. Ag(ko)
Jj-aa(k-a)+ m11+1/2(k—a)

] : (31)

This is an equation for the QSL'’s in the conduction band, whet 4, and in the valence band, wher<0. For hole states,
k? is always positive, buki is negative wherle| < 8. In this case the argument of the Bessel functions is imaginary. As
before, we lek = +ilk,|, so thatjj(i|k+|r)=(i)ilj(|k+|r). If =0 the equations become the uncoupled equations of the
six-band modet® which, however, now take into account nonparabolicity of the light heée Eq.(9)]. Of the two terms
on the right side of Eq(31), which describe the valence band coupling with the conduction band, the second one is always
much smaller than the first.

For the electron levels, boﬁﬁ<0 andk? <0. Again we write the corresponding spherical Bessel functions in(®j.as
jj(ilkn +a)=(i)1;(|kn +|a). For electron levels with energy> e, the momentz;, ;. satisfy the conditiorky, . |a>1 for
almost all direct semiconductor nanocrystals. We can then use the asymptotic form of the modified spherical Bessel function
I;(x) with the large argument and obtain from E&1) the equation that determines the electron quantum size levels:

i _ 1 a [v(y,+4y) kah(kf)J. 4A4(ko) L As(ky)
Jj,llz(k,a)— 4(1_As(k+)/Ah(k+)) m @ Ao(k_) leJrl/Z(k,a) m_(1+37h )Ah(k+)
LAk K_An(ko)Ag(ky) 3
PR ey -3 K- TR KO Ak, 21— Aok, )T A (kL))
) 4/ Ag(ko) N e
X4 Jjrudk-a) 3 m—l T(1=n) |+ (1=n)jj-zpk-a). (32
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If v,+4vy=0, this equation becomes the equation for the uncoupled electron QSL’s used in the Ref. 11. The two terms on the
right hand side of Eq(32) describe the effect of the coupling with the valence band. Of these, the second one is always much
smaller than the first.

2. Odd states
A similar procedure gives us the solution of E@8) for the odd states. The corresponding solutions can be written:

Rei(N=Cc(cp)jj+uaker) +Cc (ho)jjrao(k_r)+Cc (hy)jjspalkyr),

R- __U\/l_377j_[kcAh(kc)Cg(Cp)jj71/2(kcr)+kah(kf)Cc_(hf)jjfl/2(kfr)+k+Ah(k+)Cg(h+)jj71/2(k+r)
n (M= 5 | Ao(ko) Ao(k) Ao(k)
TV3(1+ 755 )Chplj—1/2(Knl ),
R- B vyl+ 77;[kcAh(kc)Cg(Cp)jj+3/2(kcr) N K-An(k-)Cq (h-)jjsap(k-1) +k+Ah(k+)C§(h+)J';+3/z(k+r)
h2,j(r)— \/E [ Ao(kc) Ao(k_) Ao(k+)
+V1=37; Cpplj+zknr),
_ o v keA(ke)Ce (ep)ij-aiker) KAk )Co (ho)fj-aplk-r) Ky Ag(ki)Co (hy)jj-aalkyr)
Rs,J(r)_\/g Ao(Ko) + Ao(k_) * Ao(ky) (33

In nanocrystals with an infinite potential barrier the level positions are determined from the four boundary conditions
R,.j(@)=0. The solubility condition of this set of equations gives us the equation determining the energies of the electron and
hole states:

+ JRET kca)jj_XZ((Ta;K(;(E?h(k_)AS(k”[ij+3/2( k_a)jj-1kna)+ 2}—1311'—1/2('(—3)] i +32(Kpd)
e AS(k){j -tk 2] k) o a2 aatkoa)
+ joIZ(ka)jjAl;i(iic)?:(c:i)j\h(k+)AS(kC){jj+3/2(k+a)jj—1/2(kha)+ 2—;;jj—1/2(k+a)jj+3/2(kha)
- j"“”(ka”"Alf(“;;"z);jf:f“(k&“(k*){j,-+3,2<kca>j,—1,2<kha>+ 2—131,-1,2<kca>1,-+3,2<kha>
- jj+l/2(k+a)jjx;z(tc)a/\):(c:z_)[xh(k_)AS(kC){jj+3/z(ka)jj1/2(kha)+ g%jjllz(ka)jj+3/2(kha)
+ jj+1/2(k+a)jjXSEE;)?\);CE_)Ah(kC)AS(k_){J'j+3/2(kca)jj1/2(kha)+ 2}—;;jjl/2(kca)jj+3/2(kha) =0.
(34)

