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Charged Magnetoexcitons in Two-Dimensions: Magnetic Translations and Families
of Dark States
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We show that optical transitions of charged excitons in semiconductor heterostructures are governed
in magnetic fields by a novel exact selection rule, a manifestation of magnetic translations. It is shown
that the spin-triplet ground state of the quasi-two-dimensional charged exciton X2 —a bound state of
two electrons and one hole—is optically inactive in photoluminescence at finite magnetic fields. Inter-
nal bound-to-bound X2 triplet transition has a specific spectral position, below the electron cyclotron
resonance, and is strictly prohibited in a translationally invariant system. These results allow one to
discriminate between free and disorder-affected charged excitons.

PACS numbers: 71.35.Cc, 71.35.Ji, 73.20.Dx
In quasi-two-dimensional (quasi-2D) electron-hole
�e-h� systems with low density of particles, a variety
of hydrogenic few-particle complexes can be formed.
Optical spectroscopy in magnetic fields is one of the
basic tools for studying such complexes. Recently, much
experimental [1–5] and theoretical [6–10] attention
has been devoted to studying negatively X2 �2e-h�
and positively X1 �2h-e� charged excitons in magnetic
fields B. These complexes are often considered to be
semiconductor analogs of the hydrogen atomic H2 and
molecular H1

2 ions, respectively. In B, in addition to
the spin-singlet, the higher-lying spin-triplet bound states
of X2 and X1 develop [1]. The question as to whether
these complexes are mobile and free to move, or are lo-
calized—by single donor impurities [3,5,8], disorder due
to long-range fluctuating potential of remote donors [4],
etc.—is a matter of current controversy. To explore these
issues, we theoretically address from first principles the
following question: Are there fundamental differences in
optical transitions between mobile and localized charged
e-h systems in magnetic fields?

For a one-component translationally invariant interact-
ing electron system in B, the well-known Kohn theorem
[11] states that intraband transitions can occur only at the
bare electron cyclotron resonance �e-CR� energy h̄vce �
h̄eB�mec. This is a consequence of the center-of-mass
(CM) separation from internal degrees of freedom in B.
For e-h systems such separation is not possible and the CM
and internal motions are coupled in B [12,13]. Nonethe-
less, for any system of charged particles in a uniform B
an exact symmetry—magnetic translations—exists ([13],
and references therein). It has been used to study the mo-
tion of atoms and ions [14] and neutral excitons [12] in
constant magnetic and electric fields. In this paper, we
introduce for charged semiconductor e-h complexes in B
an exact classification of states, which is based on mag-
netic translations. In this scheme, in addition to the total
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orbital angular momentum projection Mz and spin of elec-
trons Se and holes Sh, an exact quantum number, the dis-
crete oscillator quantum number k, appears. Surprisingly,
only very general consideration of radiation processes in
B using magnetic translations has been given [13]. To our
knowledge, no selection rule associated with k has been
established for dipole-allowed magneto-optical transitions
of charged e-h complexes. We show that k is conserved
in the intraband and in interband magneto-optical transi-
tions. This leads to striking spectroscopic consequences
for charged excitons.

Consider a many-body Hamiltonian of interacting par-
ticles of charges ei in a magnetic field B � �0, 0,B�,

H �
X

i

p̂2
i

2mi
1

1
2

X

ifij

Uij�ri 2 rj� . (1)

Here p̂i � 2ih̄=i 2
ei
c A�ri� and potentials of interpar-

ticle interactions Uij can be rather arbitrary. In the sym-
metric gauge A �

1
2 B 3 r the total angular momentum

projection Mz , an eigenvalue of L̂z �
P

i �ri 3 2ih̄=i�z ,
is an exact quantum number. In a uniform B the Ham-
iltonian (1) is also invariant under a group of magnetic
translations whose generators are the components of the
operator K̂ �

P
i K̂i , where K̂i � p̂i 2

ei
c ri 3 B and

�K̂ip , p̂iq� � 0, p,q � x, y [12–14]. K̂ is an exact inte-
gral of the motion �H, K̂� � 0. Its components commute
as

�K̂x , K̂y� � 2i
h̄B
c

Q, Q �
X

i

ei . (2)

