PHYSICAL REVIEW E VOLUME 62, NUMBER 2 AUGUST 2000

Molecular theory of helical sense inversions in chiral nematic liquid crystals
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A molecular theory of the helical twisting in chiral liquid crystals is developed, which provides an expla-
nation for the experimentally observed helical sense inversion induced by a change of concentration in binary
mixtures of chiral and nonchiral nematic liquid crystals. The theory also describes the sense inversion induced
by a change of temperature observed in some single component nematics. The theory present is based on a
simple model of a chiral rigid molecule, composed of several equivalent nonchiral sites, which are arranged in
the molecule to form a chiral configuration. The macroscopic helical pitch in the chiral nematic phase, twist
elastic constant, and nematic order parameters are calculated using the same molecular model. It is shown that
the helical sense inversion can be determined by a large biaxiality of chiral molecules. It is also demonstrated
that the biaxiality is important in determining the variation of the helical pitch with temperature and
concentration.

PACS numbd(s): 61.30—v, 64.70.Md, 33.15-e

[. INTRODUCTION that the sign of the induced pitch may be different for the
same dopant in different host liquid crystals.
Liquid-crystalline phases formed from chirali.e., If the chiral dopant itself is mesogenic, then the helical

handed molecules exhibit a number of physical propertiespitch can be measured through the whole concentration
that derive from the reduced symmetry of the chiral me-range, including the pure chiral nematic phase of the dopant.
sophases. Thus chiral nematic phases can develop long-ranigehas been found that some chiral mesogénsparticular,
helical structures with pitches ranging from a few tenths ofcholesterol derivativeamay induce in a nonchiral nematic a
microns to tens of microns or more, in which the local align-helical structure of opposite sense to that observed in the
ment axis of the moleculeghe directoy describes a helix, corresponding pure chiral nematic phase. Such mixtures of
the handedness of which depends on a number of factochiral and nonchiral liquid crystals exhibit a helical sense
including the absolute configuration of the chiral moleculesinversion at some intermediate concentration of the two
The magnitude and sign of the helical pitch in chiral nemat-components. Examples of such behavior have been reported,
ics can be measured by a variety of techniques; for examplfr example, in Refd.6—9]. This kind of helical sense inver-
aligned films of chiral liquid crystals reflect electromagneticsion is not easily explained because the molecular chirality
radiation for particular wavelengths and circular polarization.and all chiral intermolecular interactions appear to remain
Having a value for the helicity of a chiral nematic phase therthe same. Thus at present there is no consistent theoretical
raises the question: “what relation is there between the meaxplanation of this phenomenon, although several semiphe-
sured chirality of the phasésign and magnitude and the  nomenological models, which rely on various additional as-
chirality of the constituent moleculgd,2]?” It has been sumptions, have been proposed10,1]. Another interest-
possible to identify a number of qualitative correlations be-ing phenomenon is the helical sense inversion induced by
tween the structure of mesogenic chiral molecules and thehange of temperature, which has been observed in few one-
pitch of their corresponding chiral nematic pha$8f but  component chiral nematic phasgs2—15. Such inversion

the establishment of reliable quantitative correlations bee€an, in principle, be explained by assuming that the particu-
tween molecular structure and the chiral properties of liquid4ar chiral nematic is a mixture of twfr more conformers
crystal phases has proved to be much more difficult. In facof different handedned4.3]. The relative populations of the
there are a number of theoretical aspects to this problentonformational states may be strongly temperature depen-
Firstly some representation for the molecular chirality mustdent, and thus the helix inversion may be observed at some
be adopted, secondly the nature of the chiral and, of courséeemperature within the nematic range. However, it should be
nonchiral interactions between the molecules must be specitoted that this explanation cannot always be valid, since for
fied, and thirdly any theory of the chiral properties of me-some chiral nematics showing temperature-induced pitch in-
sophases must be able to explain their change with externakrsion, the chirality is located only in the rigid core. The
variables, such as temperature, pressure, and composition fexperimental observations discussed above, indicate that a
mixtures. The latter is especially important in the context ofmore detailed molecular theory of chiral nematics is needed,
chiral nematic phases, since it has been found that chirdlased on more realistic molecular models.

