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The propagation of an electromagnetic wave traveling in a chiral elastomer under the influence of an
externally induced mechanical strain, applied parallel to the helical axis, is investigated. We write and
solve Maxwell equations in the Oseen reference system by performing a numerical integration to find
the transmission and reflection coefficients as a function of the mechanical elongation and the incidence
angles. Then, the transmittances and the reflectances are calculated and analyzed. A mechanically con-
trolled circular Bragg phenomenon is observed for which the bandwidth and the central wavelength
are significantly modified. It is also shown that the reflection bandgap blue-shifts versus the incidence
angles, as happens in absence of strain.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The Bragg phenomenon is exhibited by a layer of a material
whose electromagnetic constitutive properties are periodically
nonhomogeneous in the thickness direction. Its keynote is a very
high reflectance in a certain wavelength-interval, on the condition
the slab is thick enough to have an adequate large number of peri-
ods. This phenomenon is commonly utilized to make dielectric
mirrors in optics [1].

Periodicity arises from structural chirality which means a heli-
coidal variation of anisotropy along a fixed axis. To illustrate struc-
turally chiral materials (SCMs) we can mention cholesteric liquid
crystals [2,3], chiral sculptured thin films [4] and chiral elastomers
[5]. As the periodicity arises from structural chirality, incident elec-
tromagnetic plane waves of left- and right-circular polarization
(LCP and RCP) states are reflected and transmitted differently in
the Bragg wavelength-regime, and the Bragg phenomenon is then
called the circular Bragg phenomenon (CBP). Exhibition of the CBP
by cholesteric liquid crystals and chiral sculptured thin films
underlies their use as circular-polarization rejection filters in op-
tics [2,4].

Control of the CBP is very desirable for tuning the Bragg regime
as well as for switching applications. One way would be to use
SCMs that are electro-optically controlled systems. This possibility,
also suggested by the fabrication of electro-optic filters [6], was
proposed and theoretically examined in a recent publication [7].
It was indeed found that a dc electric field creates a Bragg regime
even when the SCM properties were such that a regime would not
exist in the absence of the electric field [8].

Cholesteric elastomers are formed by monomers of liquid
crystals cross-linked to polymeric chains; this union produces a
ll rights reserved.

).
flexible material whose molecular order is similar to cholesteric li-
quid crystals with the advantage that in this new material it is pos-
sible to change the optical properties by means of macroscopic
deformations [5]. The study of the optical properties of these mate-
rials have recently grown due to the achievement managed by Kim
and Finkelmann who found a procedure to obtain monodomain
nematic and cholesteric elastomers [9]. Furthermore, a more
promising method for generating films of cholesteric elastomers
by cross-linking under UV irradiation has been recently developed
[10].

For normally incident light on a contracted cholesteric film, a
blue-shift of the photonic stop band has been experimentally and
theoretically found [11]. A numerical study of the circularly polar-
ized reflectances due to an elastomer slab elongated by the influ-
ence of a uniaxial transverse strain, was done [12]. Nested
optical bandgaps were found for left- and right-circularly polarized
light. Here, we propose to use a cholesteric elastomer subjected to
an externally imposed deformation for tuning the circular Bragg
regime exhibited by the elastomer in the absence of the strain.

The outline of this paper is as follows: In Section 2 we discuss
the elastic model for describing a cholesteric elastomer slab sub-
jected to a mechanical strain applied along the helix axis of the
elastomer. Section 3 contains a brief description of the optical per-
mittivity matrix of a chiral material, and the Oseen transformation
is employed to derive an analytical expression for the central
wavelength of the band reflection in the Bragg regime. Section 4
accounts for the numerical results and discussions concerning
the mechanical strain in relation to the exhibition of the CBP.
2. Elastic energy

Let us consider a monodomain cholesteric elastomer sub-
jected to the action of a longitudinal elongation. The microscopic
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statistical–mechanical theory of rubber elasticity leads to the clas-
sical nematic rubber elasticity energy density so called the trace
formula when anisotropy is taken into account [5]. It is given by