This can be rewritten, as for the even states, using the condkjom>1 and Eq.(30):
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(ki) Ag(ko)
(1=37; )[AS KO~ Ak
(ky)  Ap(k-)

x| sl )1 ok a)jjrakia)— Aqlk +)J (k@) ak a)
A(k)Jl ]+ A(k)jl ]+

Lo e Adk) [ _{_ Ak.)
“Tal VParay kAo 3701 1)

As(ky)
JJ+3/2(k+a)+A (K, )JJ 1Ak a)

} Ji—uaKia)jj-yaAK-a)jj+ap(knd) =3(1+ 7 )jj-1(Kna)

Jjruak-@)fj-yokia)jjaakna)

J

JjruaAKi@)jj—yK_a)jjzakna)

+3(1+ 7 )jj- v kpd)jj+12(k-a)

e [a Ak [ { Adk)
o] V2t am ki, Ak | 370 R0

Agk ) |
]J+3/2(k a)+ (k )JJ l/2(k a)

+3(1+ 7 )jj+vkia)jj—yaAknd) ] (35

This equation describes the energies of both the electron and hole odd state€) the equation becomes the equation for
the hole states in the six-band model, but now also takes the nonparabolicity of the light hole into account. Again, the second
term on the right hand side of the equation is much smaller than the first one.

Following a similar procedure to that for the even states, we can obtain fronfBBqgthe equation for the electron odd
states:

: [V (rat4y) ko Ah(k) Ag(ky)
J]+1/2(k*a) 4[1 As(k )/Ah(k |CY| @ Ao(k ) 3(1 )A (k )J]+3/2(k a) Jj l/Z(k a)

[4As(k ) C(1-3 Ag(ky) ] K_An(K_)Ag(Ky) 3 (o )
An(k-) TRk )| Ko TAo(k ) An(Ko) AT Agk ) TAp(k, ]| Jim2K-

4( Ag(k_) ) B

§(m—1 +(1+7;) [+ (1+ )1j+3,2(k_a)+. (36)

In the uncoupled case, when+4y=0, Egs.(36) and(32) are identical. The splitting of the electron levels is determined by
the coupling with the valence band. Of the two terms on the right hand side of this equation, which describe the coupling with
the valence band, the second is always much smaller than the first.

Equations(32) and(36) clearly show that the coupling of the electron levels with the valence band is determined by the
parameter §,+47y)/«, and, conversely, Eq$31) and (35) show that the effect of the conduction band on the hole level
positions is determined by its inversé(y,+4vy). Before calculating the QSL’s in several particular semiconductor nanoc-
rystals, we will analyze more closely, in the lindit=0, the parameters that effect the coupling and the effect of the coupling
on the quantum size levels.

B. The caseA=0
For all energie$E|>A (|e|>6), Eq. (25) givesk? (y,—2y)~ —&— 245/3; substitutingk> into Eq. (28) gives

Ap(kp)=613, Ag(ky)=—26/3,
Ag(ky)=—28%9. 37
On the other hand, using the conditionfs>|(e —&4)(y1+47)|, |eal, one obtains from Eq25):

Aok) & [Pe Al

Ak Jol Vemeg Antk) 9

where we use#t? ~&(s —e4)/1? and (y,—2y)k® +e~e. Substituting Eqs(37) and(38) into Egs.(31) and(35) for the hole
levels, we find that fo =0 the level energies are determined by two equations:

Jj+12(kna) =0, (39

and
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+

. . N . .
Jjrudk-a)jj—za(kna)+ —J_+Jj+1/2(kha)l j—ak-a)

1+77J
a\/ e | -12(K-2)| ]2 Kn2) L (Knd) (40
- = _a - a)— ——i: a)l,
la] V(EgtAEy) (y,+4y) 1712 Jj-3/2Kn 1+,7j+11+1/2 h

which are valid for allj starting fromj =3 and whereE ;= ﬁzsg/2mo andAE,= —#2e/2my is the hole level energy measured
from the top of the valence band. By the same procedure we get two equations frdBbEfpr the odd hole states fak
=0:

