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Substituting quantum entanglement for communication
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We show that quantum entanglement can be used as a substitute for communication when the goal is to
compute a function whose input data are distributed among remote parties. Specifically, we show that, for a
particular function among three parties~each of which possesses part of the function’s input!, a prior quantum
entanglement enables one of them to learn the value of the function with only two bits of communication
occurring among the parties, whereas, without quantum entanglement, three bits of communication are neces-
sary. This result contrasts the well-known fact that quantum entanglement cannot be used to simulate commu-
nication among remote parties.@S1050-2947~97!02908-9#

PACS number~s!: 03.65.Bz, 89.70.1c
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If a set of entangled particles are individually measur
the resulting outcomes can exhibit ‘‘nonlocal’’ effects@1–5#.
These are effects that, from the perspective of ‘‘classic
physics, cannot occur unless ‘‘instantaneous commun
tions’’ occur among the particles, which convey informati
about each particle’s measurement to the other particles

On the other hand, no communication actually occ
among the entangled particles when they are measured
phrase this in operational terms, entangled particles ca
be used to simulate communication. For example, if t
physically separated parties, Alice and Bob, initially poss
particles whose quantum states are entangled and then
obtains a bit of informationx, there is no operation that Bo
can apply to his particles that will have the effect of conve
ing x to Alice when she performs measurements on her p
ticles. Moreover, entanglement cannot even be used tocom-
pressinformation: for Bob to conveyn bits ~with arbitrary
values! to Alice, he must sendn bits—sendingn21bits will
not suffice. Also, similar results apply to communicatio
involving more than two parties.

Consider the following related but different scenario. A
ice obtains ann-bit stringx, and Bob obtains ann-bit string
y and the goal is for Alice to determinef (x,y), for some
function f :$0,1%n3$0,1%n→$0,1%,with as little communica-
tion between Alice and Bob as possible. This can always
accomplished by Bob sending hisn bits to Alice, but fewer
bits may suffice. For example, for the function

f ~x,y!5x11•••1xn1y11•••1yn ~1!

~where1 means addition modulo two!, it suffices for Bob to
send a single bit~namely, y11•••1yn) to Alice. On the
other hand, for other functions, such as theinner product~in
modulo two arithmetic!

f ~x,y!5x1•y11•••1xn•yn , ~2!
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n bits of communication turn out to be necessary~see Ref.
@6# for a proof of this!. Thus, even though the goal is fo
Alice to acquire a single bit of information, this bit depen
on the 2n bits distributed among Alice and Bob in such
way that they must exchangen bits between them in orde
for Alice to determine this bit. For a functionf :$0,1%n

3$0,1%n→$0,1%, the minimum number of bits that must b
communicated between Alice and Bob in order for Alice
determinef (x,y) is called thecommunication complexityof
f . Several aspects of communication complexity are s
veyed in Ref.@6#.

The question that we consider is whether or not a pr
quantum entanglement can reduce communication comp
ity. For example, if Alice and Bob initially possess entangl
particles, can they compute some functions using less c
munication than would be required without the entang
particles? Although we do not presently know the answer
this two-party scenario, we exhibit an analogous three-pa
scenario where entanglementdoes reduce communication
complexity. The function is based on Mermin’s version@5#
of ‘‘Bell nonlocality without probabilities.’’

Consider the following three-party scenario. Alice, Bo
and Carol receiven-bit strings x, y, and z, respectively,
which are subject to the condition that

x1y1z51, ~3!

where1 is applied bitwise~modulo two! and

The goal is for Alice to determine the value of

f ~x,y,z!5x1•y1•z11•••1xn•yn•zn . ~4!

An alternative way of expressing this problem is to impo
no restriction on the inputs,x, y, z, and to extendf to a
relation such that on the points where Eq.~3! is violated,
both 0 and 1 are acceptable outputs. Clearly, this prob
has the same communication complexity as the original o
We show that, for the cases wheren>3: ~i! without a prior
entanglement, three bits of communication arenecessaryfor
Alice to determinef (x,y,z); and ~ii ! with a certain prior
1201 © 1997 The American Physical Society
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1202 56RICHARD CLEVE AND HARRY BUHRMAN
entanglement, two bits of communication aresufficient for
Alice to determinef (x,y,z). Thus, even though entangle
ment cannot be used to simulate communication, it can n
ertheless act as asubstitutefor communication when the goa
is to compute a function with distributed data. We also sh
that the lower bound of three in the case of no entanglem
cannot be improved. This is done by exhibiting a three-
protocol.

