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Aspects of light propagation in anisotropic dielectric media
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Abstract

Some aspects of light propagation in local anisotropic nonlinear dielectric media at rest in the limit of geometrical optics are investigated.
Natural and artificially induced anisotropies in dielectric materials are discussed. Analogies are proposed in such way that, as far as light is
considered, kinematic aspects of some cosmological models are recovered. Particularly, analogue models for isotropic and anisotropic cosmologies
are presented.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Inside material media electrodynamics becomes nonlinear.
In such situations the Maxwell equations must be supplemented
with constitutive relations which, in general, are nonlinear and
depend on the physical properties of the medium under the
action of external fields. As a consequence, several effects
(nonusual in the context of linear Maxwell theory) are pre-
dicted. Of actual interest is the phenomenon of artificial bire-
fringence: when an external field is applied in a medium with
nonlinear dielectric properties, an artificial optical axis may ap-
pear [1–5].

The development of analogies in order to test kinematic as-
pects of general relativity in laboratory have been performed in
several branches of physics [2,3,5–12]. Particularly, nonlinear
electrodynamics has been considered as a possible scenario to
construct analogue models for general relativity, either in the
context of nonlinear Lagrangian or nonlinear material media.
This is based in the fact that the trajectory of photons can be
described by a null geodesic in an effective metric gμν . In this
work, homogeneous dielectric media at rest with the dielectric
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coefficients εμ
ν( �E) and constant μ, in the limit of geometrical

optics, are used to construct analogue models for cosmology.
The analysis is restricted to local electrodynamics. In order
to avoid ambiguities with the wave velocity, dispersive effects
were neglected by considering only monochromatic waves. It
is shown that naturally uniaxial media presenting nonlinear di-
electric properties can be operated by external fields in such
way to induce anisotropy in the optical metric.

A covariant formalism is used throughout this work. Space-
time is assumed to be Minkowskian, and a Cartesian coordinate
system is used, such that the metric is ημν = diag(+1,−1,−1,

−1). Units are chosen such that c = 1. A geodetic observer
V μ = δ

μ
0 is supposed to describe all quantities. Particularly the

electric field is represented by Eμ = −FμνVν = (0, �E) whose
modulus is E = (−EαEα)1/2.

2. The dispersion relation

The properties of light propagation in material media are de-
termined by the so-called dispersion relations, which can be de-
rived, in the context of the eikonal approximation of electrody-
namics, making use of the method of field discontinuities [13].
Define a surface of discontinuity Σ by z(xo, �x) = 0. Whenever
Σ is an inextendible surface, it divides the spacetime in two
disjoint regions U− for z(xo, �x) < 0, and U+ for z(xo, �x) > 0.
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The discontinuity of an arbitrary function f (xo, �x) on Σ is
given by

(1)
[
f

(
xo, �x)]

Σ

.= lim
{P±}→P

[
f

(
P +) − f

(
P −)]

with P +,P − and P belonging to U+,U− and Σ , respectively.
The electric and magnetic fields are continuous when crossing
the surface Σ . However, their derivatives behave as

(2)
[
Eμ

,ν

]
Σ

= eμKν;
[
Bμ

,ν

]
Σ

= bμKν,

where eμ and bμ represent the discontinuities of the fields on
the surface Σ and

(3)Kλ = ∂Σ

∂xλ

is the wave vector.
When these conditions are applied to the electrodynamic

field equations in local anisotropic dielectric media, the follow-
ing dispersion relation for light rays [5] are obtained:

gλτ± KλKτ =
{
μαV λV τ + 1

2

[
Cν

ν − 1

μ(v±
ϕ )2

]
C(λτ)

(4)− 1

2
C(λ

νC
ντ)

}
KλKτ = 0,

where

(5)Cα
τ

.= εα
τ + ∂εα

β

∂Eτ
Eβ + 1

ω

∂εα
β

∂Bρ
ηρλγ

τE
βKλVγ

and the phase velocities v±
ϕ are

(6)v±
ϕ =

√√√√ β

2α

(
1 ±

√
1 + 4αγ

β2

)
,

with ω
.= KαVα the frequency of the electromagnetic wave and

the coefficients α, β and γ given by

(7)α
.= 1

6

[(
Cμ

μ

)3 − 3Cμ
μCα

βCβ
α + 2Cα

βCβ
γ Cγ

α

]
,

(8)β
.= μ−1(Cλ

αCαν − Cα
αCλν

)
q̂λq̂ν,

(9)γ
.= μ−2Cλνq̂λq̂ν .