Jj-12(kna) =0, (41
which is valid for allj>3, and

. . et/ .
Jj-12knd)jjrap(k-a)+ ﬁ]j—l/Z(k—a)JHS/Z(kha)
i

Nt ) )~ k) @2
=—r— i _a)lji- a)— ———j; a)|,
|C¥| (Eg+AEh)('y1+4’}/)JJ+1/2 lj 1/2\®™h 1+77J J]+3/2 h
|

which is valid for allj starting fromj=3. If we replacej by 1 o [AEq(y,+4y)
j+1 in Eqg. (40 for the even states, it becomes identical to Jjrudk-a)= 27al V(E,+ AE)a
Eq. (42) for the odd states. This means that all hole levels for 9 €
A=0 have a degree of degeneracy greater than 6, except the X[(1+ 9] )jj+ank-a)
even state withj = 3, which is only twofold degenerate. Fi- o
nite A lifts this degeneracy. —(1=n;)jj—uAk-a)]. (45

It is important to note that the admixture of the conduc-
tion band into the valence band is determined not only by th
natural energy parameté&vk,/(Ey,+AEy), the ratio of the

The second term in the right-hand side of E86) is a cor-
§ection proportional ta\:

guantization energy to the energy gap, but also by the ratio A AEJ(7,-27)

al(y,+4v) (actually by their square rogtsThis latter ratio ~ N — ! (1+7)

then could produce quite large an admixture even if the con- 6(Eg+AE,) Ep

finement energy were much smaller than the energy gap, of, X[J;sak_a)+jj_yadk_a)]. (46)
conversely, considerably decrease the admixture even though

AE,>E,. As before, Eq(43) for the even states becomes identical to

Substituting Eqs(37) and(38) into Egs.(32) and(36), for  EQq. (45) if we replacej by j + 1. This shows that all electron
the electron quantum size levels we obtain for the everevels forA=0, even though they are coupled with the va-

states: lence band, have the same degree of degeneracy as in
simple parabolic band modéthe 1S(e) electron level is
twofold degenerate, thePl(e) is six-fold degenerate, etc.,
ji_yk_a)= 1 2 /w taking electron spin into accounfinite A gives corrections
) 2 |a| V (Eg+AE)a having different signs in Eq943) and (45), and lifts this

i degeneracy. As a result thd’fe) electron level is split into
XA+ 71+ Ak-3) 1P4(€) and 1P, (€) states.
— (1= 5)jj_ak-a)], (43) As for the admixture of the conduction band into the va-
. lence band, the admixture of the valence band into the con-
where the electron level energieA,Eezﬁz(s—sg)IZmo, duction band is also determined not only by the natural en-

are measured from the bottom of the conduction band. Th&"Y parameteAEe/(Eg+AEe), the ratio of the electron

second term in the right side of E(2) is a correction term quantlzatlon_ energy to the energy gap, but al_so by (
that is proportional ta\, and may be written fof > +4+v)/«. This latter parameter can make the admixture large
; 5

even if the confinement energy is much smaller than the
energy gap, or, conversely, can greatly decrease the admix-

A JAEe(y1—2y) N ture even ifAE.>E,. This parameter is the inverse of the

"~ 6(Eg+AE,) E, (1=n;) one affecting the admixture of the conduction band in the
hole levels. So even if the effect of the valence band on the

X[Jj+po(k-a)+]j-za(k-a)]. (44 conduction state is “strong,” the effect of the conduction

band on the hole levels may be “weak,” and vice versa.
Forj=1 itis proportional toA?. The same procedure forthe  In order to illustrate the role of the coupling, we calcu-
odd electron states gives: lated the size dependence of the lowest hole and electron
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levels in “InP semiconductor” nanocrystals usiny=0, Radius(A)
(this approximation is reasonable becansis only 110 meV 5 550 32 24 2018 16 14 122 5
in InP), and compare these results with calculations done ~ P (A'=O)' ! 1IS ot ] :
using other techniques. The energy parameters we used are: = 29| parabolic appros, () state]
Ey=1.424 eV, E,=20.6 eV, f=-11, y;=5.25, and ? " uncoupled model \ o<9
y-=(295+395)/5=1.92* which result in a=—1.2, y; s 15T 15
=0.41, andy=—0.51. We will also calculate the size de- ERYS 110
pendence using another set of the parameigrs4dy, a, =t ;
and E,, now with >0 and y;+4vy>0, but keeping the g 05 8 band PB model 405
effective masses of the electromy(a+E,/Eg) ', light = 0.0 fi . . o (")00
hole, mo(yy+4y+E,/Eg 1, and heavy holem(y, : 1P, (hystate ®)] '
—27) ! the same as measured in bulk. = 0.2 s 00 102

