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Dissipative Quantum Dynamics with a Lindblad Functional
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A Lindblad operator is proposed to describe quantum dynamics of an open system with linear
dissipation. Its functional form is determined based on the microscopic Caldeira-Leggett model.
It yields a new master equation which preserves positive density evolution on short times and
approaches equilibrium at high and low temperatures. The new master equation is applied as an
example to study the femtosecond dynamics of vibrational relaxation and desorption at a metal surface.
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Dissipation and fluctuation in an open quantum system This problem does not exist in an alternative approach
play an important role in a variety of phenomena in physicof open quantum systems, namely, the theory of quantum
and chemistry. While dissipation in classical mechanicglynamical semigroups by Lindblad [15] and Kossakowski
can be well described by the Langevin or the Fokker-and colleagues [16]. In particular, Lindblad showed that
Planck equation, quantum dynamics of an open systerthe generator [15] for a positive dynamical map should be
remains to be a challenging field [1-3], and is of generabf the following form:
concern in many different areas such as quantum noise in
tunneling junctions, quantum theory of measurement [3], Lp = Z{[Vm,pv,}:] + [Vmp,V,:E]}, (2)
and reaction rate theory in condensed phase [4]. m

The description of quantum dissipation of an openynere thev,'s are the Lindblad dissipation operators.
system has largely been based on the reduced density Mg ever, these operators are in general unknown and do
trix formalism [5,6], within which both intrinsic quantum- pqt 555re equilibrium with the bath. The Lindblad theory,
mechanical fluctuation of the system and external noise ofqit its neat and concise layout, remains to be more like a
its environment can be conveniently incorporated in & Unitorma) structure than an approach of practical applications,
fied manner. During the past few decades, efforts havgnq g a few constructions of such operators have been
been made to devise various phenomenological model§,oiiaple in the literatures [17-19].

[7] and more recently to derive in a first-principle way — gre we propose a Lindblad operator to describe quan-
the dissipation functional from microscopic Hamiltoniansy, dynamics of an open system with linear dissipation.
[8—10]. A quantum master equation, in analog with theyis expjicit form is so determined as to reproduce the dis-

Fokker-Planck equation, for the dynamics of the 0pen SySgjnation terms of the Caldeira-Leggett model at high tem-

tem can be obtained in the high temperature or Markovperatres and their generalizations to low temperatures.

ian limit [8-12]. As given by Caldeira and Leggett in \yg arrive at a new master equation which preserves posi-
their pioneering work 8], the reduced density majiof e gensity evolution on short times and leads to equilib-
a harmonic oscillator, linearly coupled to an Ohmic envi-yjy,m ot high and low temperatures. This master equation
ronment (linear dissipation) at temperatufe obeys the  ¢j5q6ly connects two formally well-developed theories of

following master equation: open quantum systems, namely, the Lindblad formalism

d ; SmkT and the first-principle quantum master equations. More-
@y L [H,p] = —l[ [x,[x, p]] over, it provides an efficient scheme to study dissipative
dt h h h guantum dynamics, since it can be solved by propagat-

il 11 (1) ing_ either the density matrix in a dc_)uble—space represen-
weLp.pledr tation p(x,x’, 7) or a set of stochastic wave packets [18]
{W¥(x,1)} with the given Lindblad operator. As a first
Here y = 1/2m is the characteristic damping rate of example of application, the new master equation is used
the oscillator with massz and HamiltonianH, and n  to study the femtosecond dynamics of vibrational relax-
is the friction coefficient. Similar master equations haveation for a Morse oscillator induced by a bath of metal
been obtained along this line for a particle in a generatlectrons.
environment [9—-11]. Unfortunately, master equations like Our proposal of the Lindblad operator is motivated
Eq. (1) are known to violate the positivity requirement of partly by the known functional of a damped harmonic
the density operator [11—-14], and therefore lead, in certaionscillator, where the simplest dissipation operator is an
cases, to unphysical results, particularly on a time scalannihilation and/or a creation operator [16]. We thus
comparable with the characteristic damping tigne'. look for a single Lindblad operato¥ which is a linear
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combination of coordinate and momentunp [19], the same correlation function, results from environment-
V= ux + ivp induced quctuatior}Z(noise) and depends on temperature
— ) .
{VT — ux — ivp’ (3) T as ax(t,T) = [, I(w)cothz) codw?)dw. Here