For neutral complexes (excitons, biexcitons) Q � 0 and
the classification of states in B is due to the two-com-
ponent continuous vector—the 2D magnetic momentum
K � �Kx ,Ky� [12,13]. For charged systems Q fi 0, and
the components of K̂ do not commute. This determines
© 2000 The American Physical Society 4429
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the macroscopic Landau degeneracy of eigenstates of (1).
Using a dimensionless operator k̂ �

p
c�h̄BjQjK̂ whose

components are canonically conjugate, one obtains raising
and lowering Bose ladder operators k̂6 � �k̂x 6 ik̂y��

p
2

such that �k̂2, k̂1� � Q�jQj. Therefore, k̂2 � k̂1k̂2 1

k̂2k̂1 has the oscillator eigenvalues 2k 1 1, k � 0, 1, . . . .
Since �k̂2,H� � 0 and �k̂2, L̂z� � 0, the exact charged
eigenstates of (1) can be simultaneously labeled by the
discrete quantum numbers k and Mz [13]. For charged
e-h complexes in B the labeling therefore is jkMzSeShn�,
where n is the “principal” quantum number, which can
be discrete (bound states) or continuous (unbound states
forming a continuum); concrete examples are given below.
The k � 0 states are parent states (PS’s) within a degen-
erate manifold. All other daughter states, k � 1, 2, . . . , in
each nth family can be generated out of the PS: for, e.g.,
Q , 0,

jk,Mz 2 k, SeShn� �
1

p
k!

k̂k2j0,Mz , SeShn� , (3)

where we have used �L̂z , k̂6� � 6k̂6. The values of Mz

that the PS’s have are determined by particulars of interac-
tions and cannot be established a priori (cf. with 2D elec-
tron systems in strong B [15]).

In the dipole approximation the quantum number k is
conserved in intraband and interband magneto-optical tran-
sitions. Indeed, for internal intraband transitions in the
Faraday geometry (light propagating along B) the Hamil-
tonian of the interaction with the radiation of polarization
s6 is of the form V̂6 �

P
i �eiF0p̂i6�miv�e2ivt , where

F0 is the radiation electric field, p̂i6 � p̂ix 6 ip̂iy (e.g.,
[11]). Conservation of k follows from the commutativity
�V̂6, K̂� � 0 [16]. (In fact the perturbation V̂ � F�p̂i , t�
can be an arbitrary function of kinematic momentum op-
erators p̂i and time t, corresponding, e.g., to other geome-
tries and polarization.) The other usual selection rules are
conservation of spins Se, Sh and DMz � 61 for the enve-
lope function in the s6 polarization. This means that the
PS’s should be connected by the dipole transition, i.e., have
proper spins and M 0

z 2 Mz � 61. Indeed, for the transi-
tion dipole matrix element between the daughter states we
have

Dn0n � �k0,M 0
z 2 k0,SeShn0jV̂6jk,Mz 2 k, SeShn�

� dk0,kdM 0
z ,Mz61�0,M 0

z , SeShn0jV̂6j0,Mz , SeShn� .

(4)

Here we have used (3) and the operator algebra
�V̂6, k̂2� � �V̂6, k̂1� � 0, �k̂1, k̂2� � 1. From (4)
it is clear that Dn0n is the same in all generations and,
thus, characterizes the two families of states. Similar
considerations apply to interband transitions with e-h
pair creation or annihilation: The interaction with the
radiation field is described by the luminescence operator
L̂PL � pcv

R
drĈy

e �r�Ĉy
h �r� 1 H.c., where pcv is the
4430
interband momentum matrix element (e.g., [17]). Here
we have �L̂PL, K̂� � 0, so that k is conserved. Because
of the change of the Bloch parts in this case, the usual
selection rule DMz � 0 holds for the envelope functions.

Conservation of k constitutes an exact selection rule
for the dipole-allowed magneto-optical transitions in any
charged e-h system in B. In the limiting case of low B, k
can be related to the center of the cyclotron motion of the
complex as a whole [13,14]. This gives some physical in-
sight into its conservation. In the derivation above we used
only translational invariance in the plane perpendicular to
B. Therefore, conservation of k holds for systems of dif-
ferent dimensionality and in arbitrary magnetic fields. At
low magnetic fields the quasi-2D X2 states in higher Lan-
dau levels (LL’s) merge with the continuum corresponding
to the motion of neutral excitons (see below) and become
resonances. This situation is also typical for bulk 3D sys-
tems, where X2 and H2 [13] states in higher LL’s always
merge with the continuum of the unbound internal z mo-
tion in lower LL’s. The established selection rule works
also in this case and predicts which of the resonances are
dark and which are not. Importantly, it is also applicable
to semiconductors with a complex valence band [18]. The
Hamiltonian describing the quasi-2D X2 states in a per-
pendicular field B is of the form ĤX2 � Ĥ0

h 1 �H0
e1 1

H0
e2 1 Hint� ≠ Î4, where Ĥ0

h is the 4 3 4 Luttinger Ham-
iltonian for the valence-band hole with Jhz � 6

3
2 , 6 1

2
(see, e.g., [17]). The translational symmetry is always
preserved �ĤX2 , Î4 ≠ K̂� � 0, while the rotational sym-
metry is preserved in the usual axial approximation [19]
�ĤX2 , L̂z� � 0, where L̂z � L̂z ≠ Î4 1 Ĵhz. Therefore,
the exact labeling is jkMzPSen�, where Mz is an eigen-
value of L̂z and P is the parity in the z direction. The
above selection rules are formulated [18] in terms of the
exact quantum numbers k and Mz with P conserved for
the normal incidence of light.

