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Molecular theory of helical sense inversions in chiral nematic liquid crystals
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A molecular theory of the helical twisting in chiral liquid crystals is developed, which provides an expla-
nation for the experimentally observed helical sense inversion induced by a change of concentration in binary
mixtures of chiral and nonchiral nematic liquid crystals. The theory also describes the sense inversion induced
by a change of temperature observed in some single component nematics. The theory present is based on a
simple model of a chiral rigid molecule, composed of several equivalent nonchiral sites, which are arranged in
the molecule to form a chiral configuration. The macroscopic helical pitch in the chiral nematic phase, twist
elastic constant, and nematic order parameters are calculated using the same molecular model. It is shown that
the helical sense inversion can be determined by a large biaxiality of chiral molecules. It is also demonstrated
that the biaxiality is important in determining the variation of the helical pitch with temperature and
concentration.

PACS number~s!: 61.30.2v, 64.70.Md, 33.15.2e
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I. INTRODUCTION

Liquid-crystalline phases formed from chiral~i.e.,
handed! molecules exhibit a number of physical properti
that derive from the reduced symmetry of the chiral m
sophases. Thus chiral nematic phases can develop long-r
helical structures with pitches ranging from a few tenths
microns to tens of microns or more, in which the local alig
ment axis of the molecules~the director! describes a helix,
the handedness of which depends on a number of fac
including the absolute configuration of the chiral molecul
The magnitude and sign of the helical pitch in chiral nem
ics can be measured by a variety of techniques; for exam
aligned films of chiral liquid crystals reflect electromagne
radiation for particular wavelengths and circular polarizatio
Having a value for the helicity of a chiral nematic phase th
raises the question: ‘‘what relation is there between the m
sured chirality of the phase~sign and magnitude!, and the
chirality of the constituent molecules@1,2#?’’ It has been
possible to identify a number of qualitative correlations b
tween the structure of mesogenic chiral molecules and
pitch of their corresponding chiral nematic phases@3#, but
the establishment of reliable quantitative correlations
tween molecular structure and the chiral properties of liqu
crystal phases has proved to be much more difficult. In f
there are a number of theoretical aspects to this probl
Firstly some representation for the molecular chirality m
be adopted, secondly the nature of the chiral and, of cou
nonchiral interactions between the molecules must be sp
fied, and thirdly any theory of the chiral properties of m
sophases must be able to explain their change with exte
variables, such as temperature, pressure, and compositio
mixtures. The latter is especially important in the context
chiral nematic phases, since it has been found that ch
dopants that do not themselves form liquid-crystal pha
will induce chiral mesophases when dissolved in nonch
liquid-crystal hosts. This induction of chirality has been e
tensively studied experimentally@4,5#, and it has been found
PRE 621063-651X/2000/62~2!/2340~13!/$15.00
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that the sign of the induced pitch may be different for t
same dopant in different host liquid crystals.

If the chiral dopant itself is mesogenic, then the helic
pitch can be measured through the whole concentra
range, including the pure chiral nematic phase of the dop
It has been found that some chiral mesogens~in particular,
cholesterol derivatives! may induce in a nonchiral nematic
helical structure of opposite sense to that observed in
corresponding pure chiral nematic phase. Such mixture
chiral and nonchiral liquid crystals exhibit a helical sen
inversion at some intermediate concentration of the t
components. Examples of such behavior have been repo
for example, in Refs.@6–9#. This kind of helical sense inver
sion is not easily explained because the molecular chira
and all chiral intermolecular interactions appear to rem
the same. Thus at present there is no consistent theore
explanation of this phenomenon, although several semip
nomenological models, which rely on various additional a
sumptions, have been proposed@7,10,11#. Another interest-
ing phenomenon is the helical sense inversion induced
change of temperature, which has been observed in few
component chiral nematic phases@12–15#. Such inversion
can, in principle, be explained by assuming that the parti
lar chiral nematic is a mixture of two~or more! conformers
of different handedness@13#. The relative populations of the
conformational states may be strongly temperature dep
dent, and thus the helix inversion may be observed at so
temperature within the nematic range. However, it should
noted that this explanation cannot always be valid, since
some chiral nematics showing temperature-induced pitch
version, the chirality is located only in the rigid core. Th
experimental observations discussed above, indicate th
more detailed molecular theory of chiral nematics is need
based on more realistic molecular models.

The first task of a theory of chiral nematic phases is
explain the formation of a helical distribution for the dire
tor, and a number of successful theories have been de
oped. All require that there is some form of chiral interacti
2340 ©2000 The American Physical Society
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PRE 62 2341MOLECULAR THEORY OF HELICAL SENSE . . .
between the molecules, but different models have b
adopted for the origin of the chiral interaction. The packi
of elongated hard particles having a chiral geometry can
sult @16,17# in the formation of helical nematic phases, a
this is believed to be the predominant factor in lyotrop
liquid crystals@18#. Similarly the chiral nematic phase can b
modeled classically in terms of chiral dispersion forc
@19,20#, and recently a more general quantum-mechan
formulation of chiral interactions between fluctuating char
distributions has been given@21#. In formulating a theory of
helical mesophases, the orientational order is modulated
chiral interactions having a particular handedness. M
treatments so far assume that the interacting molecules
effectively uniaxial, and so local ordering of the short axes
mesogens~molecular biaxiality! is neglected. A consequenc
is that important aspects of the molecular structure, i.e.,
axial shape are missing from the models. Furthermore,
theories do not deal with the chiral induction observed
mixtures, and are not able to explain significant experime
results, such as the change in sign of the pitch with temp
ture in pure mesogens@22#, or with concentration and sol
vent in the case of mixtures@23#. Recently the importance o
molecular biaxiality has been recognized by several auth
@24,25#.

In order to understand the subtle effects of changes
molecular structure and chirality on observed macrosco
chiral properties, many authors have considered ways
quantifying molecular chirality. Various approaches to t
quantification of molecular chirality have been explor
@26–29# which attempt to represent a chiral distribution
atoms in a molecule in terms of a parameter, or tensor wh
depends on the molecular structure. A simple measure
has been introduced is a function of minimal distances
tween atoms of a chiral molecule superimposed on its en
tiomer @26#. We have developed@28# a general approach
based on the Born-Boys theory of optical activity which
lows a family of chirality tensors to be defined for a partic
lar molecular geometry. Ferrariniet al. @25,27# have defined
a helicity tensor which characterizes the chirality of the s
face of a molecule, and Harriset al. @24# have defined a
pseudoscalar molecular chirality index in terms of a coupl
between higher-order mass distribution tensors. It is evid
that there can be no single measure of molecular chira
and the molecular parameter or index chosen will depend
the physical manifestation of chirality that is being exa
ined.

