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Substituting quantum entanglement for communication
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We show that quantum entanglement can be used as a substitute for communication when the goal is to
compute a function whose input data are distributed among remote parties. Specifically, we show that, for a
particular function among three partigsach of which possesses part of the function’s inpuprior quantum
entanglement enables one of them to learn the value of the function with only two bits of communication
occurring among the parties, whereas, without quantum entanglement, three bits of communication are neces-
sary. This result contrasts the well-known fact that quantum entanglement cannot be used to simulate commu-
nication among remote partigs$1050-294{®7)02908-9

PACS numbd(s): 03.65.Bz, 89.70:c

If a set of entangled particles are individually measuredn bits of communication turn out to be necessésge Ref.
the resulting outcomes can exhibit “nonlocal” effe¢fis-5]. [6] for a proof of thi3. Thus, even though the goal is for
These are effects that, from the perspective of “classical”Alice to acquire a single bit of information, this bit depends
physics, cannot occur unless “instantaneous communicaon the 4 bits distributed among Alice and Bob in such a
tions™ occur among the particles, which convey informationway that they must exchangebits between them in order
about each particle’s measurement to the other particles. for Alice to determine this bit. For a functiof:{0,1}"

On the other hand, no communication actually occursx {0,1}"—{0,1}, the minimum number of bits that must be
among the entangled particles when they are measured. T@mmunicated between Alice and Bob in order for Alice to
phrase this in operational terms, entangled particles cann@feterminef (x,y) is called thecommunication complexityf
be used to simulate communication. For example, if twof Several aspects of communication complexity are sur-
physically separated parties, Alice and Bob, initially possesgeyed in Ref[6].
particles whose quantum states are entangled and then BobTpe question that we consider is whether or not a prior
obtains a bit of informatiorx, there is no Operation that Bob quantum entang|ement can reduce communication Comp|ex_
can apply to his particles that will have the effect of convey-ity. For example, if Alice and Bob initially possess entangled
ing x to Alice when she performs measurements on her parparticles, can they compute some functions using less com-
ticles. Moreover, entanglement cannot even be us@bt®>-  munication than would be required without the entangled
pressinformation: for Bob to convey bits (with arbitrary  particles? Although we do not presently know the answer for
values to Alice, he must send bits—sendingh— 1bits will  this two-party scenario, we exhibit an analogous three-party
not suffice. Also, similar results apply to communicationsscenario where entanglemedoes reduce communication
involving more than two parties. complexity. The function is based on Mermin’s versid

Consider the following related but different scenario. Al- of “Bell nonlocality without probabilities.”
ice obtains am-bit stringx, and Bob obtains an-bit string Consider the following three-party scenario. Alice, Bob,
y and the goal is for Alice to determing(x,y), for some  and Carol receiven-bit strings x, y, and z, respectively,

function f:{0,1;"x{0,1}"—{0,1},with as little communica- which are subject to the condition that
tion between Alice and Bob as possible. This can always be

accomplished by Bob sending hisbits to Alice, but fewer x+y+z=1, 3

bits may suffice. For example, for the function ) ] o
where + is applied bitwise(modulo twg and
n

f(Xy)=Xi+ -+ X, +y1+--+y, oY) 1=11...1.

The goal is for Alice to determine the value of
(where+ means addition modulo twpit suffices for Bob to

send a single bi(namely,y;+---+y,) to Alice. On the f(X,y,2)=X1-y1- 23+ +Xp Y- 2. 4
other hand, for other functions, such as tieer product(in . _ i ) )
modulo two arithmetig An alternative way of expressing this problem is to impose

no restriction on the inputst, y, z, and to extendf to a
relation such that on the points where E@®) is violated,
fX,Y)=X1 Y1+ +X1 Vn, (2)  both 0 and 1 are acceptable outputs. Clearly, this problem
has the same communication complexity as the original one.
We show that, for the cases where=3: (i) without a prior
*Electronic address: cleve@cpsc.ucalgary.ca entanglement, three bits of communication aeeessaryor
"Electronic address: buhrman@cwi.nl Alice to determinef(x,y,z); and (ii) with a certain prior
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entanglement, two bits of communication amefficientfor First, consider the case whexfxPx“=111. In this case,
Alice to determinef(x,y,z). Thus, even though entangle- no H transformation is applied to any of
ment cannot be used to simulate communication, it can ne\/in,qu ,qu .Therefore, in ,qu ,qicis measured in staté5),
ertheless act assubstitutfor communication when the goal whjch implies thats/*+sP+s°=1=x"xB.xC.