Recently, Grover@7# has independently demonstrated th
quantum entanglement can reduce communication comp
ity in a different context.

A TWO-BIT QUANTUM PROTOCOL

We now show that ifA~lice!, B~ob!, andC~arol! initially
share a certain entanglement of qubits then there is a pr
col in which B and C each send a single bit toA, which
enablesA to determinef (x,y,z) @as defined by Eqs.~3! and
~4!#.

The entanglement involves 3n qubits, with each party
havingn of them. Call then qubits that partypP$A,B,C%
starts with q1

p ,...,qn
p . For eachi P$1,...,n%, let the triple

qi
Aqi

Bqi
C be in state

1
2 ~ u001&1u010&1u100&2u111&). ~5!

~This is equivalent to the state examined in Ref.@5# but in an
alternate basis.! For convenience, in this section, we wri
xA, xB, and xC for the inputs ofA, B, and C, instead of
x, y, andz, respectively. Thus, each partypP$A,B,C% has
qubitsq1

p ,...,qn
p and input stringxp5x1

p•••xn
p , and the goal

is for partyA to determine the value off (xA,xB,xC).
The protocol begins by each partypP$A,B,C% perform-

ing the following operations and measurements on his qu
in order to obtain a bitsp:

for eachi P$1,...,n% do

if xi
p50 then applyH to qi

p

measureqi
p yielding bit si

p

sp←s1
p1•••1sn

p.

In the above,H is the Hadamard transform, that mapsu0& to
(1/A2)(u0&1u1&! andu1& to (1/A2)(u0&2u1&) ~and we recall
that 1 is in modulo two arithmetic!. Also, all measurement
are in the standard basis consisting ofu0& and u1&. Next, B
and C send bitssB and sC, respectively toA, who outputs
the value ofsA1sB1sC.

This protocol works if and only if, for allxA,xB,xC

P$0,1%n such thatxA1xB1xC51, the bitssA,sB,sCsatisfy

sA1sB1sC5 f ~xA,xB,xC!. ~6!

The proof that Eq.~6! holds is based on the following
lemma, which is equivalent to the result in@5#, though ex-
pressed in a different language.

Lemma 1: For all i P$1,...,n%,

si
A1si

B1si
C5xi

A
•xi

B
•xi

C . ~7!

Proof: By Eq. ~3!, xi
Axi

Bxi
CP$001,010,100,111%.
v-

nt
it

t
x-

to-

ts

First, consider the case wherexi
Axi

Bxi
C5111. In this case,

no H transformation is applied to any o
qi

A ,qi
B ,qi

C .Therefore, qi
A ,qi

B ,qi
Cis measured in state~5!,

which implies thatsi
A1si

B1si
C515xi

A
•xi

B
•xi

C .
Next, in the case wherexi

Axi
Bxi

C5001, anH transforma-
tion is applied toqi

A and to qi
B but not to qi

C . Therefore,
qi

Aqi
Bqi

C is measured in state

H ^ H ^ I „ 1
2 ~ u001&1u010&1u100&2u111&)…

5 1
2 ~ u011&1u101&1u000&2u110&) ~8!

so si
A1si

B1si
C505xi

A
•xi

B
•xi

C . The cases wherexi
Axi

Bxi
C

5010 and 100 are similar by the symmetry of state~5!. h
Now, it follows that

sA1sBsC5S (
i 51

n

si
AD 1S (

i 51

n

si
BD 1S (

i 51

n

si
CD

5(
i 51

n

~si
A1si

B1si
C!

5(
i 51

n

xi
A
•xi

B
•xi

C

5 f ~xA,xB,xC!. ~9!

NO TWO-BIT CLASSICAL PROTOCOL EXISTS

We show that, in the case wheren53, without the use of
entangled particles, two bits of communication among Ali
Bob, and Carol are insufficient for Alice to obtain enoug
information to deducef (x,y,z). ~This lower bound can be
extended to all cases wheren.3 by fixing the value of all
but the firstn inputs of each party.!

First, consider the possibilities of which parties the tw
bits are sent among. Clearly there is no point in Alice se
ing the second bit. Also, if Alice sends the first bit to, sa
Bob then there is no point in Carol sending the second bi
Alice ~since the first bit sent is then useless to Alice!. There-
fore, if Alice sends the first bit to Bob then we can assu
that Bob sends the second bit to Alice. Also, note that,
substituting Eq.~3! into Eq. ~4!,

f ~x,y,z!5x1•y11x2•y21x3•y3 . ~10!