The particular property of interest for chiral nema
phases is the pitch of the director helix which spontaneou
forms in the mesophase. In order to discuss both single c
ponent and binary mixtures, it is convenient to introduce
helical twisting powerh, which is the ratio of the helica
wave numberq to concentration of chiral moleculesc at low
c!1:

h5
]q

]c U
c50

,

where q52p/p and wherep is the helical pitch. At low
concentrations the helical twisting powerh is independent of
concentration, and in appropriate units can be expresse
an area per molecule. Ferrariniet al. @29,30# have developed
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a semiphenomenological theory of twisting power for chi
solutes in nematic solvents. Their theory takes specific
count of the molecular structure by considering the inter
tion of surface elements of the chiral dopant with the aver
nematic environment, and it also allows for local biaxial o
dering of the solute molecules. Results for a number of d
ferent chiral molecules@25,31# are in reasonable agreeme
with experimental results, and the theory is able to expl
the change in sign of helical pitch for consecutive odd a
even homologues of alkyl cyanobiphenyls@25#.

In this paper we develop a mean-field theory of chi
nematics in which chiral interactions in nematic mesopha
are taken into account using a model mesogen, the struc
chirality of which is a parameter of the theory. Single com
ponent and binary mixtures are considered, and we are
to derive the phenomenological result used by Ferrariniet al.
@25,29,30# in the context of the mean-field molecular theor
From the theory we are able to calculate the chiral and n
chiral contributions to the free energy, and hence the unia
and biaxial order parameters and twisting power of the ch
molecules, using the same molecular model. The model
molecular chirality allows the effect of molecular shape to
determined, and it is shown that changes in tempera
and/or concentration for binary mixtures can result
changes of sign for the measured pitch in chiral nema
phases. In Sec. II we develop expressions for the mean-
potential and free energy in terms of local biaxial a
uniaxial order parameters and chiral and nonchiral coup
constants which describe the molecular interactions. T
theory is developed for two-component systems in Sec.
so that it can be applied to chiral induction in mesoge
mixtures. Details of our molecular model for chirality a
given in Sec. IV, and some specimen results are presente
Sec. V. Here it is shown that the experimentally observ
phenomena of pitch inversion with temperature, concen
tion, and change of nonchiral solvent can be quantitativ
explained by the theory.

II. FREE ENERGY OF THE CHIRAL NEMATIC PHASE
AND AN EXPRESSION FOR THE HELICAL PITCH

Let us consider a chiral nematic liquid crystal compos
of biaxial molecules. The orientation of such a molecule c
be specified by the two unit vectorsa andb in the direction
of the long and short molecular axes, respectively (a•b)
50. One notes that for a fixed long axisa the short axisb
can only rotate abouta. This rotation can also be specified b
the Euler anglec. In a statistical theory such a system
characterized by the orientational distribution functi
f „@a•n(r )#,@b•n(r )#…, which depends on the orientation o
the molecular axesa andb with respect to the local directo
n(r ) that may depend on the positionr . For example, in the
equilibrium chiral nematic state the director describes a h
along thez axis.

In the context of continuum theory the chiral nema
state is described by the following distortion-free ener
density:

Fd5
1

2
K2~n•rotn!21k2 ~n•rotn!, ~1!
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2342 PRE 62A. V. EMELYANENKO, M. A. OSIPOV, AND D. A. DUNMUR
where K2 is the twist elastic constant andk2 is a pseudo-
scalar parameter which is sensitive to molecular chirality

In the homogeneous chiral nematic state the director
tribution is a pure twist,n5$cos(q z),sin(q z),0%, whereq is
the macroscopic helical wave number. The equilibrium va
of the wave numberq which corresponds to the minimum o
the distortion free energy~1! is given by

q5
k2

K2
. ~2!

The coefficientsk2 and K2 can be evaluated using
molecular-statistical theory.

In the molecular-statistical approach the free energy o
chiral nematic liquid crystal can be written explicitly in th
mean-field approximation

F5kBTrE dx1f ~x1!ln@16p2f ~x1!#

1
1

2
r2E dx1dx2f ~x1! f ~x2!Q~r122j12!U~1,2!, ~3!

wherexi[$ai ,bi ,r i%, dxi[d2aid
2bidr i , i 51,2, and where

U(1,2) is the intermolecular interaction potential; herer12
[ur22r1u is the intermolecular vector. The step functio
Q(r122j12) represents the excluded volume effects. T
functionQ(r122j12)50 if the two molecules penetrate eac
other andQ(r122j12)51 otherwise. The first term in Eq.~3!
represents the orientational entropy while the second ter
the internal energy of the nematic state.

The chiral nematic phase is nonpolar and therefore o
the nonpolar part of the effective intermolecular poten
Q(r122j12)U(1,2) ~ i.e., the part which is even both in th
long axesa1 ,a2 and the short axesb1 ,b2 ,c1 ,c2 of the two
interacting molecules! will contribute to the value of the
pitch. This part of the interaction potential can be expand
in the set of the spherical invariants in the following way

$Q~r122j12!U~1,2!%e

52(
lLl

JlLlTl L l ~a1 ,u,a2!

2(
lLl

MlLl@TlLl~a1 ,u,b2!2TlLl~a1 ,u,c2!#

2(
lLl

MlLl@TlLl~b1 ,u,a2!2TlLl~c1 ,u,a2!#,

~4!

where u5r12/ur 12u, and the coupling constantsJlLl and
MlLl depend on the intermolecular separationr 12. The func-
tions TlLl(x,u,y) are the so-called spherical invariants@32#
which depend on the relative orientation of the two m
ecules~see Fig. 1!. The functionTlLl(x,u,y) depends on the
three unit vectorsx,u andy and containsx to the powerl ,u
to the powerL, andy to the powerl. The summation in Eq
~4! runs over all integersl ,L, and l with l ,l>0 and u l
2lu<L< l 1l. In nonpolar liquid-crystal phases the term
odd in l and l do not contribute and thusJlLl5JlLl and
MlLl5MlLl .
s-

e

a

e

is
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l

d

-

Spherical invariants make a complete set of orthogo
functions and can be defined in terms of spherical harmo
@32–34#. In some cases an expansion in spherical invaria
is more convenient then the expansion in spherical harm
ics because in the former expansion each term is invar
under rotation of the laboratory frame. Thus, spherical
variants are the natural basic functions for an expansion
various two-body functions like the pair potential or pa
correlation functions, which do not depend on the absol
frame. Moreover, the order parameters of the nematic ph
^Pl& are directly obtained by orientational averaging of t
spherical invariants in the mean-field approximation@10#.
Some useful properties of these functions are describe
Appendix C and several low-order invariants are presen
for example, in@35#. One notes that the invariants with on
zero index appear as the Legendre polynomials,
Tl0l(x,y)5Pl(x•y).

