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Quantum size level structure of narrow-gap semiconductor nanocrystals: Effect of band coupling

Al. L. Efros and M. Rosen
Nanostructure Optics Section, Naval Research Laboratory, Washington, DC 20375

~Received 9 March 1998!

We study the size dependence of electron and hole quantum size levels in spherical semiconductor nanoc-
rystals. An analytical theory of the quantum size levels within a spherical eight-band Pidgeon and Brown
model has been developed, which takes into account both the coupling of conduction and valence bands and
the complex structure of the valence band in nanocrystals with an infinite potential barrier. We show that in
narrow gap semiconductors band mixing must always be taken into account and that it may be important even
in wide gap semiconductors, because the mixing is governed by the square root of the ratio of the quantization
energy to the energy gap. The strength of the coupling also depends on the ratio of the contributions of remote
bands to the effective masses of the electron and the light hole. As a result level structure is very sensitive, in
general, to the energy band parameters. The calculated level structure for narrow gap InSb, moderate gap
CdTe, and wide gap CdS nanocrystals are presented.@S0163-1829~98!01236-3#
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I. INTRODUCTION

The optical properties of nanosize semiconductor crys
have attracted the attention of many investigators becaus
their potential applications.1,2 The ability to tune their ab-
sorption and photoluminescence spectra over a very w
range of energy, as much as 1.2 eV, by varying the cry
size opens the opportunity of fabricating nanocrystal ba
tunable lasers and light-emitting diodes. For example, C
nanocrystals have been fabricated with energy gaps var
from 1.8 eV, the bulk value, up to 3 eV, covering the who
visible optical spectrum.3 Another property of these nanoc
rystals, a strong nonlinear optical response,4,5 is important
for many applications.

Both linear and nonlinear optical properties of small sem
conductor nanocrystals arise as a result of transitions
tween electron and hole quantum size levels~QSL’s!. The
Coulomb energy of the electron and hole interaction is on
order of e2/ka, wherea is the crystal radius andk is the
dielectric constant of the semiconductor. Because the qu
tization energy increases with decreasing size as 1/a2, the
Coulomb energy, which grows only as 1/a, becomes a smal
correction to the quantization energies of electrons and h
in small crystals, and reduces transition energies by on
relatively small amount. The first theoretical analyses
nanocrystal absorption spectra in this ‘‘strong confineme
regime was made using a parabolic approximation to
conduction and valence bands.6,7 The absorption spectra ob
tained are very simple: \vn5Eg1En

h(a)1En
e(a)

21.8e2/ka, whereEg is the energy gap,En
h,e(a);1/a2 are

the energies of thenth hole and electron QSL’s, respectivel
and the Coulomb correction is calculated in first-order p
turbation theory.

However, there are no semiconductors with such sim
parabolic conduction and valence bands. Figure 1 show
band structure typical for semiconductors having cubic
zinc-blende lattice symmetry, e.g., GaAs, InAs, CdSe, Cd
CdS, or InSb. The conduction band is parabolic only at
bottom of the band. The top of the valence band consist
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a fourfold degenerate subbandG8 , describing the dispersion
of the light and heavy-hole branches for nonzerok, and the
spin-orbit split off subbandG7 . The simple parabolic band
approximation is useful only for obtaining a qualitative u
derstanding and not for a quantitative description of the
tical properties of real semiconductors. The optical prop
ties of small nanocrystals arise from transitions between
QSL’s of electrons and holes, but the energies of these le
must be calculated taking into account the real band struc
found in these semiconductors.

If one is interested in the behavior of holes only near
top of the valence band, then the Luttinger-Kohn mode
adequate. In spherical approximation this model conta
only two parameters,g1

L andgL, which determine the effec

FIG. 1. The bulk band structure of a typical direct gap semic
ductor with cubic or zinc-blende lattice structure and band edg
the G point of the Brillouin zone. The boxes show the region
applicability of different models used for the calculation of electr
and hole QSL’s.
7120 © 1998 The American Physical Society
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tive masses of the light,mlh5m0 /(g1
L12gL), and heavy,

mhh5m0 /(g1
L22gL) holes, respectively, wherem0 is the

free-electron mass. Hole levels were calculated within t
model in Refs. 8 and 9. However, excited hole levels are
adequately described in this model and we have to take
account all three hole bands: the so-called six-band mo
Using the hole levels calculated within this latter mode10

the excitation spectra of CdSe nanocrystals obtained
absorption,11 hole burning,12 and photoluminescence excita
tion experiments3,13,14 were described very well. The six
band model, however, does not take the coupling betw
the conduction and valence bands into account, but consi
the confined electron and hole levels as independent. I
ition would say that this is a good approach for wide g
semiconductors, such as CdSe and CdS, but certainly is
appropriate for narrow gap semiconductors where the c
duction and valence bands are strongly coupled. A multib
effective-mass approximation appropriate for narrow g
semiconductors was proposed by Pidgeon and Brown15 ~PB!
to describe Landau levels in InSb, and was successfully u
in all other zinc-blende semiconductors~see, for example
the review by Aggarwal16!. This eight-band model, which
simultaneously takes into account the nonparabolicity of
electron- and light-hole dispersion and the complex struc
of the valence band, describes the energy band struc
around theG point of the Brillouin zone very well~see Fig.
1!. The importance of this model for the lowest symme
QSL’s in spherical nanocrystals was also shown by Se
and Vahala.17 Similar calculations for cubic semiconducto
having their band edge at theL point of the Brillouin zone
were done by Kang and Wise.18

In this paper we present a theoretical study of the qu
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tum size level structure of spherical nanocrystals of zi
blende semiconductors taking into account the mixing of
conduction and valence bands. The calculation is done u
the spherical eight-band Luttinger-Kohn Hamiltonian f
nanocrystals surrounded by an infinitely high potential b
rier. The results of these calculations show that the coup
of the conduction and the valence bands strongly modi
the level structure not only in narrow gap semiconducto
where the spectrum clearly cannot be described without c
sidering the 8-band model, but may also be important
relatively wideband semiconductors~for example, it can
change the order of the hole band edge levels in InP!.

In Sec. II we examine the spherical eight-band Lutting
Kohn Hamiltonian and derive equations for the dispersion
electrons and holes and for their radial wave functions. T
solutions of the radial equations and analytic expressions
the level energies are given in Sec. III. There we discuss
energy parameters that govern the effect of the conduc
band on the hole levels and, conversely, the effect of
valence band on the electron levels. In Sec. IV the size
pendence of the QSL’s are presented for several semicon
tor nanocrystals. Conclusions are drawn in Sec. V.

II. SEPARATION OF VARIABLES

We calculate the positions of the QSL’s assuming that
crystals are spherical and neglecting the warping of the
lence band connected with the cubic symmetry of the zi
blende semiconductor lattice structure. The eight-ba
Luttinger-Kohn Hamiltonian, which describes the electr
and hole motion inside the nanocrystal, has the follow
form in spherical approximation:
u1/2
c u21/2

c u3/2,3/2
v u3/2,1/2

v u3/2,21/2
v u3/2,23/2

v u1/2,1/2
v u1/2,21/2

v

u1/2
c Eg1

a

2m0
p2 0

i

A2
Vp1 A2

3
Vpz

i

A6
Vp2

0
i

A3
Vpz

1

A3
Vp2

u21/2
c 0 Eg1

a

2m0
p2 0 2

1

A6
Vp1 iA2

3
Vpz 2

1

A2
Vp2

i

A3
Vp1 2

1

A3
Vpz

u3/2,3/2
v

2
i

A2
Vp2

0 2(P1Q) 2L 2M 0 2iA1

2
L iA2M

u3/2,1/2
v A2

3
Vpz 2

1

A6
Vp2

2L* 2(P2Q) 0 2M iA2Q 2iA3

2
L

u3/2,21/2
v

2
i

A6
Vp1 2 iA2

3
Vpz 2M* 0 2(P2Q) L iA3

2
L* iA2Q

u3/2,23/2
v 0 2

1

A2
Vp1

0 2M* L* 2(P1Q) iA2M* iA1

2
L*

u1/2,1/2
v

2
i

A3
Vpz 2

i

A3
Vp2 iA1

2
L* 2 iA2Q 2iA3

2
L 2 iA2M 2D2P 0

u1/2,21/2
v 1

A3
Vp1 2

1

A3
Vpz

2 iA2M* iA3

2
L* 2 iA2Q 2iA1

2
L 0 2D2P

~1!
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7122 PRB 58AL. L. EFROS AND M. ROSEN
The operators in the Hamiltonian are expressed in term
projections of the momentum operator,px,y,z52 i\¹x,y,z :

p65px6 ipy , p'
2 5px

21py
2 ,

P5
g1

2m0
p2, Q5

g

2m0
~p'

2 22pz
2!, ~2!

