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Abstract. The elastic properties of the vitreous system Bi2O3–B2O3 have been measured by
ultrasonic pulse echo overlap technique at a frequency of 10 MHz and at room temperature.
For the purpose of measuring the ultrasonic velocity with high accuracy, the McSkimin
criterion for determining the correct cyclic overlap between echoes is used. The elastic
properties of the present glass system as a function of composition are discussed on the basis
of the elastic internal energy due to the deformation. Also presented is a full discussion of the
Poisson’s ratio; which is found to be rather sensitive to the glass composition.

1. Introduction

Interest in glasses has rapidly increased in recent years
because of diverse applications in electronics, nuclear
and solar energy technologies and acousto-optic devices.
Vitreous boron oxide, a well known oxide glass, has been
studied since the early 1930s [1–4]. Pure boron oxide is a very
good former, covalently bonded, with interesting physico-
chemical properties. B2O3 and related binary borate systems
(especially alkali borate glasses) are also of commercial and
technological interest [1, 5].

The propagation of ultrasonic waves in solids provides
important information regarding solid-state motion in the
materials. Two types of acoustic waves are important [6]:
bulk acoustic waves and acoustic surface waves. For basic
studies in solids, bulk acoustic waves are mainly used,
whereas for device applications, acoustic surface waves may
be more appropriate. The propagation of acoustic waves in
bulk glasses has therefore been of considerable interest in
understanding mechanical behaviour.

The network structure and elastic properties of
borophosphate glasses have been studied in terms of the
fractions of four coordinated boron atoms, Osakaet al [7].
The elastic moduli of alkaline earth borate glasses was
studied by Kodoma [8]. Paulet al [9] studied the ultrasonic
velocity, absorption and elastic properties of barium borate
glasses. They observed velocity dispersion with frequency
and temperature. The elastic moduli of these glasses
were calculated theoretically, assuming the Makishima and
Mackenzie’s model [9, 10]. No particular trend was observed
in the ultrasonic velocity at a given frequency for these
glasses [9]. The acoustic velocity in several glasses in the
temperature range 73–473 K was measured by Fuxiet al
[11]. The relationship between the structure and properties
or the glasses and changes in the coordination number of

§ Present address: Sultanate of Oman, Sohar, PO Box 135/311.

individual glass-forming cations in alkali oxide glasses have
been analysed. The ultrasonic velocity and attenuation
measurements in borate glasses at different temperatures
were reported by Yawaleet al [12, 13] and Pakadeet al
[14]. Nagateet al [15] measured the ultrasonic velocity
and absorption in sodium borate and lead borate glasses
at different temperatures. They suggested the the product
of one-third power of the velocity of sound and the molar
volume of the oxide melt was constant and independent of
temperature.

In this work, the ultrasonic velocity, measured with high
accuracy using the pulse echo overlap method [16], and the
elastic properties as a function of composition, on the basis
of the elastic internal energy due to the deformation of the
bismuth borate glasses, are reported.

2. Theoretical considerations

The finite elastic strain theory [17, 18], in which the strain
does not need to be infinitesimal, gives a complete description
of the thermodynamic potentials, with stress and strain as
the mechanical variables. In considering a deformed body
at some temperature, we chose the undeformed state to
be the state of the body at the same temperature in the
absence of external forces. Letai , i = 1, 2, 3, denote
the Cartesian coordinates of a material’s particle before the
deformation andλi(a1, a2, a3) denote the coordinates of the
same particle after the deformation. Then the Lagrangian
strain componentsηij which describe the finite elastic strains
are given by

ηij = 1

2

(
∂λk

∂ai

∂λk

∂ai
− δij

)
(1)

wherei, j = 1, 2, 3 and the symbolδij is the Kronecker delta.
Instead of the tensor notation, we use the abbreviated

Voigt notation and the Lagrangian strain in the abbreviated
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notation is defined by Brugger [18] as

ηα = 2ηij /(1 + δij ).

Because the sound wave propagates under adiabatic
conditions, the internal energy is chosen in the present work
as the most convenient thermodynamic potential. Letu and
s be the internal energy and the entropy respectively, taken
per unit mass;U and S taken per unit volume; andUm
andSm taken per unit mole. Then, for the energy equation
for conservative media [18], the internal energies can be
expressed by

du = T ds + (1/ρ)tα dηα (2a)

dU = T dS + tα dηα (2b)

dUm = T dSm + (M/ρ)tα dηα (2c)

whereT is the temperature,ρ is the density of the undeformed
state,M is the molar mass,tα = ρ(∂u/∂ηα)s is a quantity
called the thermodynamic tension, and the summation is
taken over the suffixα from one to six. Equations (2a) and
(2b) are the usual expressions when the composition change is
not to be considered, while (2c) is the new expression suitable
for discussing elastic properties as a function of composition.
These are the fundamental thermodynamic relations for the
internal energies of a deformed body.