In parabolic band approximation the energy of tH&€) Es 04 0.4
electron level is determined by the simple expressibi; 5 sl . Tos
=12k2 [2me=h2m?/2m.a?, wherek_=7/a and wherem, £ 7 [ parabolic approx. >4
=my/(a+E,/Ey) is the effective mass of the electron at g 0§ uncoupled model // o 08
the bottom of the conduction band with=0 [see Eq.4)]. 2 10}  8band PB model R N E Y
In the uncoupled casey{=y=0), Eq.(43) for j=3 again = o 1S (hystate S -
givesk_=/a; however, the energy dependence of the ef- T 100 20 30 40 50 60 70
fective massn,(AE,) is taken into accourjsee Eq(7)] and 10000/ a* (A7)

52K2 522 E FIG. 2. Size dependence of the lowest QSL’s in InP nanocrys-
AE.= - m 2/ a+ p ] (47) tals, with A=0, calculated using different approximatiora) the
¢ 2my(AE.) 2mpa \ Eq+AE. 1S, electron level andb) the 1P,,,(h) and 1S;,,(h) hole levels.

Dotted lines show the results of calculations within the simple para-

This expression was the one used for the electron QSL'S ifolic approximation for the conduction band and the Luttinger-
Ref. 11. One sees that the electron effective mass increasgshn parabolic approximation for the valence band. Dashed lines
with the energy of the levels. Since the position of the levelshow the effect of the nonparabolicity of the electron- and light-
is inversely proportional to the effective mass, the energyole spectra without taking the coupling of the conduction and va-
dependence of the effective mass slows down the shift of theence bands into account. Solid lines show the results of the calcu-
level with the sizdsee Fig. 2a)]. In the full eight-band PB lations done within the eight-band Pidgeon and Brown model for
model,k_ is related to the energy almost in the same way aghe set of energy band parameters discussed in the teat+@r and
in the Kane model. However, for any finiteE,, when the a<0. The size dependence of th®4g,(h) hole state is the same
right side of Eq.(43) is nonzero andx>0, the solution of for all these models.
this equation givek_a<s. This leads to a still further
slowing down of the size dependence of the electron levelsvhere  k2=2moAE, /[£2(yi—2y")], k2 =2moAE,/
with (_jecreasing size as shoyvn i_n Fidap If_ a<0 the root [ﬁ2(7'£+47'-)], and g:k{/kﬁ=(7§_2y'-)/(ﬁ+4¢)_
k_a is greater than resulting in the shift of the $(e)  The values ofk,a, which solve this equation, depend only
electron level to higher energy. on B. In InP 8=0.115 and the solution of Eq49) gives

There are two equations, Eq89) and (40), for the hole  k,a~5.21. The energy of the first hole state with mixed

levels for A=0. The first determines the QSLs of heavy symmetry(the 1S, stat¢ whenA=0 is then
holes only and does not couple with the conduction band.

The lowest hole leve]the 1P,,(h) statd hasp-symmetry

and its energy is given by E¢39) with j=3: h2k2  £2(5.21)2
AEy(1Syp)= 53— = . (50
thh thha
12(4.49°2
AE(1Py) = ———-, (48)
hnd Comparison of Eqs(48) and (50) shows that the ground-

i hole state in InP nanocrystals hpgype symmetry in para-
_ L Ly

where myp=mo/(y1—2y")=mo/(y1—2y) is the heavy-  pqjic approximatio{see also Fig. @)]. This level order is
hole effective mass. However, selection rules do not allowgngistent with the prediction of the six-band model for InP
transitions from this level to the groundsle) electron quan-  nanocrystal€® Studying the dependence of the solutions of
tum size level, because of the different symmetries of theilEq_ (49) on B shows that forA=0 the level order changes