L5
2 iA3g

m0
pzp2 , M5

A3g

2m0
p2

2 .

The Hamiltonian takes exact account of the coupling
tween the six valence and two conduction bands, separ
by an energy gapEg . The magnitude of the coupling i
described by the Kane matrix elementV52 i ^Su p̂zuZ&/m0 ,
and D is the spin-orbit splitting of the valence band. Th
Bloch functions of the conduction and valence bandsuJ,Jz

c,v ,

respectively, have the following form:19

u1/2
c 5S↑, u3/2,23/2

v 5
i

A2
~X2 iY!↓,

u21/2
c 5S↓, u3/2,3/2

v 5
1

A2
~X1 iY!↑,

u3/2,1/2
v 5

i

A6
@~X1 iY!↓22Z↑#,

~3!

u3/2,21/2
v 5

1

A6
@~X2 iY!↑12Z↓#,

u1/2,1/2
v 5

1

A3
@~X1 iY!↓1Z↑#,

u1/2,21/2
v 5

i

A3
@2~X2 iY!↑1Z↓#,

whereJ is the Bloch function band-edge angular moment

( 1
2 for the conduction band,32 for the heavy- and light-hole

bands, and1
2 for the split-off band!. The PB model takes into

account the contribution of the remote bands to the effec
masses of the electrons and holes in second-order pertu
tion theory. The parametera5112 f includes a piece 2f of
the contribution to the electron effective mass. The inve
of the electron effective massmc at the bottom of the con
duction band includes this contribution and a contribut
from the valence band that is expressed in terms of the K
matrix element and the energy gap:

1

mc
5

1

m0
S a1

Ep

3 F 2

Eg
1

1

Eg1D G D , ~4!

whereEp52m0V2. The parametersg1 andg account for the
contribution of the remote bands to the hole effective mas
—L, Q, M, andP include these contributions. The Luttinge
parameters of the valence bandg1

L , gL can similarly be
written as the sum of contributions from remote bands a
from the conduction band:
of

-
ed

e
ba-

e

ne

es

d

gL5g1
Ep

6Eg
, g1

L5g11
Ep

3Eg
. ~5!

Diagonalization of Eq.~1! gives the dispersion of the con
duction and valence bands. For the heavy-hole band, we

Ehh~p!5~g122g!EK , ~6!

whereEK5p2/2m0 is the kinetic energy of a free electron
For the coupled spectra of the other three light hole, sp
orbit hole, and electron bands, the dispersionE(p) is given
by the equation

@E2Eg2aEK#$@E1g1EK1D#@E1~g112g!EK#

28~gEK!2%2EpEKS E1
2D

3 D2Ep~g122g!EK
2 50.

~7!

If one neglects the contribution of the remote bands to
valence band dispersion (g50, g150) this equation de-
scribes the dispersion of the light holes and electrons in
Kane model:20

~E2Eg2aEK!~E1D!E2EpEK~E12D/3!50. ~8!

If we takea50, then forE,0 Eq. ~7! gives the dispersion
of the light, heavy, and spin-orbit split-off holes in wideban
semiconductors, but includes nonparabolicity of the ho
~see for comparison Ref. 10!:

@E1g1
L~E!EK1D#@E1$g1

L~E!

12gL~E!%EK#28@gL~E!EK#250, ~9!

where here

gL~E!5g1
Ep

6~Eg2E!
, g1

L~E!5g11
Ep

3~Eg2E!
,

~10!

@see for comparison Eq.~5!#.
The Hamiltonian, Eq.~1!, neglects the corrugation of th

hole constant-energy surface connected with zinc-ble
symmetry of the crystal lattice. This asymmetry is reflect
in the difference of the two contributions of remote bands
the hole effective masses:g2 andg3 . It has been shown tha
if we take g5(2g213g3)/5 then energy levels in any
spherical potential are correct to first order in perturbat
theory.21 The second order correction is usually small b
causeg32g2!g21g3 .

The Hamiltonian in Eq.~1! describes the electron- an
hole-energy spectra only if their typical energies are clo
enough to the bottom of the conduction band and to the
of the valence band. In practice this means that the qua
zation energy must be smaller than the distance in energ
the next higher~lower! energy extremum in the conductio
~valence! band.

In spherical nanocrystals each electron and hole stat
characterized by its parity (6), total angular momentumj
5J1L, whereL is the envelope angular momentum, a
the projection of the total angular momentumm5 j z . The
wave functions of these states can be written as a lin
expansion in the eight Bloch functions:
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c j ,m
6 ~r !5Rc~r !6 (

m521/2

1/2

Vm
c um

c 1 (
i 51,2

Rhi
6~r ! (

m523/2

3/2

Vm
hiu3/2,m

v 1Rs~r !6 (
m521/2

1/2

Vm
s u1/2,m

v . ~11!

An explicit analytical angular representation of theV functions is given in Ref. 22. For the even states,

Vc5SAj 1m

2 j
Yj 21/2,m21/2

Aj 2m

2 j
Yj 21/2,m11/2

D ,

Vh15N1S A3~ j 1m!~ j 2m11!~ j 2m12!Yj 11/2,m23/2

i ~ j 13m!A~ j 2m11!Yj 11/2,m21/2

~ j 23m!A~ j 1m11!Yj 11/2,m11/2

iA3~ j 2m!~ j 1m11!~ j 1m12!Yj 11/2,m13/2

D ,

~12!

Vh25N2S 2A~ j 1m!~ j 1m21!~ j 1m22!Yj 23/2,m23/2

iA3~ j 2m!~ j 1m21!~ j 1m!Yj 23/2,m21/2

A3~ j 1m!~ j 2m!~ j 2m21!Yj 23/2,m11/2

2 iA~ j 2m!~ j 2m21!~ j 2m22!Yj 23/2,m13/2

D ,

Vs5S Aj 2m11

2~ j 11!
Yj 11/2,m21/2

2 iAj 1m11

2~ j 11!
Yj 11/2,m11/2

D , ~13!

where N151/A2 j (2 j 12)(2j 13), N251/A2 j (2 j 21)(2j 22), and theYl ,m(u,w) are spherical harmonics as defined
Edmonds.23 ~Note: Using alternative definitions ofYl ,m(u,w) leads to alternative expressions for the wave function.! Substi-
tuting these functions into Eq.~1!, we obtain four coupled second-order differential equations for the radial func
Rc,h1,h2,s

1 (r ) of the even states:

@«g2«2aD j 21/2#Rc
11

y

A6
A113h j

1Aj 11/2
2 Rh1

1 2
y

A2
A12h j

1Aj 23/2
1 Rh2

1 1
y

A3
Aj 11/2

2 Rs
150,

y

A6
A113h j

1Aj 21/2
1 Rc

11@@g12g~123h j
1!#D j 11/22«#Rh1

1

1gA3@112h j
123~h j

1!2#Aj 23/2
12 Rh2

1 1gA2~113h j
1!D j 11/2Rs

150,

2
y

A2
A12h j

1Aj 21/2
2 Rc

11gA3@112h j
123~h j

1!2#Aj 11/2
22 Rh1

1 1@@g11g~123h j
1!#D j 23/22«#Rh2

1

1gA6~12h j
1!Aj 11/2

22 Rs
150,

y

A3
Aj 21/2

1 Rc
11gA2~113h j

1!D j 11/2Rh1
1 1gA6~12h j

1!Aj 23/2
12 Rh2

1 1@g1D j 11/22d2«#Rs
150, ~14!
.
nc-
where h j

151/2j , «g52m0Eg /\2, d52m0D/\2, y
52m0V/\, «52m0E/\2, andE is the energy of the state
The operators

Al
152

]

]r
1

l

r
, Al

25
]

]r
1

l 11

r
, ~15!
are raising and lowering operators for spherical Bessel fu
tions, j l(r ): Al

1 j l(r )5 j l 11(r ), andAl
2 j l(r )5 j l 21(r ); Al

12

5Al 11
1 Al

1 , Al
225Al 21

2 Al
2 , andD l is the Laplacian

D l5
]2

]2r
1

2

r

]

]r
2

l ~ l 11!

r 2
. ~16!
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Correspondingly, for the odd states the angular wave functionsVc,h1,h2,s can be written

Vc5S 2Aj 2m11

2 j 12
Yj 11/2,m21/2

Aj 1m11

2 j 12
Yj 11/2,m11/2

D ,

Vh15N1S A3~ j 1m!~ j 2m11!~ j 1m21!Yj 21/2,m23/2

2 i ~ j 23m11!A~ j 1m!Yj 21/2,m21/2

~ j 13m11!A~ j 2m!Yj 21/2,m11/2

2 iA3~ j 1m11!~ j 2m!~ j 2m21!Yj 21/2,m13/2

D ,

~17!

Vh25N2S 2A~ j 2m11!~ j 2m12!~ j 2m13!Yj 13/2,m23/2

2 iA3~ j 1m11!~ j 2m12!~ j 2m11!Yj 13/2,m21/2

A3~ j 2m11!~ j 1m11!~ j 1m12!Yj 13/2,m11/2

iA~ j 1m11!~ j 1m12!~ j 1m13!Yj 13/2,m13/2

D ,

Vs5S Aj 1m

2 j
Yj 21/2,m21/2

iAj 2m

2 j
Yj 21/2,m11/2

D ,

whereN151/A2 j (2 j 12)(2j 21) andN251/A2( j 11)(2j 13)(2j 14). Substituting these functions into Eq.~1!, we obtain
four coupled second-order differential equations for the radial functionsRc,h1,h2,s

2 (r ) of the odd states:

@«g2«2aD j 11/2#Rc
22

y

A6
A123h j

2Aj 21/2
1 Rh1

2 1
y

A2
A11h j

2Aj 13/2
2 Rh2

2 1
y

A3
Aj 21/2

1 Rs
250,

2
y

A6
A123h j

2Aj 11/2
2 Rc

21@@g12g~113h j
2!#D j 21/22«#Rh1

2

1gA3@122h j
223~h j

2!2#Aj 13/2
22 Rh2

2 2gA2~123h j
2!D j 21/2Rs

250, ~18!

y

A2
A11h j

2Aj 11/2
1 Rc

21gA3@122h j
223~h j

2!2#Aj 21/2
12 Rh1

2 1@@g11g~113h j
2!#D j 13/22«#Rh2

2 2gA6~11h j
2!Aj 21/2

12 Rs
250,

y

A3
Aj 11/2

2 Rc
22gA2~123h j

2!D j 21/2Rh1
2 2gA6~11h j

2!Aj 13/2
22 Rh2

2 1@g1D j 21/22d2«#Rs
250,
v

du

n

are

-

the
whereh j
251/(2j 12). In each set@Eqs.~14! and~18!# three

of the equations, for radial functionsRh1,h2,s connected with
the valence band, are similar to those obtained for the
lence band states in the six-band model.10 The additional
equation describes the direct coupling between the con
tion and the valence bands.

It will be convenient, later in the paper, to use the sta
a-

c-

-

dard atomic notation for the electron and hole QSLs that
solutions of Eqs.~14! and ~16!: nQj where j is the total
angular momentum,Q5S,P,D, . . . denotes the spectro
scopic notation for the lowest value ofL in the wave func-
tions, described by Eqs.~12! and ~17!, andn is the ordinal
number of the level with a given symmetry.11,3The interband
selection rules follow from the angular dependence of
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wave functions. The only allowed transitions are fro
nSj (h) hole states tokSj 8(e) electron states, fromnPj (h)
hole states tokPj 8(e) electron states, etc.11,3

III. QUANTUM SIZE LEVELS AND WAVE FUNCTIONS

A. General expressions

1. Even states

Noting that the operatorsAl
6 are raising and lowering

operators for spherical Bessel functionsj l(x) and that the
radial LaplacianD l just changes the sign ofj l(x), one can
is
o

rg

h

-
ff
express the solutions of the set of coupled differential E
~14! and~18! inside the nanocrystal, for any arbitrary energ
in the form of spherical Bessel functions. For the even sta

Rc, j
1 ~r !5Cc, j

1 j j 21/2~kr !, Rh1,j
1 ~r !5Ch1,j

1 j j 11/2~kr !,

Rh2,j
1 ~r !5Ch2,j

1 j j 23/2~kr !, Rs, j
1 ~r !5Cs, j

1 j j 11/2~kr !.
~19!

Upon substituting these into Eq.~14!, one finds that coeffi-
cientsC1 are the solutions of the system of linear equatio
@«g2«1ak2#Cc, j
1 1

ykA113h j
1

A6
Ch1,j

1 2
ykA12h j

1

A2
Ch2,j

1 1
yk

A3
Cs, j

1 50,

ykA113h j
1

A6
Cc, j

1 2$@g12g~123h j
1!#k21«%Ch1,j

1 1gk2A316h j
129~h j

1!2Ch2,j
1 2gk2A216h j

1Cs, j
1 50,

2
ykA12h j

1

A2
Cc, j

1 1gk2A316h j
129~h j

1!2Ch1,j
1 2$@g11g~123h j

1!#k21«%Ch2,j
1 1gk2A626h j

1Cs, j
1 50,

yk

A3
Cc, j

1 2gk2A216h j
1Ch1,j

1 1gk2A626h j
1Ch2,j

1 2@g1k21d1«#Cs, j
1 50.

~20!
g
As

of
l
en-
di-
of
The condition for there being a nontrivial solution of th
system is that its determinant vanishes. It is important to n
that, in spite of the fact that the coefficientsC1 depend onj ,
the determinantal equationdoes notdepend onj . The deter-
minantal equation determines the dependence of« on k and
is identical to the dispersion of the electron- and hole-ene
spectra in the PB model described by Eqs.~6! and~7!, where
k5p/\. One can turn this around, however, and for eac«
find again a quartic equation fork2. One solution comes
from the dispersion of the heavy holes:

kh
25

2«

g122g
. ~21!

A second equation, cubic ink2, is connected with the disper
sion of the coupled electron, light and spin-orbit split-o
hole branches of the quasiparticle spectrum:

k61Ak41Bk21C50, ~22!

where

A5
y2

a~g114g!
2

«2«g

a
1

2«~g11g!1d~g112g!

~g114g!~g122g!
,

B5
y2~«12d/3!1a~«21d«!

a~g114g!~g122g!