In order to be able to apply the general formulae of the
internal energy to any particular deformation, we must know
the internal energy of the body as a function of the strain.
This expression is easily obtained by using the fact that the
deformation is small and by expanding the internal energy
in powers ofηα. As the glass is elastically isotropic, we
shall consider here only isotropic bodies. Sincetα = 0 when
no external stresses are present, it follows that there are no
first-order terms in the expansions of the internal energy in
powers ofηα. The second derivatives of the internal energy
with respect to the Lagrangian strain, keeping the entropy
constant, are given by(

∂2u

∂η2
α

)
S

= v2 (3a)

(
∂2U

∂η2
α

)
S

= CSαα = ρv2 (3b)(
∂2Um

∂η2
α

)
Sm

= Mv2 (3c)

wherev is the velocity of a sound wave having the strain
componentηα (whereα = 1, 2 and 3 refer to normal strains
or stresses for the longitudinal wave andα = 4–6 refer to
the shear components for the transverse wave) andCSαα is the
second-order isentropic stiffness coefficient.

If the strain occurs under adiabatic conditions, the
internal energy of the body increases. Expanding each
expressions of the internal energies in powers of the
Lagrangean strainηα at constant entropy about the state of
zero strain, and neglecting all terms above the second order,
we obtain the elastic internal energies:

1u = u(s, ηα)− u(s, 0) = 1
2v

2η2
α (4a)

1U = U(S, ηα)− U(S, 0) = 1
2C

S
ααη

2
α = 1

2ρv
2η2
α (4b)

1Um = Um(Sm, ηα)− Um(Sm, 0) = 1
2Mv

2η2
α. (4c)

The elastic internal energies taken relative to unit mass, unit
volume and unit mole are related to the strain component,
ηα, by the material constantsv2, ρv2 andMv2, respectively.
Equations (4a)–(4c) hold for the longitudinal velocity,vl , and
the transverse velocityvt . It should be noted that (4a)–(4c)
have different meanings when discussing elastic properties
as a function of composition. When the elastic strain is
infinitesimal, (4b) is equivalent to the strain energy function
[19, 20] in classical elasticity theory.

The elastic internal energy per mole is chosen, if the
elastic internal energy is taken relative to unit mass or unit
volume; it relates to different amounts of the substances when
the composition is changed. LetU1 andU2 be the partial
molar internal energies of component one (in the present
work, B2O3) and component two (Bi2O3), respectively. Then
the mean molar internal energyUm, can be expressed by

Um = U1x1 +U2x2 = (U2 − U1)x2 +U1. (5)

The second-order derivative of (5) with respect toηα at
constant entropy gives

Mv2 =
(
∂2(U2 − U1)

∂η2
α

)
Sm

x2 +

(
∂2U1

∂η2
α

)
Sm

(6)

where x1 and x2 are the mol% of the B2O3 and Bi2O3

respectively. When we plotMv2 againstx2, each of(
∂2U1

∂η2
α

)
Sm

and (
∂2U2

∂η2
α

)
Sm

can be determined in principle from the tangential line of
the curve with respect tox2. If we define the elastic internal
energies of component one and two respectively as

1U1 = 1

2

(
∂2U1

∂η2
α

)
Sm

η2
α (7)

and

1U2 = 1

2

(
∂2U2

∂η2
α

)
Sm

η2
α (8)

then (
∂2U1

∂η2
α

)
Sm

and (
∂2U2

∂η2
α

)
Sm

represent, respectively, the elastic internal energies per unit
mole of B2O3 and Bi2O3 generated for a given strain.
Hence, they express the elastic resistance of the respective
components (B2O3 and Bi2O3) to the deformation.
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Table 1. Composition of Bi2O3 (starting composition); densityρ; molar massM; molar volumeV ; longitudinal and shear ultrasonic
velocitiesvl , vt ; elastic moduli,L,G; Poisson’s ratioσ ; and longitudinal and shear internal elastic energies,Mv2

l ,Mv
2
t of Bi2O3–B2O3

glass systems at room temperature.