: 11
envelope wave fP”Ct"?”@' _ whenB>0.215, and that theS,(h) state then becomes the
Hole states with mixed-d symmetry, from which tran- ground-hole state.

sitions to the first electron quantum size level are allowed,” |, the uncoupled case, whem=0, the energies of the
are described by Eq40) with j=3.1n parabolic approxi- - pole Jevels are determined by setting of the left side of Eq.
mation andA =0 their energies are determined by setting the40) o zero; however, this now takes the nonparabolicity of
right side of this equation to zero: the light hole into account. The hole energies are then deter-
mined by Eq.(49) where B(AE;) is now a function of the
2jo(kna)j2(VBkna) +jo(VBKna)jo(kea)=0, (49  energy of the state:
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yi—2y very sensitive to the bulk energy band parameters. In gen-

B(AEp) = — AE,)+4,5(AE eral, these parameters are quite well determined for almost
7i(AEs 7 (AE) all semiconductor materialsee, for example, Refs. 16 and

yi—2vy 28). However, energy band parameters measured in the bulk

= Ayt E,/(E,+AEy)" (51 include some contributions that are absent in nanocrystals.

As a result, using these parameters requires taking special

Figure 2b) shows that the nonparabolicity of the light hole Precautions. For example, in narrow gap semiconductors
slows the 142 dependence of theSk,(h) hole-state ener- these parameters include the correction connected with the

gies. For holes, if we take coupling with the conduction bandhonlocal character of the self-consistent potential; the mag-

into account, for finitex>0 andAE;,, i.e., when the right- hitude of these corrections is comparable with the contribu-

hand side of Eq(42) is nonzero and negative, then the so-tion of remote bands to the electron- and hole-effective
1 9 . .

lution of this equation gives values bf a smaller than those masse$” The nonlocal contributions have the form

found from Eq.(49). This leads to a further slowing down of

the size dependence of the hole levels with decreasing size. Ay;=—56,, Ay=—-46y,

Figure 2Zb) shows this dependence for the parameters

=0.63,y,=1.04,y=—-0.21, andE,=18.0, which keep the 2 ELE
effective carrier masses equal to those measured in bulk InP. Aa=-108,, ==\ 50
For these parameters th&,(h) level crosses theR;,(h) 157 KEq 3

level and becomes the ground-hole state for nanocrystal radii (52

less than 35 A. This agrees with the results of pseudopoten-

tial calculations made for small InP nanocrvs@isleaativ whereEg=27.2 eV is the Bohr energy andis the dielectric
a caiculations made for sma anocrys €galive  instant. A different mechanism of band parameter “renor-
« leads to an increase &f_a, and to a ground state that

h i tv. Th di it lculat alization” is dominant in wide and moderate gap semicon-
asp-type symmetry. 1he corresponding resufts, calCulateqy,,.iors. These semiconductors are usually quite polar and
for energy parameters from Ref. 24=—-1.2, y,=0.41,

charged-free carriers interact strongly with polar phonons to

y:T;]O.Sl’ ‘I"‘”quZZO-G’ adre sbhown ': F'g'f)' __form polarons®® As a result, in most cases the effective

b e analysis presente r? ove S O\k’JVS dOW sensitive :[I' asses measured in bulk wide gap semiconductors are not
absorption spectra are to the energy-band parameters. The,qq of free electrons and holes, but are the effective masses
structure and positions of the quantum size levels in smal

. ~of the corresponding polaronsee for example Ref. 31
nanocrystals are determined not by the values of the effectivg i, these corrections must be substracted from the remote

masses at the bottom of the conduction band and at the top Bfand contribution when one calculates the quantum levels
the valence band alone. They strongly depend on the relat'v\?/ithin the eight-band model.

contribution of the remote bands and the nearest band. The 4 following set of the bulk parameters describes the

drastic change of the level structure presented in Fig. 2 i : _

obtained by changing, only by 10%. ﬁinergy band stiucture of buIIL<_InStEg OL.3368 eV,AL
=0.810 eV, E,=23.42 eV, y;=15.96, y3=16.99 [y
=(2y5+3v5)/5=16.58, y;=36.41, andm,=0.0139n,,

IV. SIZE DEPENDENCE OF QUANTUM SIZE LEVELS which results in a=—0.36, y,=3.44, and y=0.196%
IN SEVERAL SAMPLE SEMICONDUCTOR These parameters do not yet allow for the nonlocal correc-
NANOCRYSTALS tions described in Eq52). For InSb, using«=18.3, we find