is to compute a function with distributed data. We also show Neyt in the case whene'x®x®=001, anH transforma-
that the lower bound of three in the case of no entangleme_rH

/ e i lied tog” and toqg® but not toq°. Therefore,
cannot be improved. This is done by exhibiting a three-bit Q”B'S appiied fog; and fog;- but hot o g; eretore

protocol a’gPqC is measured in state

Recently, Grovef7] has independently demonstrated that
quantum entanglement can reduce communication complex-
ity in a different context.

HeH®I(3(|00D)+|010 +|100 —|111)))

=3(/012)+]102)+|000 - |110) (8)

A TWO-BIT QUANTUM PROTOCOL so s +sP+s°=0=x"xB-x". The cases whera*x?x®
=010 and 100 are similar by the symmetry of stdge O

We now show that ifA(lice), B(ob), andC(arol) initially Now. it follows that

share a certain entanglement of qubits then there is a proto-
col in which B and C each send a single bit t4, which

n
(e:)ci;lblesA to determinef(x,y,z) [as defined by Eqg3) and SA+SBSC:(E e S |+ D Slc)
. i=1 i=1 i=1
The entanglement involvesn3qubits, with each party n
having n_of them. Call then qupits that partype{A,B,.C} =3 (PrsBrsC
starts withg?,...,qh. For eachie{1,...n}, let the triple =1
a’gPq° be in state ,
— A B C
2(]001)+]010+|100 - |111)). ®) e KX
(This is equivalent to the state examined in RB}.but in an =f(x,xB,x°). (9)

alternate basis.For convenience, in this section, we write

xA, xB, and x® for the inputs ofA, B, and C, instead of

X, Y, andz, respectively. Thus, each pame {A,B,C} has

qubitsq?,...,gh and input stringkP=x%---xP, and the goal We show that, in the case wheme=3, without the use of

is for partyA to determine the value df(x*,x&,x°). entangled particles, two bits of communication among Alice,
The protocol begins by each panye {A,B,C} perform-  Bob, and Carol are insufficient for Alice to obtain enough

ing the following operations and measurements on his qubitsiformation to deducd(x,y,z). (This lower bound can be

NO TWO-BIT CLASSICAL PROTOCOL EXISTS

in order to obtain a bis": extended to all cases whene>3 by fixing the value of all
) but the firstn inputs of each party.
for eachi €{1,...n} do First, consider the possibilities of which parties the two

bits are sent among. Clearly there is no point in Alice send-

if xP= p
if =0 then applyH to g, ing the second bit. Also, if Alice sends the first bit to, say,

measurey? yielding bit s B(_)b the_n there is_ no point in_ Carol sending the s_econd bit to
Alice (since the first bit sent is then useless to AlicEhere-
P gPy...4gP fore, if Alice sends the first bit to Bob then we can assume
1 n-

that Bob sends the second bit to Alice. Also, note that, by

In t\r/l_e aboveH is the Hadam?r_d transform, that mdp$ to ~ substituting Eq(3) into Eq. (4),
1/y2)(]0)+|1)) and|1) to (1/4/2)(|0)—]|1)) (and we recall
'Ehat +) E|s i%"n n|10>dulo t\|NO ari(thmet)ﬂ(:| A?Iso|, ;?I measurements F(X,y,2)=X1 Y1+ Xz Y2+ X3 V3.
are in the standard basis consisting|@f and |1). Next, B
and C send bitss® ands®, respectively toA, who outputs
the value ofs®+sB+sC.