Bi2O∗3 ρ M V vl vt L G Mv2
l Mv2

t

(mol%) (G cm−3) (G mol−1) (cm3) (km s−1) (km s−1) (GJ m−3) (GJ m−3) σ (GJ mol−1) (MJ m−1)

5 4.224 89.44 20.81 5.783 3.211 141.1 43.5 0.277 2.99 0.92
10 4.483 109.26 23.66 5.951 3.361 158.7 50.6 0.269 3.87 1.22
15 4.704 129.07 26.44 6.182 3.474 179.6 56.6 0.264 4.93 1.56
20 4.912 148.89 29.01 6.307 3.671 195.3 66.2 0.244 5.92 2.00
25 5.201 168.71 30.90 6.211 3.523 200.6 64.6 0.256 6.51 2.09
30 5.361 188.52 32.95 6.105 3.496 199.8 65.5 0.261 7.03 2.30
35 5.691 208.34 34.64 5.893 3.306 197.6 62.2 0.270 7.23 2.28
40 5.796 228.16 36.09 5.603 3.103 187.3 57.4 0.278 7.16 2.20
45 6.211 247.97 37.01 5.302 2.916 174.6 52.8 0.283 6.97 2.11

3. Experimental procedure

3.1. Glass preparation

A series of bismuth–borate glasses were prepared from
laboratory reagent grades of Analar boron oxide (B2O3,
molecular weight 69.622) and Analar bismuth oxide (Bi2O3

molecular weight 465.9608), using alumina crucibles (of
100 cm3 capacity) heated in an electric furnace that was open
to the atmosphere. The reagents were mixed and placed in a
furnace held at 850◦C for complete fusion. Then, the furnace
temperature was raised to 1100◦C and kept for 2 h atthis
temperature. The glass melts were stirred occasionally with
an alumina rod to ensure homogeneous melts. Each melt was
case into two mild-steel molds to form glass rods 1 cm long
by 1.6 cm diameter. Then, the mold halves were released
to prevent cracking, the thin walls of the mold (2 mm) also
served to minimize the risk of cracking. After casting, each
glass was immediately transferred to an annealing furnace
held at 300◦C for 1 h. The furnace was switched off and the
glasses were allowed to cool to room temperature at an initial
cooling rate of 3◦C min−1. This procedure was employed to
prepare glasses with a glass formation range of 5–45 mol%
Bi2O3 (starting compositions). The compositions of the
specimens studied are listed in table 1.

The densities of the glasses were measured by the
Archimedes method using toluene as the immersion liquid
and they are accurate to±0.001 g cm−3.

3.2. Ultrasonic measurements

Specimens used for ultrasonic measurements were in the
form of cylindrical rods, 1.6 cm diameter of 0.5 cm thick, with
end faces optically polished to a parallelism of 1–2 arcsec,
using a polishing machine (Metal Research, Multipol 2), with
a special jig (MR, MK2) holding the specimen.

The ultrasonic travel time was measured by the pulse
echo overlap method [16] at a frequency of 10 MHz and at
room temperature.

X-cut andY -cut quartz transducers were used for the
generation and detection of the longitudinal and transverse
waves, respectively. The transducer was bonded to the
sample with Nonaq stopcock grease∼2.2× 10−4 cm thick
and with an acoustic impedanceZb = 2.7× 105 mech.ohm
cm−2.

Table 2. Regression analysis of the variables (density,ρ;
longitudinal and shear ultrasonic velocities,vl , vt ; elastic moduli,
L,G; elastic internal energies,Mv2

l ,Mv
2
t and Poisson’s ratio,σ )

of the bismuth borate glassesα, β andγ are constants for a
quadratic equation, as explained in the text.

Variables
I α β γ

ρ 4.01 0.0459 —
SE 0.027 0.0014 —
Vl 5.392 0.0813 −0.001 91
SE 0.094 0.012 0.000 34
Vt 2.924 0.0603 −0.001 378
SE 0.12 0.016 0.000 44
L 109.96 6.3451 −0.1103
SE 5.44 0.71 0.02
G 31.44 2.4584 −0.043 86
SE 4.12 0.54 0.015
σ 0.298 −0.004 14 0.000 095 2
SE 0.013 0.001 74 0.000 048 5
Mv2

l 1.684 0.2583 −0.002 639
SE 0.21 0.028 0.000 775
Mv2

t 0.691 0.056 69−0.001 436
SE 0.097 0.004 98 0.000 843

When the ultrasonic transit time between echoes is
measured, it is essential to determine which carrier cycles
should properly be compared in observing two echoes. The
criterion (known asn = 0) proposed by McSkimin [21] and
in addition McSkimin and Andreatch [22] has been used to
solve this problem [16]. Once a pair of echoes is properly
overlapped, the pulse echo overlap technique can measure
the absolute transit time within an accuracy of one part in
5000 for round trips greater than 5µs [16].