The first term in Eq.~4! describes the coupling betwee
the long molecular axes of the two molecules; the sec
term is the interaction energy which depends on the orie
tion of the long axis of one molecule and of the short axis
another molecule. The coupling between the two short m
lecular axes is neglected.

Substituting Eq.~4! into Eq. ~3! and using the propertie
of the spherical functionsTlLl one obtains

F5kBTrE dx1f ~x1!ln@16p2f ~x1!#

2
1

2
r2(

lLl
SlSlE dr1dr2JlLlTlLl~n1 ,u,n2!

2r2(
lLl

SlDlE dr1dr2MlLlTlLl~n1 ,u,n2!, ~5!

where the order parametersSl , which characterize the nem
atic ordering of the long molecular axes, are given by

Sl5E d2ad2bPl~a•n! f „~a•n!,~b•n!…. ~6!

FIG. 1. Mutual orientation of the biaxial molecules ‘‘1’’ an
‘‘2.’’ The unit vectorsa1 anda2 are in the direction of the primary
molecular axes and the vectorsb1 and b2 are in the direction of
short molecular axes.
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The order parametersDl which specify the ordering of the
short axes of biaxial molecules in the uniaxial nematic ph
are expressed as

Dl5E d2ad2b$Pl~b•n!2Pl~c•n!% f „~a•n!,~b•n!…. ~7!

HerePl(x) are the Legendre polynomials.
One notes that Eq.~5! presents an expression for the fr

energy of an inhomogeneous liquid crystal. This total fr
energy includes the free energy of the homogeneous nem
stateF0 and the free energy of the director distortionFd ,

F5F01E Fd~r !dr . ~8!

The distortion-free energy of the chiral nematic state is giv
by Eq. ~1!.

The free energy of the homogeneous stateF0 is given by
the same Eq.~5! but with n25n15n. The distortion energy
can be extracted using the gradient expansion of the dire
n(r2),

n~r2!5n~r1!1~r12•“ !n~r1!1
1

2
~r12•“ !2n~r1!1•••.

~9!

Explicit expressions for the constantsk2 andK2 ~and thus
for the helical wave numberq) can be obtained after th
substitution of Eq.~9! into Eq. ~5! and the truncation of the
sum overl ,L,l. The simplest truncation of the expressio
~5! is achieved by neglecting all the terms withl ,l.2,L
.1. The calculations presented in Appendix A result in t
following expressions for the free energyF0, pseudoscalar
k2, and the twist elastic constantK2:

F05kBTrE dxf ~x!ln@16p2f ~x!#

2
1

2
r2J0

202S2
22r2M0

202S2D2 , ~10!

k25
1

6
r2J1

212S2
21

1

3
r2M1

212S2D2 , ~11!

K25
1

2
r2J2

202S2
21r2 M2

202S2D2 , ~12!

where

Jn
lLl54pE

0

`

dr12r 12
n12JlLl~r 12!,

Mn
lLl54pE

0

`

dr12r 12
n12MlLl~r 12!. ~13!

The order parametersS2 andD2 in Eqs.~11! and~12! can
be determined by minimization of the free energyF0 ~10!,
subjected to the constraint

E dxf ~x!5V, ~14!

whereV is the volume of the system. One obtains
e

e
tic

n

tor

e

S25
1

I E21

1

dtE
0

2p

dcP2~ t !exp@UMF~ t,c!#,

D25
1

I E21

1

dtE
0

2p

dc
3

2
~12t2!cos~2 c!exp@UMF~ t,c!#,

~15!

with

I 5E
21

1

dtE
0

2p

dcexp@UMF~ t,c!# ~16!

and

UMF~ t,c!5
r

kBT FJ0
202S2P2~ t !1M0

202S2

3

2
~12t2!cos~2c!

1M0
202D2P2~ t !G , ~17!

where t[(a•n). The numerical solution of Eqs.~15! gives
the temperature dependence of the order parametersS2 and
D2.

One notes that in the nematic or chiral nematic ph
composed of biaxial molecules the mean-field potential~17!
depends on the two order parametersSandD. In this simple
derivation, however, we have neglected the term prop
tional toD2 because we did not take into account a coupl
between short molecular axes. This term does not change
qualitative behavior of the system because usually the
rameterD is much smaller thenS. The complete expressio
for the mean-field potential of the biaxial nematic pha
~which takes into account both long- and short-range bia
order! has been presented by Bergersenet al. @36#. For
uniaxial molecules the coupling constantM0

202 in Eq. ~17!
vanishes and the mean-field potential is reduced to
Maier-Saupe form.

III. NEMATIC-CHOLESTERIC BINARY MIXTURES

In this section we consider a more general case of
nematic uniaxial liquid crystal doped with biaxial chiral mo
ecules. This system is characterized by the number densi
the two componentsha and the corresponding orientation
distribution functionsf a„@a•n(r )#,@b•n(r )#… for nonchiral
and chiral molecules,a5N,C. Here the directorn depends
on the position of a moleculer . Similar to Eq.~4! the non-
polar part of the effective interaction potential between
molecules of the componentsa andg can be expressed as

$Qag~r122j12!Uag~1,2!%e

52(
lLl

Jag
lLlTlLl~a1 ,u,a2!