We will calculate the size dependence of the quantum siz&n =~ 0-214, which finally leads to the remote band contribu-
levels in wide gap CdS, moderate gap CdTe, and narrow gapP"'S ¥1=4.51, y=0.953, andx=0.77. The level structure
InSb nanocrystals. CdS and CdTe are selected becauglculated with these parameters in InSb nanocrystals is
nanocrystal samples of these materials have already beéEOW” in Fig. 3. The most interesting effect in this spectrum
prepared and size selective spectroscopy of their quantuffi (N€ Strong splitting of the R(e) electron level into two
confined levels can be studied experimentally. ComparisoryF v2(€) and 1Pz;(€) states. One can see in FighBthat
of the results obtained in the eight-band PB model with thos&€ 1Ps(h) hole state becomes the hole ground state in
obtained in the uncoupled model shows that, although th_ganocry;tals smaller than 60 A in radius. The rapid changes
uncoupled six-band model gives the same level order as tH8 the size dependence of theSgy(h) and 255(h) hole
eight-band model and qualitatively describes the structure oftates in the energy region close doreflect anticrossings
absorption spectra, the coupling is important for a quantitaSimilar to those observed in CdSe 8y;,(h) states’
tive description of the levels even in wide gap CdS. A de- We use the following set of bulk energy bandearameters
scription of the absorption level structure of narrow gap InSH0 describe CdTeEy=1.6069 eV,A=0.953 eV,y;=5.37,
can be done only in the eight-band PB model, because cows=1.67, 75=1.98, [y"=(2y;+375)/5=1.86, m,
pling between the conduction and the valence bands is a=0.091my, from Ref. 31 and a value of the nonparabolicity
ways important in narrow gap semiconductors and the unparameterE,=17.9 eV This results in a=1.24, v,
coupled six-band model gives wrong results even in=1.66, andy=0, which we used to calculate the QSL'’s in
relatively large nanocrystafé. For each semiconductor we CdTe nanocrystals shown in Fig. 4. The splitting of the
show the size dependences only for the range of energiglsP(€e) electron state is considerably smaller than in InSb,
such that the eight-band PB model validly describes its bandnd the B5;,,(h) state is the ground hole state having mixed
structure. s-d symmetry. The difference is connected with the small

We have shown above that quantum level structure isalue ofEy in InSh. Another interesting aspect of the CdTe
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FIG. 3. Size dependence of the lowest QSL'’s in InSb nanocrys-
tals: (a) the 1S, and 1Py, 3{€) electron levels andb) the two
lowest hole levels for each symmetripz(h), Sz(h), 1S;(h),

andP,(h).

hole level structure is the absence of jumps in the size de-
pendence connected with an anticrossing of $gg(h) and

1S;5(h) levels.

For CdS we use the following set of the bulk band param-,,4p
etersEg=2.58 eV andA =0.0624 eV!® the parameterst
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FIG. 5. Size dependence of the lowest QSL’s in CdS nanocrys-
tals: (a) the 1S, and 1Py, 5{€) electron levels andb) the two
lowest hole levels for each symmetripz;(h), Szo(h), 1S.,(h),
v2Ah).

=0.41 and 7'i=1.02 were extracted from the effective \\o gbtaina=—3.2 y=—0.91, andy,=—1.6. The results
masses of the hol&busing a quasicubic model of CdS. Us- of the calculation are shown in Fig. 5. One can see that the

ing the value for the electron effective mass at the bottom o
the conduction band af,=0.205m,," andE,=21.0 eV
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bround hole state in CdS nanocrystals paype symmetry

as was predicted in the uncoupled six-band mddell-
though the level order is the same as that obtained in the
uncoupled model, the positions of the electron and hole lev-
els calculated with the eight-band model are quite different
in small CdS nanocrystals.

V. DISCUSSION

We have developed an analytical theory of the quantum
size levels in the eight-band PB model in spherical semicon-
ductor nanocrystals having an infinite potential barrier at the
crystal surface. The theory shows that the coupling between
the conduction and valence bands strongly modifies the po-
sitions of the QSL’s even in semiconductor nanocrystals
with a relatively wide energy gap. This is because the cou-
pling is determined by the square root
\/AEe,h/(EngAEe,h), of the natural energy parameter: the
ratio of the quantization energyE, , to the energy gaf.