3.3. Statistical data analysis

The data was analysed using the statistical package for
social sciences (SPSS), by fitting regression curves, and the
results are given in table 2. The regression coefficients and
their standard errors (SE) are given for the curves shown in
figures 1–9. In table 2̂Y stands for the variables shown in the
first column and̂x is the Bi2O3 concentration given in mol%.
As can be seen in figures 1–9, for most of the variables a
curvilinear (Ŷ = α + βx̂ + γ x̂2) gives the best fit. However,
for the density, the best fit is a straight line (Ŷ = α + βx̂),
while the Poisson’s ratio is constant (Ŷ = Y ).
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Figure 1. Variation of density with mol% Bi2O3 in Bi2O3–B2O3

glass systems.

Figure 2. Dependence of molar volume on the composition in
Bi2O3–B2O3 glass systems.

Figure 3. Compositional dependence of the velocity of
longitudinal acoustic waves in Bi2O3–B2O3 glass systems.

Figure 4. Compositional dependence of the velocity of shear
acoustic waves in Bi2O3–B2O3 glass systems.

4. Results and discussion

Table 1 gives the compositions and the properties of the
Bi2O3–B2O3 glasses. From inspection of this table, it will

Figure 5. Dependence of longitudinal modulus on the
composition of Bi2O3–B2O3 glass systems.

Figure 6. Dependence of the shear modulus on the composition
of Bi2O3–B2O3 glass systems.

Figure 7. Variation of the longitudinal elastic internal energy with
composition of Bi2O3–B2O3 glass systems.

Figure 8. Variation of the shear elastic internal energy with
composition of Bi2O3–B2O3 glass systems.

be observed that there is a change in the behaviour of the
compositional dependence of all the properties mentioned so
far at a Bi2O3 content of approximately 25 mol% (see also
figures 1–9).

The variation of the molar volume with the molar per
cent of Bi2O3 oxide is seen to increase up to 45 mol% Bi2O3.
The rate of increase is slightly less beyond 25 mol% Bi2O3

(see figure 2). The plot of density against mol% (see figure 1)
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Figure 9. Variation of Poisson’s ratio with composition of
Bi2O3–B2O3 glass systems.

showed an increase with increase in mol%, with a point of
inflection at about 25 mol%. The increase of the density of
the glasses accompanying the addition of Bi2O3 is probably
attributable to a change in cross-link density and coordination
numbers of Bi3+ ions.

Figures 3 and 4 show the plots of longitudinal and shear
wave velocitiesv2

l andv2
t against mol% Bi2O3, respectively.

Both increase at first with increasing Bi2O3 mol% up to
a maximum at 25 mol% Bi2O3 and then decrease as the
Bi2O3 mol% increases further. At a given strain, the elastic
internal energies of the longitudinal and shear strains per unit
mass of the glasses, as functions of composition, follow the
tendencies ofv2

1 andv2
t , respectively.

Figures 5 and 6 show the variations of longitudinalCs11
and shearCs44 moduli against mol% Bi2O3. At a given
strain, the elastic internal energies of the longitudinal and
shear strains per unit volume of the glasses, as functions of
composition, follow the tendencies of longitudinal and shear
moduli, respectively. Both longitudinal and shear moduli
exhibit maxima at different compositions (longitudinal
modulus at 25 mol% Bi2O3 and shear modulus at 20 mol%
Bi2O3). This difference arises numerically from the fact
that the different magnitudes ofv2

l andv2
t as a function of

mol% Bi2O3 curves are multiplied by the density, which
increases monotonically with increasing Bi2O3 composition.
One reason for this difference may come from the volume
effect, in thatC44 expresses the resistance of the body
to deformation where no change in volume is involved,
while C11 expresses the resistance where compressions and
expansions are involved.

Figures 7 and 8 show the variations of the elastic internal
energies of the longitudinal and shear strains per unit mole of
the glasses (Mv2

l andMv2
t ), respectively, as functions of the

Bi2O3 composition. The magnitude ofMv2
l andMv2

t show
maxima at different Bi2O3 compositions (Mv2

l at 35 mol%
andMv2

t at 30 mol%). This difference arises numerically
from the fact that the different magnitudes of thev2

l andv2
t as

functions of Bi2O3 compositions curves are multiplied by the
molar mass, which increases linearly with increasing Bi2O3

composition, this will be explained later.
By applying (6) to figures 7 and 8, the following

relations may be obtained forMv2
l andMv2

t as functions
of composition: (

∂2U1

∂η2
α

)
Sm

<

(
∂2U2

∂η2
α

)
Sm

(9)

(
∂2U1

∂η2
α

)
Sm

=
(
∂2U2

∂η2
α

)
Sm

(10)

(
∂2U1

∂η2
α

)
Sm

>

(
∂2U2

∂η2
α

)
Sm

(11)

where (9) is at compositions of less than 35 and 30 mol%
Bi2O3; (10) is at compositions of 35 and 30 mol% Bi2O3;
and (11) is at compositions of more than 35 and 30 mol%
Bi2O3, respectively (see figures 7 and 8).