To demonstrate how the developed formalism works, we
consider the strictly 2D e-h system with a simple valence
band in the limit of high B [7,8], when h̄vce, h̄vch ¿

E0 �
p

p�2 e2�elB and mixing between LL’s can be ne-
glected; lB � �h̄c�eB�1�2. E0 is the characteristic energy
of Coulomb interactions, the only energy scale in the prob-
lem. The basis for the X2 states in the electron and hole
LL’s �NeNh� is of the form f

�e�
n1m1 �re�f�e�

n2m2�Re�f�h�
Nhmh

�rh�
and includes different three-particle 2e-h states such that
the total angular momentum projection, Mz � n1 1 n2 2

m1 2 m2 2 Nh 1 mh, and LL’s Ne � n1 1 n2, Nh are
fixed [20]. Here f

�e,h�
nm are the e and h single-particle

factored wave functions in B (e.g., [13,14]); n is the
LL quantum number and m is the single-particle oscilla-
tor quantum number �mze � 2mzh � n 2 m�. We use
the electron relative re � �re1 2 re2��

p
2 and CM Re �

�re1 1 re2��
p

2 coordinates. The electron relative motion
angular momentum n1 2 m1 should be even (odd) in the
electron spin-singlet Se � 0 (triplet Se � 1) state. An
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additional canonical transformation diagonalizing k̂2 and
fixing k is performed; details will be given elsewhere [18].

The calculated three-particle 2e-h eigenspectra with
electrons in the triplet Se � 1 state in two lowest LL’s
are shown in Fig. 1. Generally, the eigenspectra associ-
ated with each LL consist of continuous bands of finite
widths 	E0, corresponding to the extended motion of a
neutral magnetoexciton (MX) as a whole with the second
electron in a scattering state. The continuum in the, e.g.,
�NeNh� � �10�, LL consists of the MX band of width
E0 extending down in energy from the free �10� LL.
This corresponds to the 1s MX in zero LL’s [21] plus a
scattered electron in the first LL, labeled X00 1 e1. (A
similar continuum exists in zero LL’s.) In addition, there
is another MX band of width 0.574E0 also extending
down in energy from the free (10) LL. This corresponds
to the 2p1 MX [21] plus a scattered electron in the zero
LL, labeled X10 1 e0. Moreover, there is a quasicon-
tinuum above each free LL (labeled 2e 1 h0 in Fig. 1)
originating from the bound internal motion of two 2D
electrons in B (cf. [15]). Bound X2 states lie outside the
continua. In the strictly 2D high-B limit the only family
of bound X2 states in zero LL’s is the triplet X2

t00. There
are no bound singlet X2

s states [7,8], in contrast to the
B � 0 case. The obtained X2

t00 binding energy 0.043E0
is in agreement with Refs. [7,8]. In the next electron LL
there are no bound singlet X2

s states, and only one family
of bound triplet states X2

t10. The X2
t10 binding energy is

FIG. 1. Schematic drawing of bound and scattering electron
triplet 2e-h states in the lowest LL’s �NeNh� � �00�, (10). Large
(small) dots correspond to the bound parent k � 0 (daughter
k � 1, 2, . . .) X2 states. Allowed internal transitions must sat-
isfy DMz � 1 and Dk � 0.
0.086E0, twice that of the X2
t00. This is due to the fact

that the two electrons in the triplet X2
t10 state can occupy

the single-particle states with zero e-h relative angular
momenta 1s (zero LL) and 2s (first LL). This enhances
the e-h attraction relative to the ground X2

t00 state in which
electrons can occupy an antisymmetric combination of the
1s and 2p2 single-particle states in zero LL.