Thus, since only Alice and Bob are involved in the comm
nication, this scenario reduces to the two-party inner prod
function, whose communication complexity is known to
three. Therefore there is no protocol in which Alice sen
one of the two bits to Bob. Also, if Bob sends two bits
Alice then this can again be viewed as a two-bit two-pa
protocol computing Eq.~10!, which is impossible. The abov
arguments also apply with Carol substituted for Bob.

The remaining possibilities are that Bob and Carol ea
send a single bit to Alice, or Bob sends a bit to Carol, w
sends a bit to Alice~or vice versa!. Both of these are sub
sumed by the scenario where Bob is allowed to broadc
one bit to both Alice and Carol, and then Carol sends one
to Alice, who must outputf (x,y,z). This is the interesting
case to examine.
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The bit that Bob broadcasts is some functi
f:$0,1%3→$0,1% of his input datay alone. The functionf
partitions$0,1%3 into two classesf21(0) andf21(1). Call
these two classesS0 and S1 ,and assume~without loss of
generality! that 000PS0 . After Bob broadcasts his bit, wha
Alice and Carol each learn is whetheryPS0 or yPS1 . For a
two-bit protocol to be correct, it must always be possible
this stage for Carol to send one bit to Alice that will enab
Alice to completely determine the value off (x,y,z). We
shall show that, whatever the partitioningS0 ,S1 is, there is
an instance where Alice cannot determine the value
f (x,y,z). There are 128 different possible partitionings, a
each is one of the seven types that are examined below

Case 1(uS0u<2): Recall our convention that 000PS0 . If
S0 has a second element then, by symmetry, no generali
lost if we assume that it is either 100, 110, or 111.

Thus, without loss of generality, 001,010,011PS1 . Now,
should the bit that Bob broadcasts specify to Alice and Ca
that yPS1 , Carol must send one bit to Alice from whic
Alice can completely determine the value off (x,y,z).The
bit that Carol sends induces a partition of the possible va
of z into two classes. Ifx5001 then, from Alice’s perspec
tive, after receiving Bob’s bit but before receiving Caro
bit, the possible values of (x,y,z) include ~001,001,111!,
~001,010,100!, ~001,011,101!, and the respective values o
f (x,y,z) on these points are 1,0,1. Therefore, for the pro
col to be successful in this case, the partition that Carol’s
induces inz must place 111 and 101 together in one cla
and 100 in the other class@otherwise Alice would not be
able to determinef (x,y,z) when x5001]. On the other
hand, if x5011 then, from Alice’s perspective, the possib
values of (x,y,z) include ~011,001,101!, ~011,010,110!,
~011,011,111!, and the respective values off (x,y,z) on these
points are 1, 1, 0. Since we have established that Carol’s
does not distinguish betweenz5111 andz5101, Carol’s bit
is not sufficient information for Alice to determin
f (x,y,z) in this case.

Case 2(uS0u>3): For this case, we consider the subca
where eitherS0 contains a string of weight 1~i.e., that has
exactly one 1! or does not.

Case 2.1(uS0u contains a string of weight 1!: Without loss
of generality, assume 001PS0 . By our convention, 000
PS0 , and, after disregarding the obvious symmetries, th
are four distinct possibilities for a third element ofS0 : 010,
011, 110, 111 and these are considered separately.

Case 2.1.1(000, 001, 010PS0): The argument is similar
to that in Case 1 usingS0 instead ofS1 . Consider Alice’s
perspective. Ifx5001 then, the possible values for (x,y,z)
include ~001,000,110!, ~001,001,111!, ~001,010,100! for
which the respective values off (x,y,z) are 0, 1, 0; whereas
if x5011 then the possible values for (x,y,z) include
~011,000,100!, ~011,001,101!, ~011,010,110! for which the
respective values off (x,y,z) are 0, 1, 1. No binary partition
ing of z will work for both possibilities.

Case 2.1.2(000, 001, 011PS0): Consider Alice’s per-
spective. Ifx5001 then, the possible values for (x,y,z) in-
clude~001,000,110!, ~001,001,111!, ~001,011,101! for which
the respective values off (x,y,z) are 0, 1, 1; whereas, ifx
5011 then the possible values for (x,y,z) include
~011,000,100!, ~011,001,101!, ~011,011,111! for which the
t
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respective values off (x,y,z) are 0, 1, 0. No binary partition-
ing of z will work for both possibilities.