Equation (9) shows that the network former, B2O3,
is soft and easily deformed by stress while the modifier,
Bi2O3, resists deformation more strongly. Except in the
vicinity of the maxima (the composition region where boron
atoms change from the threefold to the fourfold coordination
by addition of modifier Bi2O3) the inequality of (9) may
therefore arise from the fact that the modifier is enclosed
within the network, so that it resists the deformation of the
network.

Equation (11) shows that the network former now
becomes hard and resists deformation more strongly than
the modifier. The composition region corresponding to (11)
is in the destruction region, so that the three-dimensional
connection of the network has been partly broken up by the
formation of non-bridging oxygen ions. B2O3 forms into
smaller rigid anion groups so that it resists deformation more
strongly.

Equation (10) indicates the intermediate state between
the two states above, showing that the network former and
the modifier equally resist deformation.

The reason whyMv2
l and Mv2

t exhibit maxima at
different compositions can be explained as follows. The
partial molar internal energies are regarded as functions of
the independent variablesSm, ηα andx (mol% Bi2O3), in
which ηα are up to quadratic terms. When we consider
[∂2U1(Sm, ηα, x)/∂η

2
α]Sm,X and [∂2U2(Sm, ηα, x)/∂η

2
α]Sm,X

as functions ofx, these depend on each of the strain
components. Then, compositions satisfying (10) are
generally different between the longitudinal and the shear
strain respectively.

By increasing the modifier’s composition, B2O3

becomes more rigid and the degree to which the modifier
prevents the deformation of the surrounding network
decreases until, finally, the modifier itself is deformed by the
application of stress. These properties depend to an extent
on the nature of the strain component.

To interpret our data on the compositional dependence of
Poisson’s ratio (σ ) we first give a general qualitative model of
the variation ofσ with vitreous composition, developed from
an idea expressed by Bridgeet al [23], which is summarized
as follows. (i) σ decreases with cross-link density (for
constant ratio of bending- to stretching-force constant) and
(ii) σ decreases with the increasing ratio of bond-bending
to stretching force constantFb/F (at constant cross-link
density). If these mechanisms are then applied in our case,
we find that the variation of Poisson’s ratio with composition
should be exactly the reverse of the elastic moduli variation.
The experimental data indicate that the Bi3+ in octahedral
coordination is usually weakly directional—producing a low
ratio of Fb/F and correspondingly a high Poisson’s ratio
in the compositional range of 25–45 mol% Bi2O3. In the
compositional range of 5–20 mol% Bi2O3, σ would fall
steeply (see figure 9) where the rate of increase of cross-
link density with Bi content is high, as most of the bismuth is
in the Bi3+ (octahedral) form with its high cross-link density.
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5. Conclusion

The elastic properties of the vitreous Bi2O3 was measured
by ultrasonic pulse echo overlap technique at a frequency of
10 MHz and at room temperature. The obtained conclusions
are as follows.

(1) From table 1, one can observe that there is a change in
behaviour of the compositional dependence of all the
properties measured at around 25 mol% Bi2O3.

(2) The density increases with an increase in mol% Bi2O3.
This is probably attributable to a change in cross-link
density, the greater mol wt. of the bismuth atom and the
coordination numbers of Bi3+ ions.

(3) The longitudinal and shear wave velocities and the
elastic moduli of the present glass systems increase with
increasing Bi2O3 composition, up to 25 mol%, and then
decreases as Bi2O3 composition increases further.

(4) The variations of the elastic internal energies of
longitudinal and shear strains per unit mole of the
glasses show that: at compositions less than 35 and
30 mol% Bi2O3, the network former B2O3 is soft and
easily deformed by stress while the modifier Bi2O3

resists deformation more strongly. At 35 and 30 mol%
Bi2O3, the network former and the modifier equally
resist deformation. At compositions of more than 35
and 30 mol% Bi2O3, the network former becomes hard
and resists deformation more strongly than the modifier.

(5) The variation of Poisson’s ratio with composition should
be exactly the reverse of the elastic moduli variation.
It decreases with increasing Bi2O3 composition up to
25 mol%, and then increases with increasing Bi2O3 com-
position over 25 mol%.
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