F ¼ 1
2
lTr½l0 � gT � l�1 � g�; ð1Þ

where l ¼ nsjBT is the rubber shear modulus, ns is the number of
chains strands per unit of volume, jB is the Boltzmann constant, T
is the temperature, Tr stands for the trace of the tensor and the local
step-length tensors for a locally uniaxial medium are

l0 ¼ l?ðdþ ðr � 1Þn0n0Þ; ð2Þ
l�1 ¼ l?ðdþ ð1=r � 1ÞnnÞ; ð3Þ

where r ¼ lk=l? is the anisotropy ratio.
In deriving Eq. (1) the entanglements, finite extensibility and

semi-softness have been ignored. Here, the director corresponding
to the initial configuration is denoted by

n̂0 ¼ ðcos /0; sin /0;0Þ; ð4Þ

where the angle /0 ¼ q0z has a helix wave number qo ¼ 2p=p and a
spatial periodicity or pitch p. This is determined by the concentra-
tion and the helical twisting power of the chiral constituents [13].
Usually the pitch is of the same order as the wavelength. After
the deformation the director is aligned along the surface of a cone,
as shown in Fig. 1, which can be described by

n̂ ¼ ðsin a cos /; sin a sin /; cos aÞ; ð5Þ

where / ¼ qz and a are the azimuthal and polar angles.
When the elastomer is submitted to an elongation, a selected

chain’s end-to-end vector R is assumed to deform proportionally
to the body’s deformation. The proportionality factor is given by
the deformation tensor g which in the case of an expansion parallel
to the helix axis, g has the form [5]:

g ¼

1ffiffi
g
p 0 gxzðzÞ
0 1ffiffi

g
p gyzðzÞ

0 0 g

0
BB@

1
CCA; ð6Þ

where we have taken gzz ¼ g. This expression preserves the volume
since by construction Detg ¼ 1 is fulfilled. There is no compatibility
inconsistency due to the z-dependence of the elongations gxzðzÞ and
gyzðzÞ. In contrast, the z-dependence of their conjugate strains gzxðzÞ
and gzyðzÞ would lead to compatibility mismatch as for instance the
expression: ogzxðzÞ/oz ¼ ogzzðzÞ/ox cannot be fulfilled unless we set
φ
y

z

x

ηzz
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Fig. 1. Schematic plot of an elastomer slab elongated along the z-direction. The
light incidence angles h and u and the helix angles / and a are shown. AL;R are the
incident left- and right-circularly polarized amplitudes, RL;R are the corresponding
reflection amplitudes and TL;R are the corresponding transmitted amplitudes.
ogzxðzÞ/oz ¼ 0. Finally, gxyðzÞ and gyxðzÞ could exist but numerical
tests suggest that it is not possible [14]. The two shear strains
gxzðzÞ and gyzðzÞ should be proportional to each other so that they
are part of a shear in the plane of n̂0 and n̂. These two shears help
to accommodate the rotation of the chain distributions in such way
to keep the elastic energy low, while the director n̂ turns. In other
words, the network deforms to allow rotate n̂ practically without
any energy penalty. All physical dimensions in the deformed sam-
ple are assumed to scale by the affine strain as z! z=g resulting
in the corresponding expansion of the cholesteric pitch q ¼ qo

g .
Using the above equations, the free energy for an elastomer un-

der mechanical strain can be obtained. Thus, by minimizing the
free Helmholtz energy first with respect to the strains gxzðzÞ and
gyzðzÞ, and then with respect to v, where v ¼ p

2 � a, we obtain

vðgÞ ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3=2 � 1

r � 1

r
: ð7Þ

It can be inferred from this equation that the nematic’s vector will
be totally aligned with the z-axis for the critical longitudinal stress
which is equal to

gM ¼ r2=3: ð8Þ

It should be mentioned that Eq. (7) is only valid in the interval
1 6 g 6 gM since a uniaxial compression (g < 1) parallel to the helix
axis leaves the helical structure unchanged. Also, an extension be-
yond gM does not change the value of v any further.