In the last two Eqs. (8)–(9) we introduced the 3-dimensional
projection of the wave vector Kα as qα = hα

μKμ = Kα −ωV α ,
and q̂μ = qμ/q . We defined the projector hα

μ = δα
μ − V αVμ.

The symmetric tensors g
μν
± are the optical coefficients1 as-

sociated with the wave propagation, and the symbol ± indicates
the possibility of two distinct coefficients, one for each polar-
ization mode—birefringence phenomena. Correspondingly to it
Eq. (6) expresses the fact that, in general, the phase velocity of
the electromagnetic waves inside a material medium may get
two possible values (v+

ϕ , v−
ϕ ) which are associated with the two

possible polarization modes. For the particular case of Maxwell

1 Such coefficients are called in the literature as the components of the optical
metric, meanly in the case where they does not depend on the direction of light
propagation.
linear theory in vacuum, both g
μν
+ and g

μν
− reduce to the di-

agonal matrix (+1,−1,−1,−1), which is identified with the
Minkowski metric ημν , as expected. Other particular cases are
obtained by considering isotropic media [2,3,7] and some ap-
plications was recently proposed in the context of dielectric
analogues of black hole spacetime [9].

3. Naturally anisotropic uniaxial media

Now, let us consider naturally anisotropic uniaxial media re-
acting nonlinearly when subjected to an external electric field
as εα

β = diag[0, ε‖(E), ε⊥(E), ε⊥(E)]. In this case εα
β =

εα
β(E) and by setting �E in the x-direction (optical axis) we

obtain Cα
β = diag(0, ε‖ + Eε′‖, ε⊥, ε⊥), where ε′‖ = dε‖/dE.

For this particular case Cαβ is a symmetric tensor. The phase
velocities reduce to

(10)
(
v+
ϕ

)2 = 1

με⊥
,

(11)
(
v−
ϕ

)2 = 1

με⊥C1
1

[
ε⊥

(
1 − q̂1

2) + C1
1q̂1

2].
Note that v−

ϕ depends on the direction of propagation, as it
should be expected for the extraordinary ray. The two velocities
coincide when either the propagation occurs along the direction
of the electric field (q̂1

2 = 1), or when the no-birefringence con-
dition ε‖ + Eε′‖ = 0 holds [5].

Let us also particularize to the model where

(12)ε⊥ = ε⊥ − 3pE2,

(13)ε‖ = ε‖ − sE2.

Thus, Cα
β = diag(0, ε‖ − 3sE2, ε⊥ − 3pE2, ε⊥ − 3pE2).

For the ordinary ray the optical coefficients are

(14)g00+ = μα,

(15)gii+ = −ε‖ε⊥ + 3(sε⊥ + pε‖)E2 − 9spE4,

where

α = −27sp2E6 + 9p(pε‖ + 2sε⊥)E4

(16)− 3ε⊥(sε⊥ + 2pε‖)E2 + ε‖ε2⊥.

Eqs. (14)–(15) show that for the ordinary ray there will be no
anisotropy in the space section.

For the extraordinary ray the optical coefficients are

(17)g00− = μα,

(18)g11− = −(
χ − ε‖ + 3sE2)(ε‖ − 3sE2),

(19)g22− = g33− = −(
χ − ε⊥ + 3pE2)(ε⊥ − 3pE2),

where χ depends on the direction on wave propagation as

χ = − (ε‖ − 3sE2)(ε⊥ − 3pE2)

(ε⊥ − 3pE2)(1 − q̂1
2) + (ε‖ − 3sE2)q̂1

2

(20)+ (
ε‖ − 3sE2) + 2

(
ε⊥ − 3pE2).

Eqs. (17)–(19) show that for the extraordinary ray there will be
anisotropy in the section (g11− �= g22− = g33− ).
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Note that when the propagation occurs in the direction of the
optical axes it follows χ |q̂1

2=1 = (ε‖ − 3sE2) + (ε⊥ − 3pE2)

and g11− = g22− = g33− = −(ε‖ − 3sE2)(ε⊥ − 3pE2). By the
other hand, when the propagation occurs perpendicularly to
the optical axes it follows χ |q̂1

2=0 = 2(ε⊥ − 3pE2) and the
anisotropy remains.

4. Artificially anisotropic uniaxial media

In this section, artificially induced anisotropy is considered.
Let us set the permittivity tensor as

(21)εμν = εhμν − λEμEν

with ε and λ constants (just for simplicity). Eq. (21) indicates
that the anisotropy in the dielectric coefficients is operated by
the action of an external electric field, which will also be re-
sponsible for the anisotropy in the resulting optical coefficient
for the extraordinary ray. Indeed, from Eq. (4) it follows that

g
μν
− = ημν + [

μ
(
ε + 3λE2) − 1

]
V μV ν

(22)− 2λ

(ε + λE2)
EμEν.