2(
lLl

Mag
lLl@TlLl~a1 ,u,b2!2TlLl~a1 ,u,c2!#

2(
lLl

Mga
lLl@TlLl~a2 ,u,b1!2TlLl~a2 ,u,c1!#,

~a,g5N,C!. ~18!
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Now the expressions for the free energyF0 and the elastic
constantsk2 and K2 for the mixture can be obtained as
straightforward generalization of Eqs.~10!–~12!,

F05kBTr (
a5N,C

haE dxf a~x!ln@16p2f a~x!#

2 1
2 r2 (

a,g5N,C
hahg@J0(ag)

202 SaSg

1M0(ag)
202 SaDg1M0(ga)

202 SgDa#, ~19!

k25 1
6 r2 (

a,g5N,C
ha hg@J1(a g)

212 Sa Sg

1M1(ag)
212 Sa Dg1M1(ga)

212 Sg Da#, ~20!

K25 1
2 r2 (

a, g5N,C
ha hg@J2(ag)

202 SaSg

1M2(ag)
202 SaDg1M2(ga)

202 SgDa#. ~21!

Here the definitions of the constantsJn(ag)
lLl and Mn(ag)

lLl are
analogous to those forJn

lLl and Mn
lLl , given by Eqs.~13!,

where the indexn denotes the power of the distancer 12
under the integral.

In Eqs.~19!–~21! SN ,SC are the nematic order paramete
of the nonchiral and chiral components of the mixture. T
parameterDC is the additional order parameter which cha
acterizes the ordering of a biaxial molecule in the uniax
nematic phase. One notes thatDN50 because the nonchira
compound is assumed to be uniaxial.

In Eq. ~20! the pseudoscalar coefficientsJ1(ag)
212 and

M1(ag)
212 are different from zero only if at least one of th

interacting molecules is chiral. Therefore, for two nonchi
molecules the coefficientsJ1(NN)

212 5M1(NN)
212 50. As a result

Eq. ~20! can be rewritten as

k25
1

6
hC@2hNSN~J1(NC)

212 SC1M1(NC)
212 DC!.

1hCSC~J1(CC)
212 SC12M1(CC)

212 DC!#. ~22!

The order parametersSN ,SC , and DC can be obtained by
minimization of the free energy~19!:

Sa5
1

I a
E

21

1

dtE
0

2p

dcP2~ t !exp@UMF
a ~ t,c!#,

DC5
1

I C
E

21

1

dtE
0

2p

dc
3

2
~12t2!cos~2c!exp@UMF

C ~ t,c!#,

~23!

with

I a5E
21

1

dtE
0

2p

dcexp@UMF
a ~ t,c!#,

wherea5N,C and
e

l

l

UMF
a ~ t,c!5

r

kBT (
g5N,C

hgFJ0(ag)
202 SgP2~ t !1M0(ag)

202 DgP2~ t !

1M0(ga)
202 Sg

3

2
~12t2!cos~2c!G . ~24!

The order parametersSN ,SC , andDC can be determined
by numerically solving Eqs.~23! provided the coefficients
J0(ag)

202 , M0(ag)
202 (a,g5N,C) are known. These coefficient

depend only on molecular structure and can be evalua
using an appropriate molecular model. In this paper we us
simple site-site interaction model, which is described in d
tail in the following section. The calculation of the coeffi
cients in Eqs.~19!–~21! is performed in Appendix B.

IV. SITE-SITE INTERACTION MODEL FOR CHIRAL
AND NONCHIRAL MOLECULES

Let us consider the following molecular model presen
in Fig. 2. A chiral molecule@see Fig. 2~a!# is composed of
seven identical ellipsoidal sites. Such flattened ellipso
may be considered as simple images of aromatic rings.
symmetry axes of all the sites of a molecule are paralle
each other and to the short molecular axisc. At the same
time the centers of ellipsoidal sites are twisted about
principal molecular axisa. This twist determines the molecu
lar chirality in the framework of the present model. The ce
ter of the sitei is determined by the position vector

si5S s' cos$ ik h1w%

si sin$ ik h1w%

i h
D , ~25a!

whereh is the distance between neighboring sites along
principal molecular axis,k is the wave number of the mo
lecular twist, and the phasew determines the turn of the
central site with respect to the the short molecular axisb ( i
50 for the central site!.

The model of a nonchiral molecule is presented in F
2~b!. A nonchiral molecule is composed of seven sit
which lie on the principal molecular axisa. Their positions
are determined by the following vectors:

FIG. 2. Molecular model for a biaxial chiral mesogenic mo
ecule~a! and nonchiral uniaxial mesogenic molecule~b!.
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si5S 0

0

i h
D . ~25b!

In both cases~of chiral and nonchiral molecules! we take the
distance between the neighboring sitesh52d/3, whered is
the average diameter of a site. For a chiral molecule we t
the step of the molecular helixk h50.8. The phasew is
considered as a model parameter, which specifies the par
lar structure of the chiral molecule. It should be noted, ho
ever, that a change of the parameterw does not change th
molecular handedness because all sites remain to be loc
on the same helix with the constant wave numberk @see Eq.
~25a!# for all values ofw. At the same time we show in thi
paper that both value and sign of the macroscopic hel
pitch in the chiral nematic phase strongly depend on
parameterw.

We assume that each site of a molecule interacts w
each site of another molecule via the standard Gay-Be
potential@37#:

Ui j
ag~ui ,r ,uj !5«ag ~ui ,r ,uj !F S d

r 2sag~ui ,r ,uj !11D 12

2S d

r 2sag~ui ,r ,uj !11D 6G , ~26!

where ui and uj are the symmetry axes of the interactin
sites, andr is the vector connecting these sites.

The functions«ag andsag are defined in Ref.@37#. These
functions contain three model parameters:« which mainly
determines the nematic-isotropic transition temperatu
s i /s' which is the axial ratio of the molecular site, an
«s /«e which determines the ratio of the interaction energ
for side-by-side and end-to-end configurations of two sit
These parameters, however, should be different for diffe
pairs of interacting sites reflecting their different symmet
In this paper we assume that the nonchiral molecules
uniaxial while the chiral ones are strongly biaxial. Therefo
in our model the nonchiral molecule is assumed to be co
posed of simple spherical sites with the diameterd, while the
chiral molecule is composed of flattened sites. Thus, for
two sites of interacting nonchiral molecules we should ta
(s i /s')NN51 and («s /«e)NN51. Taking the short~princi-
pal! dimension of the flattened site of a chiral molecule eq
to 0.6d and its long~secondary! dimension equal to 1.2d,
one obtains for two sites of chiral molecules (s i /s')CC
50.5 and for a site of nonchiral molecule and a site of ch
molecule: (s i /s')NC50.73. We take («s /«e)CC50.7 and
(«s /«e)NC50.9 to have a good agreement with the expe
mental values of the biaxiality order parameterDC in pure
cholesterics and in nematic-cholesteric mixtures. Finally,
rameters« in each case have been chosen in order to acc
for the transition temperatures of para-azoxyanisole (N),
cholesteryl chloride (C), and their mixture@7#. All param-
eters are presented in Table I. The total interaction poten
between the two molecules is calculated as a sum ove
site-site interactions,
ke
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Uag~1,2!5(
i 51

ma

(
j 51

mg

Ui j
ag~ui ,r ,uj !, ~27!

where the number of sites in both cases~of chiral and non-
chiral molecules! have been chosen equal tomN5mC57.