2
~«2«g!@2«~g11g!1d~g112g!#

a~g114g!~g122g!
,

te

y

C52
~«2«g!«~«1d!

a~g114g!~g122g!
, ~23!

and gives three more independent solutionsk2, for each en-
ergy. One of the roots of Eq.~22! is much larger than the
other two becausey2@«,«g ~Typically Ep;20 eV, while
typical energiesE, Eg;2 eV!. To the first order in«, «g it
can be written

kc
2'2A852A1B/A'

2y2

a~g114g!
1

«2«g

a
2

«1d/3

~g114g!
.

~24!

The other two roots can be written

k6
2 52

B2C/A8

2A8
7AS B2C/A8

2A8
D 2

2
C

A8
. ~25!

In general, Eqs.~21! and~22! have four solutionsk2 for each
energy. Fork2,0, k is imaginary and the correspondin
Bessel functions are functions of an imaginary argument.
a result, for each« there are four independent solutions
Eq. ~14!—one for each of thesek2. Expressing the radia
wave function as a linear combination of these four indep
dent solutions allows us to satisfy all the boundary con
tions for the four component wave function. The solutions
Eq. ~14! can be written
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Rc, j
1 ~r !5Cc

1~cp! j j 21/2~kcr !1Cc
1~h2! j j 21/2~k2r !1Cc

1~h1! j j 21/2~k1r !,

Rh1,j
1 ~r !5

yA113h j
1

A6
FkcLh~kc!Cc

1~cp! j j 11/2~kcr !

L0~kc!
1

k2Lh~k2!Ccp
1 ~h2! j j 11/2~k2r !

L0~k2!
1

k1Lh~k1!Cc
1~h1! j j 11/2~k1r !

L0~k1!
G

1A3~12h j
1!Chh

1 j j 11/2~khr !,

Rh2,j
1 ~r !52

yA12h j
1

A2
FkcpLh~kc!Cc

1~cp! j j 23/2~kcr !

L0~kc!
1

k2Lh~k2!Cc
1~h2! j j 23/2~k2r !

L0~k2!
1

k1Lh~k1!Cc
1~h1! j j 23/2~k1r !

L0~k1!
G

1A113h j
1Chh

1 j j 23/2~khr !,

Rs, j
1 ~r !5

y

A3
FkcLs~kc!Cc

1~cp! j j 11/2~kcr !

L0~kcp!
1

k2Ls~k2!Cc
1~h2! j j 11/2~k2r !

L0~k2!
1

k1Ls~k1!Cc
1~h1! j j 11/2~k1r !

L0~k1!
G , ~26!

where

L0~k!5~g1k21d1«!@~g112g!k21«#28g2k4,

Lh~k!5d1«1~g122g!k2,

Ls~k!5«1~g122g!k2. ~27!

In a nanocrystal with an infinite potential barrier all the components of the wave function must vanish at the crystal s
Rm, j

1 (a)50. This condition determines the energy of the electron and hole levels for the even states:

2
j j 21/2~kca! j j 11/2~k1a!k2k1Lh~k2!Ls~k1!

L0~k2!L0~k1! F j j 11/2~k2a! j j 23/2~kha!1
6 j 23

2 j 13
j j 23/2~k2a! j j 11/2~kha!G

1
j j 21/2~kca! j j 11/2~k2a!k2k1Lh~k1!Ls~k2!

L0~k2!L0~k1! F j j 11/2~k1a! j j 23/2~kha!1
6 j 23

2 j 13
j j 23/2~k1a! j j 11/2~kha!G

2
j j 21/2~k2a! j j 11/2~kca!kck1Lh~k1!Ls~kc!

L0~kc!L0~k1! F j j 11/2~k1a! j j 23/2~kha!1
6 j 23

2 j 13
j j 23/2~k1a! j j 11/2~kha!G

1
j j 21/2~k2a! j j 11/2~k1a!kck1Lh~kc!Ls~k1!

L0~kc!L0~k1! F j j 11/2~kca! j j 23/2~kha!1
6 j 23

2 j 13
j j 23/2~kca! j j 11/2~kha!G

1
j j 21/2~k1a! j j 11/2~kca!kck2Lh~k2!Ls~kc!

L0~kc!L0~k2! F j j 11/2~k2a! j j 23/2~kha!1
6 j 23

2 j 13
j j 23/2~k2a! j j 11/2~kha!G

2
j j 21/2~k1a! j j 11/2~k2a!kck2Lh~kc!Ls~k2!

L0~kc!L0~k2! F j j 11/2~kca! j j 23/2~kha!1
6 j 23

2 j 13
j j 23/2~kca! j j 11/2~kha!G50.

~28!

For negativekc
2 , whena(g114g).0, the argument of the spherical Bessel function is imaginary. For negativek2 we shall

always choose the phase of the square root such thatk51 i uku, so that j j ( i ukcur )5( i ) j I j (ukcur ), where I j (ukcur ) is the
modified spherical Bessel function of the first kind. Using the condition thatukcua@1 and the asymptotic form for the
functionsI j (x), we can simplify Eq.~28!:
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2
j j 11/2~k1a!k2k1Lh~k2!Ls~k1!

L0~k2!L0~k1! F j j 11/2~k2a! j j 23/2~kha!1
6 j 23

2 j 13
j j 23/2~k2a! j j 11/2~kha!G

1
j j 11/2~k2a!k2k1Lh~k1!Ls~k2!

L0~k2!L0~k1! F j j 11/2~k1a! j j 23/2~kha!1
6 j 23

2 j 13
j j 23/2~k1a! j j 11/2~kha!G

1
j j 21/2~k2a!ukcuk1Lh~k1!Ls~kc!

L0~kc!L0~k1! F j j 11/2~k1a! j j 23/2~kha!1
6 j 23

2 j 13
j j 23/2~k1a! j j 11/2~kha!G

2
j j 21/2~k2a! j j 11/2~k1a!ukcuk1Lh~kc!Ls~k1!

L0~kc!L0~k1! F j j 23/2~kha!2
6 j 23

2 j 13
j j 11/2~kha!G

2
j j 21/2~k1a!ukcuk2Lh~k2!Ls~kc!

L0~kc!L0~k2! F j j 11/2~k2a! j j 23/2~kha!1
6 j 23

2 j 13
j j 23/2~k2a! j j 11/2~kha!G

1
j j 21/2~k1a! j j 11/2~k2a!ukcuk2Lh~kc!Ls~k2!

L0~kc!L0~k2! F j j 23/2~kha!2
6 j 23

2 j 13
j j 11/2~kha!G50.

~29!

Using Eqs.~24! and ~27!, one can show that

ukcuLs~kc!

L0~kc!
'

ukcuLh~kc!

L0~kc!
'2

a

uauA
a

y2~g114g!
, ~30!

and finally obtain

~113h j
1!F Ls~k2!

Lh~k2!
2

Ls~k1!

Lh~k1!G j j 11/2~k1a! j j 11/2~k2a! j j 23/2~kha!13~12h j
1!

3 j j 11/2~kha!F Ls~k2!

Lh~k2!
j j 11/2~k2a! j j 23/2~k1a!2

Ls~k1!

Lh~k1!
j j 11/2~k1a! j j 23/2~k2a!G

5
a

uauA
a

y2~g114g!

L0~k2!

k2Lh~k2!H ~113h j
1!F12

Ls~k1!

Lh~k1!G j j 21/2~k2a! j j 11/2~k1a! j j 23/2~kha!

13~12h j
1! j j 11/2~kha! j j 21/2~k2a!F j j 23/2~k1a!1

Ls~k1!

Lh~k1!
j j 11/2~k1a!G J

2
a

uauA
a

y2~g114g!

L0~k1!

k1Lh~k1!H ~113h j
1!F12

Ls~k2!