Even if the quantization energy is much smaller than the
energy gap the square root dependence greatly magnifies the
role of the coupling. This effect should be more significant
for electrons than for holes because usually we hawg

>A Eh .

FIG. 4. Size dependence of the lowest QSL's in CdTe nanoc- Another unexpected result is the sensitivity of the cou-

rystals:(a) the 1S, and 1P, 3 {€) electron levels andb) the two
lowest hole levels for each symmetripz(h), Szo(h), 1S;(h),

andP,(h).

pling to the ratio of remote band contributions to the electron
and light hole effective masses,andy;+ 4y, respectively.

The coupling is proportional tq/(y,+4vy)/« for electrons



7134 AL. L. EFROS AND M. ROSEN PRB 58

and to the inverse value of this ratio for holes. This param-nanocrystals, results in a nonlocal exchange potential and
eter can considerably reduce the magnitude of the couplintherefore should lead to a size dependent renormalization of
for one type of the carrier, allowing one to consider the lev-the energy gap.
els for these carriers independently, but, at the same time, Both these effects, a decrease of the dielectric constant
result in a strong coupling effect for the other carrier in thisand a nonlocal renormalization of the energy gap, can
case. change the transition energy between electron and hole quan-
Optical properties of nanocrystals are determined by trantum confined levels as much as several hundred meV. The
sitions between the electron and hole quantum confined levabsence of a reliable theory of these effects makes an abso-
els. The energy of these transitions, however, are reduced byte description of the nanocrystal absorption spectra diffi-
the energy of the electron-hole Coulomb interaction, whichcult. However, the separation between the hole levels, which
in parabolic mass approximation is equal tal.8e%/xa.”  can be extracted from the transitions to the same electron
Although this correction is always smaller than the confinedevel, can be directly compared with result of our calcula-
ment energy in small nanocrystals, it grows aa &hd its  tions. That is why the level differences seen in the photolu-
value is on the order of 100 meV in smallest nanocrystals ifminescence excitation spectra in Cd&ef. 3 and InAs
one uses a typical value for the static dielectric constant ohanocrystals’ were described so well, while the size depen-
x~10. However, the Coulomb interaction between the elecdence of absorption spectra in the smallest nanocrystals dif-
tron and hole in small nanocrystals is not described by théered from the theoretical predictions.
static dielectric constant. For one, the electroffigh fre- In summary, we have developed an analytical theory of
guency component of the polarizability decreases as a resulthe quantum size levels in a spherical eight-band Pidgeon
of the blueshift of the energy gap with decreasing size irand Brown model for nanocrystals surrounded by an infinite
nanocrystal$®>=3" Also, the optical phonon contribution to potential barrier. This theory of the quantum size levels ex-
the polarizability decreases with size, because the opticailicitly includes the mixing between the conduction and va-
phonon polarization cannot follow the rapid motion of lence bands and the degeneracy of the valence band and
strongly quantized carriers. Both these effects lead to a deraturally generalizes all previous considerations. It is shown
crease of the effective dielectric constant and considerablthat the mixing can be important even in relatively wide gap
increase the electron-hole Coulomb interaction in nanocryssemiconductor nanocrystals, because it is governed by the
tals, leading to an additional decrease in the transitions enesquare root of the ratio of the quantization energy to the
gies. energy gap, and should always be taken into account in nar-
Another important effect leads tosize dependent renor- row gap semiconductors. Calculations made for several par-
malizationof the energy gap in small size nanocrystals. Ef-ticular semiconductor nanocrystals demonstrate a sensitivity
fective mass approximation, as well as pseudopotential locabf the level structure to the contribution of remote bands to
density approximation, tight binding, etc., calculations do noteffective masses of the electrons and light holes. The ratio of
take into account the nonlocal character of the effective selfthese contributions determines the mixing of the conduction
consistent potential acting on electrons and holes in semicorand into the hole levels, and its inverse determines the mix-
ductors. This nonlocality is connected with the electron-ing of the valence band in the electron levels.
electron exchange interaction and reduces to a local potential

only for completely filled bands. The role of this effect on ACKNOWLEDGMENTS
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