The chiral coefficientsJ1(ag)
212 , M1(ag)

212 , which are used in
Eq. ~22! for the pseudoscalar constantk2, and the two sets of
nonchiral coefficients,J0(ag)

202 ,M0(ag)
202 and J2(ag)

202 ,M2(ag)
202

@used in Eqs.~21! and~24!#, are calculated in Appendix B in
the framework of this molecular model. The results are d
cussed in the following section.

V. RESULTS AND DISCUSSION

The nonchiral~scalar! coupling constantsJ0(NN)
202 ,J0(NC)

202 ,
J0(CC)

202 ,M0(NC)
202 , M0(CC)

202 ,J2(NN)
202 ,J2(NC)

202 , J2(CC)
202 ,M2(NC)

202 ,
M2(CC)

202 , and chiral ~pseudoscalar! coupling constants
J1(NC)

212 ,J1(CC)
212 ,M1(NC)

212 , M1(CC)
212 , which determine the cho

lesteric pitch and the order parameters, are presented in
3 as functions of the molecular model parameterw. One
notes that the nonchiral interaction constants depend o
weakly onw @see Figs. 3~b! and 3~c!# while the chiral coef-
ficients strongly depend onw and may even change sign
This difference is related to the fact that in the present mo
the parameterw mainly effects the molecular chirality while
the averaged molecular shape remains to be intact. U
these coupling constants one can calculate numerically
order parametersSN ,SC , and DC from Eqs.~23! and then
substitute them into Eqs.~22!, ~21!, ~2! for the helical wave
number. As a result one obtains the helical wave numberq as
a function of the concentration of chiral molecules in t
binary mixture. The results are presented in Fig. 4 for diff
ent values of the parameterw. ~We take five values of the
parameterw, which are shown in Fig. 3~a! by the dashed
lines.! One can readily see that in all cases the concentra
dependence of the helical wave number of a mixture app
to be strongly nonlinear. At low values of the structur
model parameterw the helical wave numberq changes sign
at some concentration~see curves 1 and 2 in Fig. 4!. Thus,
the present model describes a helical sense inversion
mixture of chiral and nonchiral nematics with the increasi
concentration of the chiral compound. As discussed in
Introduction, this kind of helical sense inversion in bina
mixtures has been observed by several authors@6–9# and one
notes that the curves 1 and 2 in Fig. 4 are very similar to
experimental ones which have been obtained for vari
nematic-cholesteric mixtures.

For higher values of the model parameterw ~see curves 3
and 4 in Fig. 4! the helix inversion is becoming less pro
nounced and finally disappears~see curve 5!. One notes that
the concentration dependence of the helical pitch in real
nary mixtures of liquid crystals is very sensitive to the m

TABLE I. Model parameters for the Gay-Berne potential.

N-N N-C C-C

«/kB(103 K) 1.60 1.28 1.03
s i /s' 1 0.73 0.5
«s /«e 1 0.9 0.7
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FIG. 3. Interaction coupling constants as functions of the str
tural factorw. ~a! Chiral coefficients in Eq.~22!: rectangles,J1(NC)

212 ;
triangles, M1(NC)

212 ; crosses,J1(CC)
212 ; stars, M1(CC)

212 . ~b! Nonchiral
coefficients in Eq.~19!: circles, J0(NN)

202 ; rectangles,J0(NC)
202 ; tri-

angles,M0(NC)
202 ; crosses,J0(CC)

202 ; stars,M0(CC)
202 . ~c! Nonchiral coef-

ficients in Eq.~21!: circles, J2(NN)
202 ; rectangles,J2(NC)

202 ; triangles,
M2(NC)

202 ; crosses,J2(CC)
202 ; stars,M2(CC)

202 .
lecular structure. A small change in the structure of chi
molecules may result in the disappearance of the hel
sense inversion. This effect has been observed, for exam
in the series of cholesterol derivatives with different structu
of the 3b chain @38#.

There have been several attempts to explain the beha
of nematic-chiral nematic mixtures in the context of a m
lecular theory@11,35,39#. As shown by Hansonet al. @39#,
an experimentally observed concentration dependence o
helical wave number of a nematic-cholesteric mixture can
described by Eq.~2! where the pseudoscalar coefficientk2
and the twist elastic constantK2 are quadratic functions o
the concentration of chiral and nonchiral molecules in
mixture. In this case@compare with Eq.~22!# the coefficient
k2 is expressed ask25kCChC

2 12kNChNhC . However, the
helical sense inversion can be described only if the coe
cients kCC and kNC possess opposite signs. The latter
quirement appears to be the most challenging one for a
lecular theory. Simple models, based on chiral dispers
interactions@35#, yield the same sign for both coefficien
kCC andkNC . In this case both coefficients are proportion
to the same pseudoscalar parameter that characterize
molecular chirality.

The model presented in this paper enables one to exp
the helical sense inversion in nematic-cholesteric mixture
a consistent way, without using any additional assumptio
One can readily see from Fig. 3~a! that the chiral interaction
constants in Eq.~22! may possess either equal or oppos
signs depending on the parameterw. Thus in the context of
one and the same model for a rigid molecule with a sim
chiral distortion one can qualitatively explain different typ
of concentration dependence of the helical pitch in nema
chiral nematic mixtures, including the ones with or witho
helical sense inversion. Similar to real binary mixtures
liquid crystals, in the context of the present model, differe
types of the concentration dependence of the helical pitch
obtained by changing the structure of chiral molecules~by

-

FIG. 4. Dimensionless helical wave number as a function of
molar fraction of chiral molecules in the binary mixture for fou
different values of the model parameterw: ~1! w50.24 rad;~2! w
50.39 rad;~3! w50.55 rad;~4! w50.71 rad;~5! w50.86 rad.
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changing the model parameterw).
The microscopic mechanism of the helical sense invers

in the present model can be understood in more detail if
considers the behavior of the helical pitch at very low a
very high concentrations of chiral molecules in the mixtu
At low concentrations of chiral molecules (hC!1) the heli-
cal wave number is expressed as

q;2hNhCSN@J1(NC)
212 SC1M1(NC)