Eq. (7) provides an expression to determine the director vector
n̂ which allows us to find the dielectric tensor of the elastomer:
� ¼ �?dij þ �an̂n̂; where �a ¼ �k � �?, is the dielectric anisotropy,
�k and �? are the dielectric constants parallel and perpendicular
to the director n̂.

3. Electromagnetic propagation

3.1. Boundary conditions

We consider the case where a circularly polarized electromag-
netic wave impinges an elastomer slab of thickness L, situated in
the region 0 < z < L which is surrounded by two half spaces of vac-
uum with the z-axis parallel to the helical axis.

In the half space z < 0, we assume both, an incident and a re-
flected circularly polarized waves as shown in Fig. 1, which can
be expressed as a linear combination of a left- and right-circularly
polarized wave which are given by

EðrÞ ¼ ðARn�1þALnþ1Þeik1 �rþðRRn�2þRLnþ2Þeik2 �r; ð9Þ

HðrÞ ¼ 1
l0x

k1�ðARn�1þALnþ1Þeik1 �rþk2�ðRRn�2þRLnþ2Þeik2 �r
� �

;

ð10Þ

where x is the frequency of the wave, ki ¼ kxux þ kyuy � ð�1Þikzuz

(i ¼ 1;2) are the forward and backward wave vectors, lo is the per-
meability of the vacuum, AL;R the incident left- and right-circularly
polarized amplitudes, RL;R the corresponding reflection amplitudes
and the unit vectors

n�j ¼
ð�1Þjþ1ffiffiffi

2
p ½uz � kj� � kj

juz � kjjkj
� i

uz � kj

juz � kjj

� �
; ð11Þ

where ðux;uy;uzÞ is the triad of Cartesian unit vectors. Here uz � k1

is a normal vector to the incidence plane whereas ½uz � k1� � k1 is a
vector on the incidence plane and perpendicular to k1. Thus, both
vectors form a complete base for expanding the linearly polarized
incident electric field EðrÞ, while nþ1, n�1 play the same role for a
circularly polarized field. A similar discussion is valid for the base
of vectors: fnþ2;n�2g corresponding to the reflected wave. In the re-
gion z > L, we write the transmitted fields as



Fig. 2. Transmittances versus the wavelength k and the incidence angle h for the elongations g ¼ 1 and g ¼ gm .
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EðrÞ ¼ ðTRn�1 þ TLnþ1Þeik1 �r þ ðBRn�2 þ BLnþ2Þeik2 �r; ð12Þ

HðrÞ ¼ 1
l0x

k1 � ðTRn�1 þ TLnþ1Þeik1 �r þk2 � ðBRn�2 þ BLnþ2Þeik2 �r
� �

;

ð13Þ

where TL;R are the corresponding transmitted amplitudes whereas
BR;L are also incident amplitudes but coming from the region
z > L. Nevertheless, in what follows we shall take BR ¼ BL ¼ 0.

It is convenient to define a four-dimensional vector UðzÞ con-
taining the tangential components ExðzÞ; EyðzÞ, HxðzÞ and HyðzÞ of
the electric and magnetic field, respectively, as

UðzÞ ¼

ExðzÞ
EyðzÞ
HxðzÞ
HyðzÞ

0
BBB@

1
CCCA: ð14Þ

Using Eqs. (9), (10), (12) and (13), we can express the tangential
components outside of the elastomer as
Uð0Þ ¼ Q �

AL

RL

AR

RR

0
BBB@

1
CCCA; UðLÞ ¼ AðLÞ � Q �

TL

0
TR

0

0
BBB@

1
CCCA; ð15Þ

where the matrices Q and AðLÞ are defined by

Q ¼ 1ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
x þ k2

y

q
�ikkyþkxkz

k
ikkyþkxkz

k
ikkyþkxkz

k
kxkz�ikky

k
ikkxþkykz

k
kykz�ikkx

k
�ikkxþkykz

k
ikkxþkykz

k
�kyk�ikxkz

lox
kyk�ikxkz

lox
�kykþikxkz

lox
kykþikxkz

lox

kxk�ikykz

lox
�kxk�ikykz

lox
kxkþikykz

lox
�kxkþikykz

lox

0
BBBBBB@

1
CCCCCCA

ð16Þ

with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y þ k2

z

q
and

AðLÞ ¼

eikzL 0 0 0
0 e�ikzL 0 0
0 0 eikzL 0
0 0 0 e�ikzL

0
BBB@

1
CCCA: ð17Þ



Fig. 3. The same as Fig. 2 but for reflectances.
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Notice that the expression for normal incidence is obtained upon
the consecutive application of the limits: ky ! 0 and kx ! 0. This re-
duces Q to the following result