We first discuss internal X2 triplet transitions. In the
s1 polarization the inter-LL DNe � 1 transitions are
strong and gain strength with B. Both bound-to-bound
X2
t00 ! X2

t10 and photoionizing bound-to-continuum
transitions are possible. For the latter, due to the rich
structure of the continuum, two exact selection rules
(4) are easily simultaneously satisfied. As a result, the
photoionizing absorption spectra have intrinsic linewidth
	E0 with two prominent peaks above the e-CR (Fig. 2).
These peaks are associated with high densities of states at
the edges of the two MX bands indicated in Fig. 1. Most
of these qualitative features of photoionizing transitions
are preserved at finite fields and confinement, where both
the triplet and singlet bound X2 states exist. This has
been shown by high-accuracy calculations for realistic
GaAs�GaAlAs quantum wells at B . 8 T, which are
confirmed in recent experiments and will be reported else-
where [22]. Here we are interested in the bound-to-bound
X2
t00 ! X2

t10 transition. Note first that, since the final
state is more strongly bound, this transition has a spe-
cific spectral position—it lies below the e-CR energy
h̄vce. However, in a translationally invariant system it
is strictly prohibited. Indeed, the Xt00 PS (with k � 0)
has Mz � 21, while the Xt10 PS has M 0

z � 1 (Fig. 1).
It follows then that the selection rules (4) Dk � 0 and
DMz � 1 cannot be simultaneously satisfied. This also
holds at finite B . 8 T and in quasi-2D quantum wells

FIG. 2. Energies and dipole matrix elements of the X2

internal transitions corresponding to Fig. 1 (solid line). The
solid dot shows the position of the X2

t00 ! X2
t10 transition,

which is forbidden for free X2. Dashed line: the same for the
X2 confined in a parabolic potential with the oscillator length
L � �h̄�2meve�1�2 � �h̄�2mhvh�1�2 � 0.4lB.
4431
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[22]. Localization of charged excitons, which we model
by a parabolic lateral confinement Ve �

1
2 v2

er2
ee and

Vh �
1
2 mhv

2
hr2

h, breaks translational invariance and
relaxes the selection rule. As a result, the bound-to-bound
X2
t00 ! X2

t10 transition develops below the e-CR (Fig. 2).
Such a peak is a telltale mark of localization of triplet
excitons X2

t . The strong triplet T2 transition [20,23] of
the D2 center (two electrons bound by a donor ion) can
be thought of as another possible limiting case, namely,
when the hole is completely localized.

Consider now photoluminescence (PL) from the triplet
ground state X2

t00 ! photon 1 e2
n with the electron in

the nth LL in the final state; n � 1, 2, . . . correspond
to shake-up processes in the PL [2,3]. The PL selec-
tion rules are Dk � 0 and DMz � 0. The triplet X2

t00
ground PS with k � 0 has Mz � 21 (also at finite
B . 8 T and in quasi-2D quantum wells [8,22]), while
the electron in the nth LL, with the factored wave
function f

�e�
nm, has mz � n 2 m. The corresponding

optical matrix element for transition to any LL n $ 0 is
zero: �f�e�

nmjL̂PLjX
2
t00�Mz�21,k�0�� 	 dm,k�0dn2m,21. This

means that the ground triplet state of an isolated X2
t is

optically inactive—dark in PL. In the strictly 2D high-B
limit this also follows [7] from the “hidden symmetry” in
e-h systems. Our result is much more general. Indeed,
as discussed above, quasi-2D effects, e-h asymmetry,
admixture of higher LL’s, and the complex character of
the valence band [19] break neither axial nor translational
symmetry. Therefore, even in the presence of these
effects, the triplet stays dark—as long as the ground
X2
t PS has Mz , 0. Note that the quasi-2D X2

s singlet
ground PS has Mz � 0 [8,9,22] and is optically active
in PL: �f�e�

nmjL̂PLjX
2
s00�Mz�0,k�0�� 	 dm,0dn,0. We see,

however, that the shake-up processes are prohibited in PL
from the isolated singlet ground state X2

s . The question
now remains why in fact the X2

t ground state is visible
in experiment in B [1–5] and the singlet X2

s shake-up
processes are commonly observed in PL—even at very
low densities of excess free carriers [2,3]. Our results
show that there should be mechanisms breaking the
underlying exact translational and rotational symmetries.
We interpret this as an indication toward a significant
effect of scattering in the disorder potential. Note that
as rather heavy particles, the charged excitons are very
likely to be localized in real samples, especially under the
confining effect of B.

In conclusion, we have shown that due to magnetic
translations, dipole-allowed transitions of charged mobile
semiconductor complexes are governed in magnetic fields
B by a novel exact selection rule. Some experimentally
observed features in interband photoluminescence of 2D
charged excitons X2 in B cannot be explained without ac-
counting for symmetry-breaking effects, an indication to-
ward the essential role of the disorder. The appearance
of the peak below the electron cyclotron resonance, corre-
4432
sponding to the internal bound-to-bound X2 triplet transi-
tion, is a characteristic mark associated with breaking of
translational invariance. We propose using this as a tool
for studying the extent of X2 localization.
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