Lh~k2!G j j 21/2~k1a! j j 11/2~k2a! j j 23/2~kha!

13~12h j
1! j j 21/2~k1a! j j 11/2~kha!F j j 23/2~k2a!1

Ls~k2!

Lh~k2!
j j 11/2~k2a!G J . ~31!

This is an equation for the QSL’s in the conduction band, when«.«g , and in the valence band, when«,0. For hole states
k2

2 is always positive, butk1
2 is negative whenu«u,d. In this case the argument of the Bessel functions is imaginary

before, we letk151 i uk1u, so thatj j ( i uk1ur )5( i ) j I j (uk1ur ). If a50 the equations become the uncoupled equations of
six-band model,10,11 which, however, now take into account nonparabolicity of the light hole@see Eq.~9!#. Of the two terms
on the right side of Eq.~31!, which describe the valence band coupling with the conduction band, the second one is
much smaller than the first.

For the electron levels, bothkh
2,0 andk1

2 ,0. Again we write the corresponding spherical Bessel functions in Eq.~31! as
j j ( i ukh,1ua)5( i ) j I j (ukh,1ua). For electron levels with energy«.«g the momentakh,1 satisfy the conditionukh,1ua@1 for
almost all direct semiconductor nanocrystals. We can then use the asymptotic form of the modified spherical Bessel
I j (x) with the large argument and obtain from Eq.~31! the equation that determines the electron quantum size levels:

j j 21/2~k2a!5
1

4~12Ls~k1!/Lh~k1!!

a

uauA
y2~g114g!

a

k2Lh~k2!

L0~k2! H j j 11/2~k2a!F4Ls~k2!

Lh~k2!
2~113h j

1!
Ls~k1!

Lh~k1!G
13~12h j

1!
Ls~k1!

Lh~k1!
j j 23/2~k2a!J 1

k2Lh~k2!L0~k1!

uk1uL0~k2!Lh~k1!

3

4~12Ls~k1!/Lh~k1!!

3H j j 11/2~k2a!F4

3S Ls~k2!

Lh~k2!
21D1~12h j

1!G1~12h j
1! j j 23/2~k2a!J . ~32!
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If g114g50, this equation becomes the equation for the uncoupled electron QSL’s used in the Ref. 11. The two term
right hand side of Eq.~32! describe the effect of the coupling with the valence band. Of these, the second one is alway
smaller than the first.

2. Odd states

A similar procedure gives us the solution of Eq.~18! for the odd states. The corresponding solutions can be written:

Rc, j
2 ~r !5Cc

2~cp! j j 11/2~kcr !1Cc
2~h2! j j 11/2~k2r !1Cc

2~h1! j j 11/2~k1r !,

Rh1,j
2 ~r !52

yA123h j
2

A6
FkcLh~kc!Cc

2~cp! j j 21/2~kcr !

L0~kc!
1

k2Lh~k2!Cc
2~h2! j j 21/2~k2r !

L0~k2!
1

k1Lh~k1!Cc
2~h1! j j 21/2~k1r !

L0~k1!
G

1A3~11h j
2!Chh

2 j j 21/2~khr !,

Rh2,j
2 ~r !5

yA11h j
2

A2
FkcLh~kc!Cc

2~cp! j j 13/2~kcr !

L0~kc!
1

k2Lh~k2!Cc
2~h2! j j 13/2~k2r !

L0~k2!
1

k1Lh~k1!Cc
2~h1! j j 13/2~k1r !

L0~k1!
G

1A123h j
2Chh

2 j j 13/2~khr !,

Rs, j
2 ~r !5

y

A3
FkcLs~kc!Cc

2~cp! j j 21/2~kcr !

L0~kc!
1

k2Ls~k2!Cc
2~h2! j j 21/2~k2r !

L0~k2!
1

k1Ls~k1!Cc
2~h1! j j 21/2~k1r !

L0~k1!
G . ~33!

In nanocrystals with an infinite potential barrier the level positions are determined from the four boundary con
Rm, j

2 (a)50. The solubility condition of this set of equations gives us the equation determining the energies of the elect
hole states:

1
j j 11/2~kca! j j 21/2~k1a!k2k1Lh~k2!Ls~k1!

L0~k2!L0~k1! F j j 13/2~k2a! j j 21/2~kha!1
2 j 21

6 j 19
j j 21/2~k2a! j j 13/2~kha!G

2
j j 11/2~kca! j j 21/2~k2a!k2k1Lh~k1!Ls~k2!

L0~k2!L0~k1! F j j 13/2~k1a! j j 21/2~kha!1
2 j 21

6 j 19
j j 21/2~k1a! j j 13/2~kha!G

1
j j 11/2~k2a! j j 21/2~kca!kck1Lh~k1!Ls~kc!

L0~kc!L0~k1! F j j 13/2~k1a! j j 21/2~kha!1
2 j 21

6 j 19
j j 21/2~k1a! j j 13/2~kha!G

2
j j 11/2~k2a! j j 21/2~k1a!kck1Lh~kc!Ls~k1!

L0~kc!L0~k1! F j j 13/2~kca! j j 21/2~kha!1
2 j 21

6 j 19
j j 21/2~kca! j j 13/2~kha!G

2
j j 11/2~k1a! j j 21/2~kca!kck2Lh~k2!Ls~kc!

L0~kc!L0~k2! F j j 13/2~k2a! j j 21/2~kha!1
2 j 21

6 j 19
j j 21/2~k2a! j j 13/2~kha!G

1
j j 11/2~k1a! j j 21/2~k2a!kck2Lh~kc!Ls~k2!

L0~kc!L0~k2! F j j 13/2~kca! j j 21/2~kha!1
2 j 21

6 j 19
j j 21/2~kca! j j 13/2~kha!G50.

~34!

This can be rewritten, as for the even states, using the conditionukcua@1 and Eq.~30!:
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~123h j
2!F Ls~k1!

Lh~k1!
2

Ls~k2!

Lh~k2!G j j 21/2~k1a! j j 21/2~k2a! j j 13/2~kha!23~11h j
2! j j 21/2~kha!

3F Ls~k2!

Lh~k2!
j j 21/2~k2a! j j 13/2~k1a!2

Ls~k1!

Lh~k1!
j j 21/2~k1a! j j 13/2~k2a!G

5
a

uauA
a

y2~g114g!

L0~k2!

k2Lh~k2!H ~123h j
2!F12

Ls~k1!

Lh~k1!G j j 11/2~k2a! j j 21/2~k1a! j j 13/2~kha!

13~11h j
2! j j 21/2~kha! j j 11/2~k2a!F j j 13/2~k1a!1

Ls~k1!

Lh~k1!
j j 21/2~k1a!G J

2
a

uauA
a

y2~g114g!

L0~k1!

k1Lh~k1!H ~123h j
2!F12

Ls~k2!

Lh~k2!G j j 11/2~k1a! j j 21/2~k2a! j j 13/2~kha!

13~11h j
2! j j 11/2~k1a! j j 21/2~kha!F j j 13/2~k2a!1

Ls~k2!

Lh~k2!
j j 21/2~k2a!G J . ~35!

This equation describes the energies of both the electron and hole odd states. Ifa50 the equation becomes the equation
the hole states in the six-band model, but now also takes the nonparabolicity of the light hole into account. Again, the
term on the right hand side of the equation is much smaller than the first one.

Following a similar procedure to that for the even states, we can obtain from Eq.~35! the equation for the electron od
states:

j j 11/2~k2a!5
1

4@12Ls~k1!/Lh~k1!#

a

uauA
y2~g114g!

a

k2Lh~k2!

L0~k2! H 23~11h j
2!

Ls~k1!

Lh~k1!
j j 13/2~k2a!2 j j 21/2~k2a!

3F4Ls~k2!