212 DC#. ~28!

In the opposite limit, i.e., in the pure one-component chol
teric phase (hC51,hN50) one obtains

q;hC
2 SC@J1(CC)

212 SC12M1(CC)
212 DC#, ~29!

where the four pseudoscalar coefficientsJ1(NC)
212 ,J1(CC)

212 ,
M1(NC)

212 ,M1(CC)
212 are presented in Fig. 3~a! as functions of the

model parameterw.
In Eqs. ~28! and ~29! the second terms in the squa

brackets, which are proportional to the secondary order
rameterDC , are determined by molecular biaxiality. Gene
ally these terms are smaller then the leading contribu
proportional to the primary nematic order parameterSC .
Now it is possible to ask how important are the biaxial
contributions for the qualitative behavior of the pitch. O
notes that for each curve in Fig. 4 the helical wave numbeq
possesses opposite signs forhC!1 andhC51. This means
that the terms J1(NC)

212 SC1M1(NC)
212 DC and J1(CC)

212 SC

12M1(CC)
212 DC must have opposite signs. One can see fr

Fig. 3~a! that for the first two values ofw(w1 andw2), which
correspond to the curves 1 and 2 in Fig. 4, the coefficie
J1(NC)

212 andJ1(CC)
212 possess opposite signs. In these cases

helical sense inversion is preserved, even if one neglects
order parameterDC determined by the molecular biaxiality
For w5w3 andw5w4 @see Fig. 3~a!# the coefficientsJ1(NC)

212

andJ1(CC)
212 have equal signs. In these cases the helical se

inversion~see curves 3 and 4 in Fig. 4! takes place becaus
the coefficientsM1(NC)

212 andM1(CC)
212 have large positive val-

ues, and in the third caseM1(CC)
212 dominates overJ1(CC)

212 ,
whereas in the fourth caseM1(NC)

212 dominates overJ1(NC)
212 .

Therefore, in case 3 the helical wave number is posit
when the cholesteric is pure (hC51), and in case 4 the
helical wave number is positive when the cholesteric i
small dopant (hC!1). In both cases 3 and 4 the helic
sense inversion takes place due to biaxiality of chiral m
ecules. Thus the biaxiality contribution to the helical pitch
very important and can even be responsible for the hel
sense inversion in some cases. Finally, the helical wave n
ber q has no inversion in case 5 in Fig. 4@correspondent to
w5w5 in Fig 3~a!#. Such a behavior of the helical pitch
also confirmed by experiment with some nematic-cholest
mixtures.

The helical pitch of a nematic-chiral nematic mixture al
depends on the orientational order parameters of chiral
nonchiral molecules. Typical values of the nematic order
rametersSN and SC , calculated in the framework of th
present model, are depicted in Fig. 5~a! as functions of the
temperature and in Fig. 6~a! as functions of the concentratio
of chiral molecules. One notes that both parametersSN and
SC strongly depend on concentration. At the same time
relative importance of the biaxiality contribution is dete
n
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mined by the ratioDC /SC @see Eqs.~28! and~29!#. This ratio
is depicted in Figs. 5~b! and Fig. 6~b! as a function of tem-
perature and concentration, respectively, for one partic
value of the parameterw. It is interesting to note that the
ratio DC /SC increases with the decreasing concentration
chiral molecules in binary mixture. This means that at le
in the present model the order parameterDC for a chiral
dopant in a nematic host is higher thanDC for a pure cho-
lesteric phase composed of the same chiral molecules.
result is expected to be more general and intuitively sho
correspond to any biaxial dopant in a uniaxial~or less biax-
ial! host. Indeed, rather high values of the parameterD
'0.240.3 have been measured for various nonchiral dop
molecules in nematic hosts@40#.

Finally we note that a strong temperature variation of

FIG. 5. Temperature variation of the order parameters of ch
and nonchiral molecules in the binary nematic mixture (w50.39
rad!: ~a! primary nematic order parametersSN andSC for hC50.1;
~b! ratio of the two order parametersDC /SC for hC50.1 ~curve 1!
andhC50.9 ~curve 2!, whereDC is the biaxiality order paramete
for chiral molecules.
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ratio DC /SC @see Fig. 5~b!# may cause the helical sense i
version induced by a change of temperature. Such inver
may take place both in mixtures and in pure chiral nemat
and for simplicity we consider only the latter case. The h
lical pitch of the chiral nematic is given by Eq.~29! which
can be rewritten as

q5
2p

p
;J1

21212M1
212D~T!

S~T!
, ~30!

where we have dropped the indexC everywhere.
The expression in the right-hand side of Eq.~30! may

change sign only if the coefficientsJ1
212 and M1

212 possess
opposite signs and if, in addition,u2M1

212u.uJ1
212u. One can

readily see from Fig. 3~a! that these conditions are satisfie
for values of the parameterw slightly larger then 0.5. The
temperature variation of the helical pitch in a pure chi
nematic, obtained in the context of the present model

FIG. 6. Order parameters as functions of the molar fraction
chiral molecules in the binary mixture forw50.39 rad andT5Tc

24 K: ~a! primary order parametersSN andSC ; ~b! ratio of the two
order parameters for chiral moleculesDC /SC .
on
s,
-

l
is

depicted in Fig. 7 for three values of the model parametew
betweenw50.55 andw50.65. Two of these curves demon
strate a helical sense inversion with the decreasing temp
ture.

Thus one concludes that in the context of the pres
model it is possible also to explain the helix inversion
chiral nematics induced by a change of temperature. As
cussed in the Introduction, such inversion has recently b
observed experimentally by different authors@12–15#. It
should be noted that in the present model the molecules
assumed to be completely rigid and thus the inversion is
related to any conformational changes. By contrast, in
present theory the inversion is related to molecular biaxia
and among other factors is determined by different tempe
ture variation of the order parametersD(T) and S(T). One
notes also that the temperature-induced sense inversion
place only in the narrow range of the values of the param
w. On the other hand, this enables one to understand why
temperature-induced helical sense inversion has been
served only for few one-component chiral nematics.