Q n ¼
1ffiffiffi
2
p

1 1 1 1
i �i �i i
�ic �ic ic ic
c �c c �c

0
BBB@

1
CCCA; ð18Þ

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�o=lo

p
and �o are the impedance and permittivity of the

vacuum.
If U is the transfer matrix of the elastomer slab defined by

WðLÞ ¼ U �Wð0Þ, that we shall derive in next section, and W is de-
fined in similar way as in Eq. (14) but inside the elastomer, then
we have

TL

0
TR

0

0
BBB@

1
CCCA ¼ TðzÞ �

AL

RL

AR

RR

0
BBB@

1
CCCA; ð19Þ
where the transfer matrix for the whole system is given by

TðLÞ ¼ A�1ðLÞ � Q�1 � U � Q � ð20Þ

Here, we have used the continuity of the tangential field com-
ponents [15] expressed by the conditions: Wð0Þ ¼ Uð0Þ and
WðLÞ ¼ UðLÞ.

Solving the above system for the reflected and transmitted
amplitudes, we can obtain the scattering matrix, which gives rise
to the relation between the entering and outgoing amplitudes:

TR

TL

RR

RL

0
BBB@

1
CCCA ¼

tRR tRL

tRL tLL

rRR rRL

rRL rLL

0
BBB@

1
CCCA � AR

AL

� �
; ð21Þ

where tnm and rnm, ðn;m ¼ R; LÞ are the transmission and reflection
coefficients. The co-polarized transmittances are denoted by
Tnn ¼ jtnnj2and the cross-polarized ones by Tnm ¼ jtnmj2 with
n–m; and similarly for the reflectances. These quantities are func-



Fig. 4. Transmittances and reflectances as a function of the wavelength k and the axial elongation g for normal incidence.
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tion of the incidence angles h an u, the axial elongation g, and the
wavelength k.

3.2. Matrix representation

Curl Maxwell equations in SI units are given by

r� E ¼ ixloH; ð22Þ
r �H ¼ �i�ox�ðzÞ � E; ð23Þ

where the z-dependent dielectric tensor of the elastomer, submit-
ted to an axial stress, was determined in Section 2. The general solu-
tions for the above equations without any loss of generality can be
written as

Eðr; tÞ ¼ eiðkt �r�xtÞeðzÞ; ð24Þ

Hðr; tÞ ¼ eiðkt �r�xtÞhðzÞ; ð25Þ

where kt ¼ ðko sin h cosu; ko sin h sin u;0Þ is the transverse wave
vector with ko ¼ 2p

k the wave number, k the vacuum wavelength, h
and u are the incidence angles, eðzÞ ¼ ðexðzÞ; eyðzÞ; ezðzÞÞ and
hðzÞ ¼ ðhxðzÞ; hyðzÞ;hzðzÞÞ are electric and magnetic amplitudes in
the elastomer slab.

After substituting Eqs. (24) and (25) into Maxwell equations we
find a set of equations which only depend on z. We solve them for
ezðzÞ and hzðzÞ in terms of the remaining components to obtain a
system only for the transverse components of the fields which
can be expressed as the matrix first order equation [16]

d
dz

WðzÞ ¼ �iMðzÞ �WðzÞ; ð26Þ

where

WðzÞ ¼

exðzÞ
eyðzÞ
hxðzÞ
hyðzÞ

0
BBB@

1
CCCA: ð27Þ

Here the 4� 4 matrix is defined as
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MðzÞ ¼