This protocol works if and only if, for allx®,x8 x¢
€{0,11" such thatx*+xB+xC=1, the bitss*,s® sCsatisfy

(10

Thus, since only Alice and Bob are involved in the commu-
nication, this scenario reduces to the two-party inner product
function, whose communication complexity is known to be
three. Therefore there is no protocol in which Alice sends
one of the two bits to Bob. Also, if Bob sends two bits to
©6) Alice then this can again be viewed as a two-bit two-party
protocol computing Eq.10), which is impossible. The above

The proof that Eq.(6) holds is based on the following arguments also apply with Carol substituted for Bob.

sA+sB+sC=f(xA xB,x°).

lemma, which is equivalent to the result ], though ex- The remaining possibilities are that Bob and Carol each
pressed in a different language. send a single bit to Alice, or Bob sends a bit to Carol, who
Lemma 1For allie{1,...n}, sends a bit to Alicgor vice versa Both of these are sub-
sumed by the scenario where Bob is allowed to broadcast
siA+ siB+ SiC=XiA~ XiB' XiC_ (7 one bit to both Alice and Carol, and then Carol sends one bit

to Alice, who must outpuf(x,y,z). This is the interesting
Proof. By Eq. (3), x/*x®x®e{001,010,100,111 case to examine.



56

The bit that Bob broadcasts
¢:{0,1}*—-{0,1} of his input datay alone. The functionp
partitions{0,1}* into two classesp™*(0) and¢1(1). Call
these two classeS, and S;,and assuméwithout loss of

SUBSTITUTING QUANTUM ENTANGLEMENT FQR . ..

1203

is some functionrespective values df(x,y,z) are 0, 1, 0. No binary partition-

ing of z will work for both possibilities.
Case 2.1.3(000, 001, 11&@ S,): Consider Alice’s per-
spective. Ifx=010 then, the possible values fox,¥,z) in-

generality that 000= S,. After Bob broadcasts his bit, what clude(010,000,10%, (010,001,109 (010,110,011 for which

Alice and Carol each learn is whethee Sy orye S, . For a

the respective values df(x,y,z) are 0, 0, 1; whereas, i
two-bit protocol to be correct, it must always be possible at=011 then the possible values forx,y,z)

include

this stage for Carol to send one bit to Alice that will enable(011,000,109 (011,001,10}, (011,110,019 for which the

Alice to completely determine the value &{x,y,z). We
shall show that, whatever the partitionisg,S, is, there is

respective values df(x,y,z) are 0, 1, 1. No binary partition-
ing of z will work for both possibilities.

an instance where Alice cannot determine the value of Case 2.1.4(000, 001, 11% S;): Consider Alice’s per-
f(x,y,2). There are 128 different possible partitionings, andspective. I1fx=010 then, the possible values fox,¥,z) in-
each is one of the seven types that are examined below. clude(010,000,10}, (010,001,100 (010,111,01pfor which

Case 1(|Sy|=<2): Recall our convention that 0@05,. If

Sy has a second element then, by symmetry, no generality is 011 then the possible values forx,{,z)

lost if we assume that it is either 100, 110, or 111.
Thus, without loss of generality, 001,010,04%,. Now,

the respective values df(x,y,z) are 0, 0, 1; whereas, it
include
(011,000,109 (011,001,10% (011,111,011 for which the
respective values df(x,y,z) are 0, 1, 0. No binary partition-

should the bit that Bob broadcasts specify to Alice and Caroing of z will work for both possibilities.

thatye S;, Carol must send one bit to Alice from which

Alice can completely determine the value fffx,y,z). The

Case 2.2(|S,| contains no string of weight 1)Ve con-
sider the following three subcases.