Lh~k2!
2~123h j

2!
Ls~k1!

Lh~k1!G J 2
k2Lh~k2!L0~k1!

uk1uL0~k2!Lh~k1!

3

4@12Ls~k1!/Lh~k1!#H j j 21/2~k2a!

3F4

3S Ls~k2!

Lh~k2!
21D1~11h j

2!G1~11h j
2! j j 13/2~k2a!J . ~36!

In the uncoupled case, wheng114g50, Eqs.~36! and~32! are identical. The splitting of the electron levels is determined
the coupling with the valence band. Of the two terms on the right hand side of this equation, which describe the coupl
the valence band, the second is always much smaller than the first.

Equations~32! and ~36! clearly show that the coupling of the electron levels with the valence band is determined b
parameter (g114g)/a, and, conversely, Eqs.~31! and ~35! show that the effect of the conduction band on the hole le
positions is determined by its inversea/(g114g). Before calculating the QSL’s in several particular semiconductor nan
rystals, we will analyze more closely, in the limitD50, the parameters that effect the coupling and the effect of the coup
on the quantum size levels.

B. The caseD50

For all energiesuEu@D (u«u@d), Eq. ~25! givesk1
2 (g122g)'2«22d/3; substitutingk1

2 into Eq. ~28! gives

Lh~k1!'d/3, Ls~k1!'22d/3,

L0~k1!'22d2/9. ~37!

On the other hand, using the conditionsy2@u(«2«g)(g114g)u, u«au, one obtains from Eq.~25!:

L0~k2!

k2Lh~k2!
'

«

u«uA
y2«

«2«g
,

Ls~k2!

Lh~k2!
'1, ~38!

where we usedk2
2 '«(«2«g)/y2 and (g122g)k2

2 1«'«. Substituting Eqs.~37! and~38! into Eqs.~31! and~35! for the hole
levels, we find that forD50 the level energies are determined by two equations:

j j 11/2~kha!50, ~39!

and
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j j 11/2~k2a! j j 23/2~kha!1
12h j

1

11h j
1 j j 11/2~kha! j j 23/2~k2a!

52
a

uauA
DEha

~Eg1DEh!~g114g!
j j 21/2~k2a!F j j 23/2~kha!2

12h j
1

11h j
1 j j 11/2~kha!G , ~40!

which are valid for allj starting fromj 5 1
2 and whereEg5\2«g/2m0 andDEh52\2«/2m0 is the hole level energy measure

from the top of the valence band. By the same procedure we get two equations from Eq.~35! for the odd hole states forD
50:

j j 21/2~kha!50, ~41!

which is valid for all j . 1
2 , and

j j 21/2~kha! j j 13/2~k2a!1
12h j

2

11h j
2 j j 21/2~k2a! j j 13/2~kha!

52
a

uauA
DEha

~Eg1DEh!~g114g!
j j 11/2~k2a!F j j 21/2~kha!2

12h j
2

11h j
2 j j 13/2~kha!G , ~42!
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which is valid for all j starting fromj 5 1
2 . If we replacej by

j 11 in Eq. ~40! for the even states, it becomes identical
Eq. ~42! for the odd states. This means that all hole levels
D50 have a degree of degeneracy greater than 6, excep
even state withj 5 1

2 , which is only twofold degenerate. F
nite D lifts this degeneracy.

It is important to note that the admixture of the condu
tion band into the valence band is determined not only by
natural energy parameterDEh /(Eg1DEh), the ratio of the
quantization energy to the energy gap, but also by the r
a/(g114g) ~actually by their square roots!. This latter ratio
then could produce quite large an admixture even if the c
finement energy were much smaller than the energy gap
conversely, considerably decrease the admixture even tho
DEh.Eg .

Substituting Eqs.~37! and~38! into Eqs.~32! and~36!, for
the electron quantum size levels we obtain for the e
states:

j j 21/2~k2a!5
1

2

a

uauA
DEe~g114g!

~Eg1DEe!a

3@~11h j
1! j j 11/2~k2a!

2~12h j
1! j j 23/2~k2a!#, ~43!

where the electron level energies,DEe5\2(«2«g)/2m0 ,
are measured from the bottom of the conduction band.
second term in the right side of Eq.~32! is a correction term
that is proportional toD, and may be written forj . 1

2 :

;2
D

6~Eg1DEe!
ADEe~g122g!

Ep
~12h j

1!

3@ j j 11/2~k2a!1 j j 23/2~k2a!#. ~44!

For j 5 1
2 it is proportional toD2. The same procedure for th

odd electron states gives:
r
the

-
e

io

-
r,
gh

n

e

j j 11/2~k2a!5
1

2

a

uauA
DEe~g114g!

~Eg1DEe!a

3@~11h j
2! j j 13/2~k2a!

2~12h j
2! j j 21/2~k2a!#. ~45!

The second term in the right-hand side of Eq.~36! is a cor-
rection proportional toD:

;
D

6~Eg1DEe!
ADEe~g122g!

Ep
~11h j

2!

3@ j j 13/2~k2a!1 j j 21/2~k2a!#. ~46!

As before, Eq.~43! for the even states becomes identical
Eq. ~45! if we replacej by j 11. This shows that all electron
levels forD50, even though they are coupled with the v
lence band, have the same degree of degeneracy as
simple parabolic band model@the 1S(e) electron level is
twofold degenerate, the 1P(e) is six-fold degenerate, etc.
taking electron spin into account#. Finite D gives corrections
having different signs in Eqs.~43! and ~45!, and lifts this
degeneracy. As a result the 1P(e) electron level is split into
1P3/2(e) and 1P1/2(e) states.

As for the admixture of the conduction band into the v
lence band, the admixture of the valence band into the c
duction band is also determined not only by the natural
ergy parameterDEe /(Eg1DEe), the ratio of the electron
quantization energy to the energy gap, but also by (g1
14g)/a. This latter parameter can make the admixture la
even if the confinement energy is much smaller than
energy gap, or, conversely, can greatly decrease the ad
ture even ifDEe.Eg . This parameter is the inverse of th
one affecting the admixture of the conduction band in
hole levels. So even if the effect of the valence band on
conduction state is ‘‘strong,’’ the effect of the conductio
band on the hole levels may be ‘‘weak,’’ and vice versa.

In order to illustrate the role of the coupling, we calc
lated the size dependence of the lowest hole and elec
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levels in ‘‘InP semiconductor’’ nanocrystals usingD50,
~this approximation is reasonable becauseD is only 110 meV
in InP!, and compare these results with calculations do
using other techniques. The energy parameters we used
Eg51.424 eV, Ep520.6 eV, f 521.1, g1

L55.25, and
gL5(2g2

L13g3
L)/551.9,24 which result in a521.2, g1

50.41, andg520.51. We will also calculate the size de
pendence using another set of the parametersg114g, a,
and Ep , now with a.0 and g114g.0, but keeping the
effective masses of the electron,m0(a1Ep /Eg)21, light
hole, m0(g114g1Ep /Eg)21, and heavy hole m0(g1
22g)21 the same as measured in bulk.

In parabolic band approximation the energy of the 1S(e)
electron level is determined by the simple expression:DEe

5\2k2
2 /2me5\2p2/2mea

2, wherek25p/a and whereme

5m0 /(a1Ep /Eg) is the effective mass of the electron
the bottom of the conduction band withD50 @see Eq.~4!#.
In the uncoupled case, (g15g50), Eq.~43! for j 5 1

2 again
givesk25p/a; however, the energy dependence of the
fective massme(DEe) is taken into account@see Eq.~7!# and

DEe5
\2k2

2

2me~DEe!
5

\2p2

2m0a2S a1
Ep

Eg1DEe
D . ~47!