kt
x�zx
�zz

kt
x�zy

�zz
� kt

xkt
y

f�zz

kt2
x

f�zz
� b

kt
y�zx

�zz

kt
y�zy

�zz
b� kt2

y

f�zz

kt
xkt

y

f�zz

kt
xkt

y

b �
�yz�zxf
�zz
þ �yxf �yyf� kt2

x
b �

�yz�zyf
�zz

kt
y�yz

�zz
� kt

x�yz

�zz

kt2
y

b þ
�xz�zxf
�zz
� �xxf

�xz�zyf
�zz
� kt

xkt
y

b � �xyf � kt
y�xz

�zz

kt
x�xz
�zz

0
BBBBBBB@

1
CCCCCCCA
;

ð28Þ

where kt
i (i ¼ x; y) denotes the i component of the transverse wave

vector kt , and �mn ðn;m ¼ 1;2;3Þ represent the elements of the
dielectric tensor �, f ¼ �ox: and b ¼ lox:

3.3. The Oseen transformation

The differential system given by Eq. (26) can be solved using a
numerical integration. Nevertheless, it is possible to find a refer-
ence system, for a normally incident wave, for which the solution
can be obtained analytically. This has been done for SCM [7], using
the Oseen transformation [17], where the reference system rotates
along the z-axis in the same way as the director n̂:

For oblique incidence, let us define a new vector as
Fig. 5. Reflectances as a function of th
W0ðzÞ ¼ GðzÞ �WðzÞ; ð29Þ

where

GðzÞ ¼

cos qz sin qz 0 0
� sin qz cos qz 0 0

0 0 cos qz sin qz

0 0 � sin qz cos qz

0
BBB@

1
CCCA: ð30Þ

Substituting the above equation into the differential system Eq.
(26), we obtain

d
dz

W0ðzÞ ¼ �iM0ðzÞ �W0ðzÞ; ð31Þ

with

M0ðzÞ ¼

jdcos u iq j2�d sin 2u
2f�?�k

j2�d cos2 u
f�?�k

� b

�iq�jdsin u 0 b� j2�d sin2 u
f�?�k

� j2�d sin 2u
2f�?�k

�j2 sin 2u
2b f�k � j2 cos2 u

b 0 iq

j2 sin2 u
b � f�d

j2 sin 2u
2b jdsin u� iq jdcos u

0
BBBBBBB@

1
CCCCCCCA
;

ð32Þ
e angles h and u for k ¼ 500 nm.
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where we have introduced the abbreviations

u ¼ qz�u ð33Þ
j ¼ ko sin h; ð34Þ

�dðgÞ ¼
�?�k

�? sin2 aðgÞ þ �k cos2 aðgÞ
; ð35Þ

dðgÞ ¼ �d�a sin 2aðgÞ
2�?�k

: ð36Þ

In general, M0ðzÞ is z-dependent but for normal incidence, h ¼ 0,
it is not and reduces to

M0
o ¼

0 iq 0 �b

�iq 0 b 0
0 f�? 0 iq

�f�dðgÞ 0 �iq 0

0
BBB@

1
CCCA; ð37Þ

and as a consequence Eq. (26) can be solved analytically. The eigen-
values of M0

o are given by

k2
1;2 � q2 þ 1

2
ð�dðgÞ þ �?Þfb

� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fbð8q2ð�dðgÞ þ �?Þ þ ðfbÞ2ð�dðgÞ � �?Þ2Þ

q
: ð38Þ

Only the modes k�1 show a bandgap for x within the interval de-
fined by the positive roots of the equation k2

1 ¼ 0 whose corre-
sponding wavelengths are given by

k1 �
2pg
qo

ffiffiffiffiffiffi
�?
p

; k2 �
2pg
qo

ffiffiffiffiffiffiffiffiffiffiffiffi
�dðgÞ

p
: ð39Þ

In this interval k�1 are pure imaginary and their corresponding
eigenvectors are linearly polarized. Thus, the central wavelength
of the bandgap is

kC ¼ k1 þ k2

2
¼ pg

ffiffiffiffiffiffi
�?
p

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k

�? þ �a
ðg3=2�1Þ
ðr�1Þ

s0
@

1
A; ð40Þ

where we have substituted in this expression Eqs. (7) and (35). Eq.
(40) demonstrates clearly that for a positively anisotropic elasto-
mer, the reflected wavelength kC increases by stretching the sample
along the helix axis. This behavior is in qualitative agreement with
the biaxial extension experiments performed by Finkelmann et al.
[18] in which kC decreases due to an effective compression along
the helix axis.