bit that Carol sends induces a partition of the possible values Case 2.2.1(111¢S): In this case, 011,010,100,111

of z into two classes. 1k=001 then, from Alice’s perspec-

€ S;. Suppose that Bob’s bit specifies that S;. Consider

tive, after receiving Bob’s bit but before receiving Carol's Ajice’s perspective. Ifx=001 then, the possible values for
bit, the possible values ofx(y,z) include (001,001,11},  (xy,7) include (001,001,11}, (001,010,109 (001,100,
(001,010,109 (001,011,101 and the respective values of 010), (001,111,00L for which the respective values of
f(x,y,z) on these points are 1,0,1. Therefore, for the proto(x v z) are 1, 0, 0, 1; whereas, ¥=010 then the possible
col to be successful in this case, the partition that Carol's bi{,gjues for &,y,z) include (010,001,109 (010,010,11},
induces inz must place 111 and 101 together in one clasgp10,100,00}, (010,111,01pfor which respective values of

and 100 in the other clag®therwise Alice would not be
able to determinef(x,y,z) when x=001]. On the other

hand, ifx=011 then, from Alice’s perspective, the possible

values of ,y,z) include (011,001,10}, (011,010,119
(011,011,111}, and the respective valuest{i,y,z) on these

f(x,y,z) are 0, 1, 0, 1. No binary partitioning afwill work
for both possibilities.

Case 2.2.(111e Sp): In this case,S; must contain an
element of weight 2. Without loss of generality, G4%,.
Therefore, 000,011,1HS,. Consider Alice’s perspective.

points are 1, 1, 0. Since we have established that Carol's bjt x—010 then, the possible values fox,y,z) include

does not distinguish between-111 andz=101, Carol’s bit

(010,000,104, (010,011,119 (010,111,01P for which the

is not sufficient information for Alice to determine regpective values of(x,y,z) are 0, 1, 1; whereas, i

f(x,y,2) in this case.

=110 then the possible values forx,y,z) include

Case 2(|Sy|=3): For this case, we consider the subcase§110,000,00% (110,011,018 (110,111,11p for which the

where eitherS, contains a string of weight {i.e., that has
exactly one 1 or does not.

Case 2.1(|Sy| contains a string of weight)1Without loss
of generality, assume 0@lS,. By our convention, 000

respective values df(x,y,z) are 0, 1, 0. No binary patrtition-
ing of z will work for both possibilities.

This concludes the proof that there is no classical protocol
for computingf(x,y,z) in which only two bits are commu-

€S, and, after disregarding the obvious symmetries, thergjcated among Alice, Bob, and Carol.

are four distinct possibilities for a third element &f: 010,
011, 110, 111 and these are considered separately.

Case 2.1.1000, 001, 01@ S,): The argument is similar
to that in Case 1 usin®, instead ofS;. Consider Alice’s
perspective. Iix=001 then, the possible values fox,¥,z)
include (001,000,119 (001,001,11}, (001,010,10D for
which the respective values 6fx,y,z) are 0, 1, 0; whereas,
if x=011 then the possible values fox,y,z) include
(011,000,109 (011,001,104, (011,010,11p for which the
respective values df(x,y,z) are 0, 1, 1. No binary partition-
ing of z will work for both possibilities.

Case 2.1.2(000, 001, 01% Sy): Consider Alice’s per-
spective. Ifx=001 then, the possible values fox,y¥,z) in-
clude(001,000,119 (001,001,11} (001,011,101 for which
the respective values df(x,y,z) are 0, 1, 1; whereas, K
=011 then the possible values forx,{,z) include
(011,000,109 (011,001,10% (011,011,112} for which the

A THREE-BIT CLASSICAL PROTOCOL

Although one might suspect that, without the use of en-
tangled particlesn bits of communication are necessary for
Alice to determinef(Xx,y,z) in general, it turns out that three
bits always suffice.

The idea behind the method is to count the total number
of 0's among all the 8 inputs of Alice, Bob, and Carol.
Note that, for eaclie {1,... n}, if X;-y;-y;=1 then there are
zero 0's among;,Y;,z; ,and if x;-y;-y;=0 then there are
two 0’'s amongx;,Y;,z .Let the number of 0's among
X1,..-X, ber,, the number of 0's amony,,...,y, berg,
and the number of 0's amorgy,...,z, berc. Let k be the
total number of terms among;-y;-2;,.... Xy Yn- 2, that
have value 0. Then, from the aboves+rg+rc=2k.
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