Note that, in the absence of the external electric field, the metric
gets an isotropic form [7], as expected.

5. Analogue gravity

It can be shown that the integral curves of the vectors K±
μ

are geodesics in an effective geometry whose components are
the optical coefficients g

μν
± [3]. By using this formulation, this

section concerns the construction of models for the extraordi-
nary rays2 in such way that the paths of light can be described
by means of the following line element

(23)ds2 = C dt2 − Adx2 − B
(
dy2 + dz2).

Since the components of g
μν
− constitute a diagonal matrix it

follows that g−
ii = 1/gii−. Thus A = −1/g11− , B = −1/g22− and

C = 1/g00− . Now, using the dispersion relation g
μν
− KμKν = 0

for light rays, which enables us to redefine the metric up to a
conformal factor, Eq. (23) yields

(24)ds2 = dt2 + g00−
g11−

dx2 + g00−
g22−

(
dy2 + dz2).

In what follows some analogies will be constructed using the
effective geometry formalism for the cases presented in Sec-
tions 3 and 4.

5.1. Analogue model for FRW cosmology

By setting s = p and ε⊥ = ε‖
.= ε in the results presented

in the Section 3, an analogue model for Friedmann–Robertson–
Walker (FRW) cosmology can be obtained. In this way, we are

2 It can be shown that the propagation associated with the ordinary ray always
occurs isotropically. Indeed, it can also be used to construct an analogue model
for Friedman cosmology.
dealing with isotropic media. From Eqs. (16) and (20) we obtain
α = (ε − 3pE2)3 and χ = 2(ε − 3pE2), respectively. Thus,
the effective metric for light yields

(25)ds2 = dt2 − μ
(
ε − 3pE2)(dx2 + dy2 + dz2).

Since the external electric field can be adjusted to be a function
of time, the above effective metric can be used to simulate FRW
cosmology.

5.2. Analogue model for Bianchi-I cosmology

A simple toy model for Bianchi type I cosmology can be
produced from the results presented in Section 4 by setting the
external electric field in the X-direction (optical axes), resulting
in the following components for the effective metric

(26)g00− = μ
(
ε + 3λE2),

(27)g11− = −ε + 3λE2

ε + λE2
,

(28)g22− = g33− = −1.

Now, by inserting the above equations in Eq. (24), it yields

(29)

ds2 = dt2 − μ
(
ε + λE2)dx2 − μ

(
ε + 3λE2)(dy2 + dz2),

which, once E = E(t), appears to be a Bianchi-I metric from
the classification of homogeneous geometries. It should be
pointed out that the redshift induced by this effective metric
in the X-direction is different from the redshift induced in any
direction on the plane YZ.

More elaborated models can be produced by choosing ε and
λ as general functions of the external field �E. Yet, it is pos-
sible to produce models by interchanging natural anisotropy
with artificially induced anisotropy in the dielectric coefficients.
Therefore, when natural anisotropy is present, the optical coef-
ficients appear to be dependent on the direction of light propa-
gation, and the construction of analogies with gravity requires
a more detailed analysis.

6. Conclusion

Working with propagation of monochromatic electromag-
netic waves inside naturally anisotropic material media with
nonlinear dielectric properties, analogue models for general
relativity presenting isotropy and anisotropy in the space sec-
tions were constructed. These models are based on the idea that
the trajectory of the photons can be described as a null geo-
desic in an effective metric. Indeed, light propagation in local
anisotropic media can be used as a tool for testing kinematic
aspects of cosmological models in laboratory. It must be noted,
however, that the analogue model is only valid as light propaga-
tion is considered. Material particle propagates inside dielectric
media without any relationship with the effective optical metric.

The optical coefficients in Eq. (4) present an explicit depen-
dence on the wave vector Kμ, i.e., on the direction of light
propagation. In this way it is also possible to look for models
where the properties of the ‘effective spacetime’ depend on the
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direction of light propagation. In these cases there is no direct
analogy with gravitational phenomena, in despite of the fact
that the effective geometry approach still holds in the descrip-
tion of light propagation. However it should be stressed that
the effective metrics presented in Section 5 for isotropic and
anisotropic cosmologies [Eqs. (25) and (29), respectively] were
constructed from the general optical coefficients in Eq. (4), for
physical situations where the dependency on the direction of
light propagation disappears. Then, such effective metrics can
be used to simulate the corresponding fundamental metrics in
general relativity.
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