This expression was the one used for the electron QSL’
Ref. 11. One sees that the electron effective mass incre
with the energy of the levels. Since the position of the le
is inversely proportional to the effective mass, the ene
dependence of the effective mass slows down the shift of
level with the size@see Fig. 2~a!#. In the full eight-band PB
model,k2 is related to the energy almost in the same way
in the Kane model. However, for any finiteDEe , when the
right side of Eq.~43! is nonzero anda.0, the solution of
this equation givesk2a,p. This leads to a still further
slowing down of the size dependence of the electron lev
with decreasing size as shown in Fig. 2~a!. If a,0 the root
k2a is greater thanp resulting in the shift of the 1S(e)
electron level to higher energy.

There are two equations, Eqs.~39! and ~40!, for the hole
levels for D50. The first determines the QSLs of hea
holes only and does not couple with the conduction ba
The lowest hole level@the 1P1/2(h) state# hasp-symmetry
and its energy is given by Eq.~39! with j 5 1

2 :

DEh~1P1/2!5
\2~4.49!2

2mhha
2

, ~48!

where mhh5m0 /(g1
L22gL)5m0 /(g122g) is the heavy-

hole effective mass. However, selection rules do not al
transitions from this level to the ground 1S(e) electron quan-
tum size level, because of the different symmetries of th
envelope wave functions.10,11

Hole states with mixeds-d symmetry, from which tran-
sitions to the first electron quantum size level are allow
are described by Eq.~40! with j 5 3

2 . In parabolic approxi-
mation andD50 their energies are determined by setting
right side of this equation to zero:

2 j 0~kha! j 2~Abkha!1 j 0~Abkha! j 2~kha!50, ~49!
e
re:

-

in
ses
l
y
e
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d.

ir

,

e

where kh
252m0DEh /@\2(g1

L22gL)#, k2
2 52m0DEh /

@\2(g1
L14gL)#, and b5k2

2 /kh
25(g1

L22gL)/(g1
L14gL).

The values ofkha, which solve this equation, depend on
on b. In InP b50.115 and the solution of Eq.~49! gives
kha'5.21. The energy of the first hole state with mixeds-d
symmetry~the 1S3/2 state! whenD50 is then

DEh~1S3/2!5
\2kh

2

2mhh
5

\2~5.21!2

2mhha
2

. ~50!

Comparison of Eqs.~48! and ~50! shows that the ground
hole state in InP nanocrystals hasp-type symmetry in para-
bolic approximation@see also Fig. 2~b!#. This level order is
consistent with the prediction of the six-band model for I
nanocrystals.25 Studying the dependence of the solutions
Eq. ~49! on b shows that forD50 the level order change
whenb.0.215, and that the 1S3/2(h) state then becomes th
ground-hole state.

In the uncoupled case, whena50, the energies of the
hole levels are determined by setting of the left side of E
~40! to zero; however, this now takes the nonparabolicity
the light hole into account. The hole energies are then de
mined by Eq.~49! whereb(DEh) is now a function of the
energy of the state:

FIG. 2. Size dependence of the lowest QSL’s in InP nanocr
tals, with D50, calculated using different approximations:~a! the
1Se electron level and~b! the 1P1/2(h) and 1S3/2(h) hole levels.
Dotted lines show the results of calculations within the simple pa
bolic approximation for the conduction band and the Lutting
Kohn parabolic approximation for the valence band. Dashed li
show the effect of the nonparabolicity of the electron- and lig
hole spectra without taking the coupling of the conduction and
lence bands into account. Solid lines show the results of the ca
lations done within the eight-band Pidgeon and Brown model
the set of energy band parameters discussed in the text fora.0 and
a,0. The size dependence of the 1P3/2(h) hole state is the same
for all these models.
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b~DEh!5
g122g

g1
L~DEh!14gL~DEh!

5
g122g

g114g1Ep /~Eg1DEh!
. ~51!

Figure 2~b! shows that the nonparabolicity of the light ho
slows the 1/a2 dependence of the 1S3/2(h) hole-state ener-
gies. For holes, if we take coupling with the conduction ba
into account, for finitea.0 andDEh , i.e., when the right-
hand side of Eq.~42! is nonzero and negative, then the s
lution of this equation gives values ofk2a smaller than those
found from Eq.~49!. This leads to a further slowing down o
the size dependence of the hole levels with decreasing
Figure 2~b! shows this dependence for the parametersa
50.63,g151.04,g520.21, andEp518.0, which keep the
effective carrier masses equal to those measured in bulk
For these parameters the 1S3/2(h) level crosses the 1P1/2(h)
level and becomes the ground-hole state for nanocrystal
less than 35 Å. This agrees with the results of pseudopo
tial calculations made for small InP nanocrystals.26 Negative
a leads to an increase ofk2a, and to a ground state tha
hasp-type symmetry. The corresponding results, calcula
for energy parameters from Ref. 24,a521.2, g150.41,
g520.51, andEp520.6, are shown in Fig. 2~b!.

The analysis presented above shows how sensitive
absorption spectra are to the energy-band parameters.
structure and positions of the quantum size levels in sm
nanocrystals are determined not by the values of the effec
masses at the bottom of the conduction band and at the to
the valence band alone. They strongly depend on the rela
contribution of the remote bands and the nearest band.
drastic change of the level structure presented in Fig.
obtained by changingEp only by 10%.

IV. SIZE DEPENDENCE OF QUANTUM SIZE LEVELS
IN SEVERAL SAMPLE SEMICONDUCTOR

NANOCRYSTALS

We will calculate the size dependence of the quantum
levels in wide gap CdS, moderate gap CdTe, and narrow
InSb nanocrystals. CdS and CdTe are selected bec
nanocrystal samples of these materials have already
prepared and size selective spectroscopy of their quan
confined levels can be studied experimentally. Compari
of the results obtained in the eight-band PB model with th
obtained in the uncoupled model shows that, although
uncoupled six-band model gives the same level order as
eight-band model and qualitatively describes the structur
absorption spectra, the coupling is important for a quant
tive description of the levels even in wide gap CdS. A d
scription of the absorption level structure of narrow gap In
can be done only in the eight-band PB model, because
pling between the conduction and the valence bands is
ways important in narrow gap semiconductors and the
coupled six-band model gives wrong results even
relatively large nanocrystals.27 For each semiconductor w
show the size dependences only for the range of ener
such that the eight-band PB model validly describes its b
structure.

We have shown above that quantum level structure
d
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very sensitive to the bulk energy band parameters. In g
eral, these parameters are quite well determined for alm
all semiconductor materials~see, for example, Refs. 16 an
28!. However, energy band parameters measured in the
include some contributions that are absent in nanocrys
As a result, using these parameters requires taking spe
precautions. For example, in narrow gap semiconduc
these parameters include the correction connected with
nonlocal character of the self-consistent potential; the m
nitude of these corrections is comparable with the contri
tion of remote bands to the electron- and hole-effect
masses.29 The nonlocal contributions have the form

Dg1525dnl , Dg524dnl ,

Da5210dnl , dnl5
2

15pkEg
AEBEp

3
,

~52!

whereEB527.2 eV is the Bohr energy andk is the dielectric
constant. A different mechanism of band parameter ‘‘ren
malization’’ is dominant in wide and moderate gap semico
ductors. These semiconductors are usually quite polar
charged-free carriers interact strongly with polar phonons
form polarons.30 As a result, in most cases the effectiv
masses measured in bulk wide gap semiconductors are
those of free electrons and holes, but are the effective ma
of the corresponding polarons~see for example Ref. 31!.
Both these corrections must be substracted from the rem
band contribution when one calculates the quantum lev
within the eight-band model.