The general solution for oblique incidence, h–0, can be written
formally as W0ðzÞ ¼ W0ð0Þ �MtðzÞ, where MtðzÞ ¼ e

R z

o
M0 ðz0 Þdz0 . Here

MtðzÞ can be determined using a numerical procedure based on
the piecewise constant approximation for which it is useful to take
advantage of the periodicity of MtðzÞ to optimize the algorithm.

Since W0ðzÞ lies in the Oseen reference system we need to trans-
form it back to the laboratory system. Hence, the solution in the
original reference system is

WðLÞ ¼ U �Wð0Þ; ð41Þ

where the transfer matrix U is given by U ¼ GTðLÞ �MtðLÞ � Gð0Þ:
Here the superscript T denotes the transpose conjugated of the
matrix.
4. Results and conclusions

The material parameters we use to perform the calculations are:
r ¼ 1:16, L ¼ 10:7 lm, p

2 ¼ 214 nm, �? ¼ 1:91, �k ¼ 2:22, l ¼ 1
which correspond to a real sample made by a siloxane backbone
chain reacting with 90 mol% and 10% of the flexible difunctional
cross-linking groups (di-11UB). The rod like mesogenic groups
are present in the proportion 4:1 between the nematic 4-pentyl-
phenyl-40-(4-buteneoxy) benzoate (PBB) and the derivative of chi-
ral cholesterol pentenoate (ChP) [19]. In Figs. 2 and 3 we show the
co-polarized and cross-polarized transmittances and reflectances
as a function of k and h. In the first column, we set g ¼ 1, which
is equivalent to have an elastomer under no deformation, whereas
in the second column we use gm ¼ 1þ gM�1

2 ¼ 1:052 for which the
system is submitted to half of its critical elongation.

Notice that Figs. 2 and 3 are consistent with the usual circular
Bragg phenomenon for which the right circularly polarized wave
impinging a right-handed elastomer, is highly reflected, while the
left circularly polarized wave is transmitted. The center of the
bandgap blue-shifts as a the incidence angle increases, as it occurs
in the absence of stress.

We also observe that by increasing the elongation, the band-
width decreases as can be seen by comparing the right- and the
left-hand columns of Figs. 2 and 3. Moreover, when the strain is
the critical gM ¼ 1:162=3 ¼ 1:1040, the bandgap disappears due to
the fact the cholesteric director is completely aligned with the heli-
cal axis as can be observed from Fig. 4. This effect opens up the
door for proposing novel devices to mechanically control the light
flow, since it allows to switch off a bandgap by applying a mechan-
ical stress to the elastomer. This is clearly illustrated in Fig. 4 where
the bandwidth diminishes as a function of the deformation for nor-
mal incidence.

Fig. 5 displays the reflectances against h and u for k ¼ 630 nm.
We notice a band reflection for RRR between h ¼ 30	 and h ¼ 40	

which displaces for larger angles as g gets larger. On the other
hand, RLR diminishes in 25% by spreading its oscillations to almost
every h-value. Also, RLL widens its starting flat region for larger
angles.

In summary, we have calculated the transmittances and reflec-
tances of an electromagnetic wave impinging an elastomer under
the influence of a mechanical strain parallel to the helical axis.
We have shown that the circular Bragg phenomenon can be
mechanically controlled by the application of a mechanical stress
in such way that can alter the bandwidth and even switch off the
bandgap when the strain takes the critical value gM . We have
shown that under the presence of an elongation the bandgap
blue-shifts as h increases in similar way as happens in the absence
of deformation.

These results show that it is possible to mechanically control the
circular Bragg phenomenon for tuning and switching applications.
Finally we have shown analytically that the reflected wavelength
kC at normal incidence red-shifts by stretching the elastomer along
the helix axis. We expect that our results motivate the development
of optical devices based on elastomers and activated by an
elongation.
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