Case 2.1.3(000, 001, 110PS0): Consider Alice’s per-
spective. Ifx5010 then, the possible values for (x,y,z) in-
clude~010,000,101!, ~010,001,100!, ~010,110,011! for which
the respective values off (x,y,z) are 0, 0, 1; whereas, ifx
5011 then the possible values for (x,y,z) include
~011,000,100!, ~011,001,101!, ~011,110,010! for which the
respective values off (x,y,z) are 0, 1, 1. No binary partition-
ing of z will work for both possibilities.

Case 2.1.4(000, 001, 111PS0): Consider Alice’s per-
spective. Ifx5010 then, the possible values for (x,y,z) in-
clude~010,000,101!, ~010,001,100!, ~010,111,010! for which
the respective values off (x,y,z) are 0, 0, 1; whereas, ifx
5011 then the possible values for (x,y,z) include
~011,000,100!, ~011,001,101!, ~011,111,011! for which the
respective values off (x,y,z) are 0, 1, 0. No binary partition-
ing of z will work for both possibilities.

Case 2.2( uS0u contains no string of weight 1): We con-
sider the following three subcases.

Case 2.2.1 (111P” S0): In this case, 011,010,100,11
PS1 . Suppose that Bob’s bit specifies thatyPS1 . Consider
Alice’s perspective. Ifx5001 then, the possible values fo
(x,y,z) include ~001,001,111!, ~001,010,100!, ~001,100,
010!, ~001,111,001! for which the respective values o
f (x,y,z) are 1, 0, 0, 1; whereas, ifx5010 then the possible
values for (x,y,z) include ~010,001,100!, ~010,010,111!,
~010,100,001!, ~010,111,010! for which respective values o
f (x,y,z) are 0, 1, 0, 1. No binary partitioning ofz will work
for both possibilities.

Case 2.2.2(111PS0): In this case,S0 must contain an
element of weight 2. Without loss of generality, 011PS0 .
Therefore, 000,011,111PS0 . Consider Alice’s perspective
If x5010 then, the possible values for (x,y,z) include
~010,000,101!, ~010,011,110!, ~010,111,010! for which the
respective values off (x,y,z) are 0, 1, 1; whereas, ifx
5110 then the possible values for (x,y,z) include
~110,000,001!, ~110,011,010!, ~110,111,110! for which the
respective values off (x,y,z) are 0, 1, 0. No binary partition-
ing of z will work for both possibilities.

This concludes the proof that there is no classical proto
for computingf (x,y,z) in which only two bits are commu-
nicated among Alice, Bob, and Carol.

A THREE-BIT CLASSICAL PROTOCOL

Although one might suspect that, without the use of e
tangled particles,n bits of communication are necessary f
Alice to determinef (x,y,z) in general, it turns out that thre
bits always suffice.

The idea behind the method is to count the total num
of 0’s among all the 3n inputs of Alice, Bob, and Carol.
Note that, for eachi P$1,...,n%, if xi•yi•yi51 then there are
zero 0’s amongxi ,yi ,zi ,and if xi•yi•yi50 then there are
two 0’s among xi ,yi ,zi .Let the number of 0’s among
x1 ,...,xn be r A , the number of 0’s amongy1 ,...,yn be r B ,
and the number of 0’s amongz1 ,...,zn be r C . Let k be the
total number of terms amongx1•y1•z1 ,...,xn•yn•zn that
have value 0. Then, from the above,r A1r B1r C52k.
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Therefore, it suffices for Bob to sendr B to Alice and Carol to
sendr C to Alice in order for Alice to computek. From k,
Alice can easily computef (x,y,z)5(n2k)mod2. This in-
volves 2log2n bits of communication. Fortnow@8# has
shown that the communication can be reduced to three
as follows. Since Alice only needs the parity ofk, she only
needs the values ofr A , r B , r C in modulo 4 arithmetic.
Therefore, it suffices for Bob and Carol to each send two
to Alice. This yields a four-bit protocol. To obtain a three-b
protocol, note thatr A1r B1r C is guaranteed to be an eve
number. This means that either Bob or Carol can send
the high order bit of his or her two-bit number.
s
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