Recently the influence of the real molecular shape~in-
cluding the molecular biaxiality! on the helical twisting
power of a chiral dopant in the nematic solvent has be
studied by Ferrarini, Moro, and Nordio using a simple s
face interaction model@25,29,30#. In this model the surface
of a chiral dopant molecule is assumed to be directly coup
to the director of the nematic solvent via the local mean-fi
potential«P2(e•n) wheree5e(R) is the surface normal a
point R. Here the vectorR points from the center of mass t
some point at the molecular surface. The total interaction
a dopant molecule with the nematic solvent is then de
mined by the corresponding surface integral. This interact
is sensitive to a molecular shape including the chirality of
molecular surface. It is interesting to note that the final eq
tion for the helical twisting power of the chiral dopant, o
tained by Ferrariniet al., can be written in the form which is

f

FIG. 7. Temperature variation of the dimensionless helical w
number for pure chiral nematic liquid crystal plotted for four d
ferent values of the model parameterw: ~1! w50.63 rad.;~2! w
50.60 rad; and~3! w50.57 rad.
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mathematically equivalent to Eq.~28! of this paper,

h;«SN~DQSC1DQ'DC!. ~31!

Similar to the results obtained in this paper, the helical tw
ing power~31! is proportional to the sum of two terms. Th
first term in brackets in Eq.~31! is proportional to the nem
atic order parameter of the chiral dopant moleculeSC while
the second term is proportional to the biaxiality order para
eter DC . Similar terms are also present in our Eq.~28! al-
though the meaning of the coefficients is different.

In the model of Ferrarini, Moro, and Nordio the chirali
of the molecular surface is characterized by the so-ca
helicity tensorQab which is represented as the followin
surface integral:

Qab5E ds ea@R3e#b . ~32!

Then the coefficientsDQ and DQ in Eq. ~31! can be ex-
pressed as

DQ5Q̃zz2
1

2
~Q̃xx1Q̃yy!, ~33!

DQ'5
1

2
~Q̃xx2Q̃yy!, ~34!

where

Q̃zz5~a•Q•a!,

Q̃xx5~b•Q•b!, ~35!

Q̃yy5~c•Q•c!,

and the unit vectora is in the direction of the primary axis o
the dopant molecule and the unit vectorsb andc are in the
directions of the two short molecular axes.

We note that the parameterDQ in Eq. ~31! has the mean-
ing of the ‘‘projection’’ of the helicity tensorQab on the
primary molecular axisa and therefore it represents the pro
erties of a freely rotating~about the axisa) molecule. By
contrast, the parameterDQ' represents the biaxiality of th
chiral dopant surface.

ParametersDQ andDQ' as well as the order paramete
SC and DC have been calculated by Ferrariniet al. for a
number of different chiral dopants. Some of these resu
taken from Refs.@25# and @31#, are presented in Table II
One can readily see from the table that the results, obta
in the context of a completely different molecular mod
@28–30#, confirm some important qualitative conclusio
made in the present paper. Firstly, the two terms in the
pression for the inverse helical pitch~31! ~i.e., the
‘‘uniaxial’’ contribution DQSC and the ‘‘biaxiality’’ contri-
bution DQ'DC) may possess opposite signs depending
the molecular structure. Secondly, the biaxiality order
rameterDC of a chiral dopant molecule in the nematic so
vent may be sufficiently large and substantially larger th
typical values found in one-component nematic liquid cr
tals. As a result the biaxiality contribution is usually comp
rable with the uniaxial one and for some dopants the form
is even predominant. Thus the biaxiality of a chiral dopa
t-

-

d

s,

ed
l

x-

n
-

n
-
-
r
t

molecule appears to be a very important factor wh
strongly effects the value and sign of the helical twisti
power.

Ferrariniet al. did not consider either the temperature
the concentration variation of the helical pitch in mixtures
liquid crystals. Nevertheless, the similarity of some existi
results enables one to believe that the main qualitative c
clusions of the present paper are not restricted to a partic
model. We expect that the main effects, described in
present theory, including helical sense inversions induced
a change of concentration in a mixture or by a change
temperature, can be found in any realistic model that ta
into consideration chiral interactions between biax
molecules.
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APPENDIX A

Let us integrate Eq.~5!. If we restrict the sums in Eq.~5!
with the constraintl ,l<2,L<1, then we have only to con

TABLE II. Order parametersSC and DC for different chiral
dopants, and contributionsSCDQ andDCDQ' to the helical twist-
ing power calculated using the data presented in@25,31#.

Chiral dopant SC DC SCDQ DCDQ'

Biphenyl 45o 0.34 0.2 0.748 25.04
Binaphthyl 45o 0.27 0.4 1.78 220.24
Binaphthyl 135o 0.31 20.37 22.7 218.43
Heptalene 0.24 0.14 8.38 24.2
Heptalene 3 0.32 0.28 16 23
Heptalene 4 0.17 0.37 13.5 213.5
Heptalene 6 0.61 0.19 255.8 22
CB-2 0.61 0.09 29.2 3
CB-3 0.66 0.08 0 3.8
B0 0.22 0.4 3.3 235.2
B1 0.18 0.47 1.62 243.7
B2~A! 0.24 0.42 1.08 239.7
B2~B! 0.21 0.45 20.32 243.9
B2~C! 0.17 0.49 228.2 224.3
B5~A! 0.42 0.31 283.2 216.4
B5~B! 0.28 0.28 227.3 229
B5~C! 0.42 0.32 13.2 231.5
B6~A! 0.41 0.39 2110.3 257
B6~B! 0.56 0.26 292.4 18.2
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sider the two integrals for the long-long axes interaction,

Z05E dr12J
202~r12!T

202~n1 ,u,n2!

5E dr12J
202~r12!P2~n1•n2!, ~A1!

Z15E dr12J
212~r12!T

212~n1 ,u,n2!

5E dr12J
212~r12!~n1•n2!~@n13n2#•u! ~A2!

and their analogs for the short-long axes interaction. Us
the gradient expansion~9! for the directorn25n(r2) and
neglecting terms higher than quadratic in the gradients on
one obtains

Z0'E dr12J
202~r12!$11 3

2 n~r12•“ !2n%

5J0
2021 1

2 J2
202(

a b
na ¹b

2na . ~A3!

Taking into account equation

(
a

~¹bna!21(
a

na¹b
2na5(

a
¹b~na¹bna!

5 1
2 ¹b

2(
a

na
250, ~A4!

we have

Z05J0
2022 1

2 J2
202(

ab
~¹bna!2. ~A5!
g

Adding the surface term“$n(“•n)%2“$(“•n)n% to Eq.
~A5! leads to the following expression forZ0:

Z05J0
2022 1

2 J2
202(

ab
$~¹bna!21~¹bnb!~¹ana!