I(w) = nw/m isthe spectral function for the Ohmic envi-
where coefficientsu and v are arbitraryc numbers that ronment, and. is the bandwidth of the spectrum. At low
will be determined below. The equation of motion for 7, cotd%) is a smooth function ok while cogw?) is

P, ‘fi—f + +[H,p] = Lp[p], can be written out explicitly ~fast oscillating. This observation leads us to the following

according to Egs. (2) and (3), approximation:
d i . Q.
@ © )= Wbl S 2wl lpol] ) = Locot{ ) [ cotwndo
T 2kT ) Jo
— v’[p.[p.p1l. (@) o\ ©)
H = H — 2uvhxp, 10e COt}(ZkT>6(I)’

where[A, B]+ represents an anticommutation relation be
tween operatord andB. In obtaining Eq. (4), the iden-

ti':cy [X’Pd] = iﬁhhashbeen used to reharrqnﬁer:he(;:rqtsjs teM3hysical meaning as the center of th&o) band. The
of x andp. The three terms on the right-hand side andy,,yqvian limit is recovered if), — = and thusj () ap-

the last one on the left are all traceless (due to the Cyc"f)roacheSS(t) [20]. This approximation is different from

property of trace), which guarante§§Tr;_) =0,i.e.,the  the earlier ones [8,10,11], which are all based on a tem-
norm conservation of the reduced density matrix. In faCtperature expansion of the noise kernel. It leads to a re-

the general form Eq. (2) is traceless and thus the Lindblaglacement oRkT — fiw, cotr’(%) in the first diffusion

ap#)rogch IS generallf);_qorm conzervmg. i i term of Eq. (1) and thus in our choice @f?. In fact,

h ohetfgrmlne coe |C|entﬂhan_ ’;1 %ne dea‘?'('jy refa|zes this is a simple replacement from the classical to quan-
that the first two terms on the right-hand side o Ed. (4yym representation of the fluctuation-dissipation relation
are essentlally the same terms as in the Caldel.ra-Leggem the narrow band approximation. The parametercan

master equation (1).' The Iqtter was exactly denved_frqrrbe uniquely determined by a harmonic oscillator approxi-
a microscopic Hamiltonian in the high-temperature limit, p\otion a17 = 0, where the system should essentially oc-
or equivalently the classical limit — 0, where the force- cupy its ground state near the potential minimum. The

force correlation function becomes localized in time. ThiSLindead operato then reduces to the annihilation op-
comparison suggests the following conditions for choosing, ...+ of the harmonic oscillator giving/» = mQ and

“Where d(r) = %f(? codwt)dw, andw. is a parameter
factorizing the noise kernel and has approximately the

pandy: in turn . = Q/2, i.e., half of the oscillator frequency.
w? = y2kTm/h? The temperature dependence of the two coefficients then
2uv = vy/h, asT — oo, (5) reads
v =0 QO (KO

which yields straightforwardly? = y/8mkT in the high- wX(T) = % Cotr<ﬁ>, @)

temperature regime. The latter is different frdmy, =
v/6mkT, a diffusion coefficient that has recently been de- 5 %
rived by Didsi by going beyond the lowest order Markov- viT) = 25mQ tanf(m>, (8)
ian approximation at high and medium temperatures [11].

To extend the functional to low temperatures, we pointwith the accompanying relatiodur = v/h. Both ex-
out that the two dissipation terms in Eq. (1) have differ-pressions reduce to Eg. (5) in the high-temperature
ent physical origin. The second term, which is given byregime, and have their physical bases on the quantum
the imaginary part of the force-force correlation functionfluctuation-dissipation theorem. They thus bring the
a(t) = (F(r)F(0)), describes the dissipation effect and isequilibrium behavior into the Lindblad formalism through
temperature independent [8,10,11]. This indicates thaheir temperature dependence.
2uv = y/h is valid at all temperatures. On the con- In coordinate space, the master equation (4) takes the
trary, the first term, which is given by the real part of following form:

—ap(xa’tx D) %[I:I(x) — H*()p(x,x',1) = —{M(T) (x = x)? + y(x — ﬂ)(% - a%,)
2
— VZ(T)iiZ(% + %) }p(x,)c', 1), (9)
H(x)=H(x)+iﬁyx% +ih7y. (20)
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The last two terms of Eg. (10) come froml’ of 6
Eq. (4), namely, x|[—2uvixp,pllx’) = —2uvh X
(xlxpp — ppx — ihplx) = ihy(x% + x’% + 1) X
p(x,x’,t). This master equation differs from all previous
ones in two aspects: (1) A renormalized Hamiltonian
with a frictional force and an imaginary term and (2) an
additional diffusion term (the? term) with temperature- 0
dependent diffusion coefficient. This new term, which is
vanishing in the high-temperature limit as in Eq. (1), is
important to preserve intrinsic quantum fluctuation [21]
at low temperatures. In addition, as Eq. (9) is directly  t(fs) 200
constructed from the Lindblad functional, it is therefore

norm conserving (which can be explicitly proved [18]) 0
and guarantees the positivity of the density matrix even

on short time scales. This is extremely important for theFIG. 1. The diagonal density evolutign(x, x, ) of a Morse

description of dissipative quantum dynamics involved ingfgi”citgg asa ft‘gg%’geﬁz tggegg 1?1%080516 -\I/—vki]ti p;rggnrﬁ;?@
a variety of transient phenomena. 1 el . :

S . rate y = 3.3 X 10" s7! due to coupling to electrons at the
As an example of application of the new master equatiofneta] surface. The initial density matrix corresponds to the

(9), we study the dynamics of vibrational relaxation of afirst excited state of the Morse oscillator.
Morse oscillator induced by electrons at a metal surface.
This is a problem of high current interest in surface physics i L g
and can be described by a model of linear dissipatiorg/€Ctron temperature within the vibrational lifetimpe " =
[22]. To be specific, we simulate;®@n a Pt(111) surface. 3 ps, evenin the low temperatutd’ < /i) regime. The
Nonadiabatic electron-hole pairs are believed to be thdnal eqU|I|br|l_Jn_1_that the_ wave packet reaches does not de-
dominant mechanism for the damping of vibration onPeNd On the initial density distributions. .
Pt(111) with a lifetimey ~' = 3 ps[22]. The Hamiltonian To illustrate the importance of positivity of the density
of the free oscillator takes the following form: matrix, we plot in Fig. 3 the desorption rate (current),

Density Distribution

-0.4 - X (au)

. ih
O j(0) = =5:Gx — 7P, x", D=y, at the desorp-

— —— = 4 D[e2*x — ¢ 2¥], (11) tion boundaryx, as a function of time during the vibra-
2m dx? tional relaxation. This provides a critical test of a model

with parameters AQ = 0.049 eV, @ = 2.545 a.u., and because the evolution from a pure state to equilibrium is

D = 0.4 eV) chosen to represent those of the adsorbe@ transient and extremely nonequilibrium process. The
0, molecule on Pt(111) [22]. The relaxation dynamicsfate given by Eq. (1) does not have the correct sign in
is obtained by propagating an initial wave packet cor-
responding to the first vibrationally excited state of the
oscillator, p(x,x’,0) = ¥, (x)¥;(x")T. Equation (9) is
solved numerically using the splitting operator technique,
where the terms with only or p operators are propagated
in the coordinate and momentum space, respectively,
with the help of the fast Fourier transform (FFT) [23].
The terms containing botkh and p operators are propa-
gated by the two-step Wendroff-Lax scheme for the flux-
conservative differential equations [23]. We used a time
stepAr = 10 a.u. and 512 grid points sampled on a length
of L, = 3 a.u.

Figure 1 shows the wave packet evolution as a function 200
of time. Without dissipation, i.e;y = 0, the initial wave
packet would remain in the excited pure state for an in-
finitely long time. Because of coupling to electrons, any 0 05 1 15 2 25 3
nonthermal distribution relaxes and approaches equilib- t(ps)
rium with its environment. Figure 1 shows the dynamicalriG. 2. The development of the vibrational temperature for
process during the first 500 fs. The wave packet evolvethe same initial wave packet shown in Fig. 1 at different bath
from the excited state to a thermalized Gaussian waviemperaturesT(). Initially the wave packet has a nonthermal
packet. Figure 2 shows the development of the vibradistribution and the temperature is not well defined. Note

. - . _ that the vibrational quantum of the oscillator corresponds to a
tional temperaturel, = Q/[k In(Py/P1)] with P;(z) = temperature ofiQ) /k = 570 K. The wave packet approaches

[dx [dx"¥;(x)Tp(x,x, 1)W;(x"), at longer times for dif- equilibrium with the electron bath at both high and low
ferent bath temperatures. The wave packet approaches tiegnperatures.
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FIG. 3. The calculated desorption rate as a function of time
before absorbing boundary & = 200 K. The rate given
by Eqg. (1) does not have the right sign in the subpicosecond
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