The following set of the bulk parameters describes
energy band structure of bulk InSb:Eg50.2368 eV, D
50.810 eV, Ep523.42 eV, g2

L515.96, g3
L516.99 @gL

5(2g2
L13g3

L)/5516.58#, g1
L536.41, andme50.0139m0 ,

which results in a520.36, g153.44, and g50.196.32

These parameters do not yet allow for the nonlocal corr
tions described in Eq.~52!. For InSb, usingk518.3, we find
dnl50.214, which finally leads to the remote band contrib
tions g154.51, g50.953, anda50.77. The level structure
calculated with these parameters in InSb nanocrystal
shown in Fig. 3. The most interesting effect in this spectr
is the strong splitting of the 1P(e) electron level into two
1P1/2(e) and 1P3/2(e) states. One can see in Fig. 3~b! that
the 1P3/2(h) hole state becomes the hole ground state
nanocrystals smaller than 60 Å in radius. The rapid chan
in the size dependence of the 1S3/2(h) and 2S3/2(h) hole
states in the energy region close toD reflect anticrossings
similar to those observed in CdSe forS1/2(h) states.3

We use the following set of bulk energy band paramet
to describe CdTe:Eg51.6069 eV,D50.953 eV,g1

L55.37,
g2

L51.67, g3
L51.98, @gL5(2g2

L13g3
L)/551.86#, me

50.091m0 , from Ref. 31 and a value of the nonparabolici
parameter Ep517.9 eV.33 This results in a51.24, g1
51.66, andg50, which we used to calculate the QSL’s
CdTe nanocrystals shown in Fig. 4. The splitting of t
1P(e) electron state is considerably smaller than in InS
and the 1S3/2(h) state is the ground hole state having mix
s-d symmetry. The difference is connected with the sm
value ofEg in InSb. Another interesting aspect of the CdT
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hole level structure is the absence of jumps in the size
pendence connected with an anticrossing of theS3/2(h) and
1S1/2(h) levels.

For CdS we use the following set of the bulk band para
etersEg52.58 eV andD50.0624 eV,19 the parametersgL

50.41 and g1
L51.02 were extracted from the effectiv

masses of the holes19 using a quasicubic model of CdS. U
ing the value for the electron effective mass at the bottom
the conduction band ofme50.205m0 ,19 andEp521.0 eV,34

FIG. 3. Size dependence of the lowest QSL’s in InSb nanoc
tals: ~a! the 1Se and 1P1/2,3/2(e) electron levels and~b! the two
lowest hole levels for each symmetry:P3/2(h), S3/2(h), 1S1/2(h),
andP1/2(h).

FIG. 4. Size dependence of the lowest QSL’s in CdTe nan
rystals:~a! the 1Se and 1P1/2,3/2(e) electron levels and~b! the two
lowest hole levels for each symmetry:P3/2(h), S3/2(h), 1S1/2(h),
andP1/2(h).
e-

-

f

we obtaina523.2, g520.91, andg1521.6. The results
of the calculation are shown in Fig. 5. One can see that
ground hole state in CdS nanocrystals hasp-type symmetry
as was predicted in the uncoupled six-band model.10 Al-
though the level order is the same as that obtained in
uncoupled model, the positions of the electron and hole l
els calculated with the eight-band model are quite differ
in small CdS nanocrystals.

V. DISCUSSION

We have developed an analytical theory of the quant
size levels in the eight-band PB model in spherical semic
ductor nanocrystals having an infinite potential barrier at
crystal surface. The theory shows that the coupling betw
the conduction and valence bands strongly modifies the
sitions of the QSL’s even in semiconductor nanocryst
with a relatively wide energy gap. This is because the c
pling is determined by the square root,
ADEe,h /(Eg1DEe,h), of the natural energy parameter: th
ratio of the quantization energyDEe,h to the energy gapEg .
Even if the quantization energy is much smaller than
energy gap the square root dependence greatly magnifie
role of the coupling. This effect should be more significa
for electrons than for holes because usually we haveDEe
.DEh .

Another unexpected result is the sensitivity of the co
pling to the ratio of remote band contributions to the electr
and light hole effective masses,a andg114g, respectively.
The coupling is proportional toA(g114g)/a for electrons

s-

-

FIG. 5. Size dependence of the lowest QSL’s in CdS nanoc
tals: ~a! the 1Se and 1P1/2,3/2(e) electron levels and~b! the two
lowest hole levels for each symmetry:P3/2(h), S3/2(h), 1S1/2(h),
andP1/2(h).
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and to the inverse value of this ratio for holes. This para
eter can considerably reduce the magnitude of the coup
for one type of the carrier, allowing one to consider the le
els for these carriers independently, but, at the same t
result in a strong coupling effect for the other carrier in th
case.

Optical properties of nanocrystals are determined by tr
sitions between the electron and hole quantum confined
els. The energy of these transitions, however, are reduce
the energy of the electron-hole Coulomb interaction, wh
in parabolic mass approximation is equal to21.8e2/ka.7

Although this correction is always smaller than the confin
ment energy in small nanocrystals, it grows as 1/a and its
value is on the order of 100 meV in smallest nanocrystal
one uses a typical value for the static dielectric constan
k;10. However, the Coulomb interaction between the el
tron and hole in small nanocrystals is not described by
static dielectric constant. For one, the electronic~high fre-
quency! component of the polarizability decreases as a re
of the blueshift of the energy gap with decreasing size
nanocrystals.35–37 Also, the optical phonon contribution t
the polarizability decreases with size, because the op
phonon polarization cannot follow the rapid motion
strongly quantized carriers. Both these effects lead to a
crease of the effective dielectric constant and considera
increase the electron-hole Coulomb interaction in nanoc
tals, leading to an additional decrease in the transitions e
gies.

Another important effect leads to asize dependent renor
malizationof the energy gap in small size nanocrystals. E
fective mass approximation, as well as pseudopotential lo
density approximation, tight binding, etc., calculations do
take into account the nonlocal character of the effective s
consistent potential acting on electrons and holes in semi
ductors. This nonlocality is connected with the electro
electron exchange interaction and reduces to a local pote
only for completely filled bands. The role of this effect o
energy bands renormalization was first pointed out by Ha
erin and Rice for gapless semiconductors38 and later by
Gel’mont for semiconductors with a finite energy gap.39 The
coupling between the conduction and valence bands we h
considered above, which is increasingly important in sm
B
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nanocrystals, results in a nonlocal exchange potential
therefore should lead to a size dependent renormalizatio
the energy gap.

Both these effects, a decrease of the dielectric cons
and a nonlocal renormalization of the energy gap, c
change the transition energy between electron and hole q
tum confined levels as much as several hundred meV.
absence of a reliable theory of these effects makes an a
lute description of the nanocrystal absorption spectra d
cult. However, the separation between the hole levels, wh
can be extracted from the transitions to the same elec
level, can be directly compared with result of our calcu
tions. That is why the level differences seen in the photo
minescence excitation spectra in CdSe~Ref. 3! and InAs
nanocrystals27 were described so well, while the size depe
dence of absorption spectra in the smallest nanocrystals
fered from the theoretical predictions.

In summary, we have developed an analytical theory
the quantum size levels in a spherical eight-band Pidg
and Brown model for nanocrystals surrounded by an infin
potential barrier. This theory of the quantum size levels
plicitly includes the mixing between the conduction and v
lence bands and the degeneracy of the valence band
naturally generalizes all previous considerations. It is sho
that the mixing can be important even in relatively wide g
semiconductor nanocrystals, because it is governed by
square root of the ratio of the quantization energy to
energy gap, and should always be taken into account in
row gap semiconductors. Calculations made for several
ticular semiconductor nanocrystals demonstrate a sensit
of the level structure to the contribution of remote bands
effective masses of the electrons and light holes. The rati
these contributions determines the mixing of the conduct
band into the hole levels, and its inverse determines the m
ing of the valence band in the electron levels.
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