2~¹anb!~¹bna!%

5J0
2022 1

2 J2
202$~“•n!21@“3n#2%

5J0
2022 1

2 J2
202$~div n!21~n•rotn!21@n3rotn#2%.

~A6!

The same procedure for the integralZ1 gives

Z1'E dr12J
212~r12!$@n3~r12•“ !n#•u%

5 1
3 J1

212 (
a b g

~nb ¹a ng2ng¹anb!

52 1
3 J1

212~n•rotn!.

Substituting expressions~A6! and ~A7! for Z0 and Z1 and
their analogs for the short-long axes interaction into Eq.~5!,
one obtains Eqs.~10!–~12! for F0 ,k2, andK2.

APPENDIX B

To obtain the interaction coefficientsJn(ag)
lLl ,Mn(ag)

lLl , let
us return to expansion~18! for the even part of the effective
pair interaction. If we retain the only terms withl ,l<2,L
<1 in these series, the effective pair interaction appro
mates by the following expression:
2$Qag ~r122j12!Uag~1,2!%e5Jag
0001Mag

0001Mga
0001Jag

202,P2~a1•a2!1Jag
220P2~a1•u!1Jag

022P2~a2•u!

1Mag
202$P2~a1•b2!2P2~a1•c2!%1Mga

202$P2~a2•b1!2P2 ~a2•c1!%

1Mag
022$P2~b2•u!2P2~c2•u!%1Mga

220$P2~b1•u!2P2~c1•u!%1Jag
212~a1•a2!~@a13a2#•u!

1Mag
212$~a1•b2!~@a13b2#•u!2~a1•c2! ~@a13c2#•u!%

1Mga
212$~a2•b1! ~@a23b1#•u!2~a2•c1!,~@a23c1#•u!%. ~B1!
Let us introduce the functions

Xag
n ~aa ,ba ,ag ,bg!

[2E
2`

`

dr12r 12
n12$Qag~r122j12!Uag~1,2!%e .

~B2!

Substituting the expansion~B1! into ~B2! and using the rela-
tive orientations of the two molecules, presented in Fig. 8~a!,
one obtains for the nonchiral coefficients (n50,2):
Jn(ag)
202 5 1

3 @Xag
n ~1!1Xag

n ~2!2Xag
n ~3!2Xag

n ~4!#,
~B3!

Mn(ag)
202 5 1

6 @Xag
n ~1!2Xag

n ~2!2Xag
n ~3!1Xag

n ~4!#,
~B4!

and using the relative orientations, presented on Fig. 8~b!,
one obtains for the chiral coefficients (n51):

J1(ag)
212 5 1

2 @Xag
n ~5!1Xag

n ~6!2Xag
n ~7!2Xag

n ~8!#,
~B5!
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M1(ag)
212 5 1

4 @2Xag
n ~5!1Xag

n ~6!1Xag
n ~7!2Xag

n ~8!#.
~B6!

The valuesXag
n ( i ),i 5148, were calculated numerically us

ing the interaction model, described in Sec. IV. The cor
sponding coefficients obtained in Eqs.~B3!–~B6! are pre-
sented on Figs. 3~a!–3~c! as functions of the structura
parameterw.

APPENDIX C

Spherical invariants are a convenient complete orthogo
set of basis functions which are used in the expansion
pair potential, pair correlation function and other two-bo
functions@32,33#. In this appendix we present a definition
these invariant functions for a simple case of two uniax
molecules. The more general case is considered in@32#.

Any function V (r 12,a1 ,u,a2), depending on the position
and orientation of two uniaxial molecules ‘‘1’’ and ‘‘2’’, can
be expanded in terms of spherical harmonics as

V~r 12,a1 ,u,a2!5(
lLl

(
mMm

JlLl
mMmYlm~Q1 ,f1!

3Ylm~Q2 ,f2!YLM~Q,f!, ~C1!

FIG. 8. Relative orientations of the interacting molecules u
for calculation of the nonchiral coefficients~a! in Eqs. ~B3! and
~B4! and chiral coefficients~b! in Eqs.~B5! and ~B6!.
-

al
a

l

where the summation runs through2 l ,m, l ,2l,m,l,
and 2L,M,L, and where the coupling constantsJlLl

mMm

depend on the intermolecular distancer 12. Here the angles
(Q1 ,f1),(Q2 ,f2), and (Q,f) specify the orientation of the
unit vectorsa1 ,a2, andu, respectively.

One notes that the spherical harmonics in Eq.~C1! depend
on the orientation of the laboratory frame. Since the funct
V(r 12,a1 ,u,a2) is invariant under rotation of the coordina
system, its coordinate free expansion can be performed
the integration of Eq.~C1! over all rotations of the coordi-
nate system and employing the rotational properties
spherical harmonics. Then the expansion~C1! can be rewrit-
ten as

V~r 12,a1 ,u,a2!5(
lLl

JlLlTlLl~a1 ,u,a2!, ~C2!

where

JlLl5 (
mMm

JmMm
lLl ~mMm

lLl !~ClLl!21 ~C3!

and

TlLl~a1 ,u,a2!5ClLl (
mMm

~mMm
lLl !Ylm~Q1 ,f1!

3Ylm~Q2 ,f2!YLM~Q,f!. ~C4!

HereClLl is a numerical coefficient introduced for norma
ization and (mMm

lLl ) are the 3j symbols. The functions
TlLl(a1 ,u,a2) are rotational invariants, i.e., they do not d
pend on the choice of the coordinate system. These funct
depend on all possible couplings between the three unit v
tors a1 ,a2, and u and containa1 to the powerl ,u to the
powerL, anda2 to the powerl with u l 2lu<L< l 1l.

The spherical invariantsTlLl are natural basis functions i
the statistical theory of anisotropic fluids because the me
field average of these functions directly yields the orien
tional order parameterŝPl(a•n)&. This can be seen by em
ploying the following useful mathematical properties
spherically invariant functions

E d2a1d2a2TlLl~a1 ,u,a2! f ~a1•n1! f ~a2•n2!

5TlLl~n1 ,u,n2!E d2a1Pl~a1•n1!E d2a2Pl~a2•n2!,

~C5!

where f (a•n) is an arbitrary function andn is a unit vector.
Equation~C5! has been used in the derivation of the resu
of Secs. II and III by settingf to be equal to the orientationa
distribution function.
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