dopants that do not themselves form liquid-crystal phases The first task of a theory of chiral nematic phases is to
will induce chiral mesophases when dissolved in nonchirakxplain the formation of a helical distribution for the direc-
liquid-crystal hosts. This induction of chirality has been ex-tor, and a number of successful theories have been devel-
tensively studied experimentall¢,5], and it has been found oped. All require that there is some form of chiral interaction
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between the molecules, but different models have beea semiphenomenological theory of twisting power for chiral
adopted for the origin of the chiral interaction. The packingsolutes in nematic solvents. Their theory takes specific ac-
of elongated hard particles having a chiral geometry can reeount of the molecular structure by considering the interac-
sult[16,17] in the formation of helical nematic phases, andtion of surface elements of the chiral dopant with the average
this is believed to be the predominant factor in lyotropicnematic environment, and it also allows for local biaxial or-
liquid crystals[18]. Similarly the chiral nematic phase can be dering of the solute molecules. Results for a number of dif-
modeled classically in terms of chiral dispersion forcesferent chiral molecule§25,31] are in reasonable agreement
[19,20, and recently a more general quantum-mechanicalith experimental results, and the theory is able to explain
formulation of chiral interactions between fluctuating chargethe change in sign of helical pitch for consecutive odd and
distributions has been givd@1]. In formulating a theory of even homologues of alkyl cyanobipheny&5].

helical mesophases, the orientational order is modulated by In this paper we develop a mean-field theory of chiral
chiral interactions having a particular handedness. Moshematics in which chiral interactions in nematic mesophases
treatments so far assume that the interacting molecules aege taken into account using a model mesogen, the structural
effectively uniaxial, and so local ordering of the short axes ofchirality of which is a parameter of the theory. Single com-
mesogengmolecular biaxiality is neglected. A consequence ponent and binary mixtures are considered, and we are able
is that important aspects of the molecular structure, i.e., bito derive the phenomenological result used by Ferraiitail.
axial shape are missing from the models. Furthermore, thg25,29,3Q in the context of the mean-field molecular theory.
theories do not deal with the chiral induction observed inFrom the theory we are able to calculate the chiral and non-
mixtures, and are not able to explain significant experimentathiral contributions to the free energy, and hence the uniaxial
results, such as the change in sign of the pitch with temperaand biaxial order parameters and twisting power of the chiral
ture in pure mesoger22], or with concentration and sol- molecules, using the same molecular model. The model for
vent in the case of mixturd®3]. Recently the importance of molecular chirality allows the effect of molecular shape to be
molecular biaxiality has been recognized by several authordetermined, and it is shown that changes in temperature
[24,25. and/or concentration for binary mixtures can result in

In order to understand the subtle effects of changes ofhanges of sign for the measured pitch in chiral nematic
molecular structure and chirality on observed macroscopiphases. In Sec. Il we develop expressions for the mean-field
chiral properties, many authors have considered ways gfotential and free energy in terms of local biaxial and
guantifying molecular chirality. Various approaches to theuniaxial order parameters and chiral and nonchiral coupling
qguantification of molecular chirality have been exploredconstants which describe the molecular interactions. The
[26—29 which attempt to represent a chiral distribution of theory is developed for two-component systems in Sec. I,
atoms in a molecule in terms of a parameter, or tensor whicko that it can be applied to chiral induction in mesogenic
depends on the molecular structure. A simple measure thatixtures. Details of our molecular model for chirality are
has been introduced is a function of minimal distances begiven in Sec. IV, and some specimen results are presented in
tween atoms of a chiral molecule superimposed on its enarSec. V. Here it is shown that the experimentally observed
tiomer [26]. We have developefi28] a general approach phenomena of pitch inversion with temperature, concentra-
based on the Born-Boys theory of optical activity which al-tion, and change of nonchiral solvent can be quantitatively
lows a family of chirality tensors to be defined for a particu- explained by the theory.
lar molecular geometry. Ferrariet al.[25,27] have defined
a helicity tensor which characterizes the chirality of the sur-
face of a molecule, and Harrist al. [24] have defined a  Il. FREE ENERGY OF THE CHIRAL NEMATIC PHASE
pseudoscalar molecular chirality index in terms of a coupling AND AN EXPRESSION FOR THE HELICAL PITCH
between higher-order mass distribution tensors. It is evident
that there can be no single measure of molecular chirality
and the molecular parameter or index chosen will depend o
the physical manifestation of chirality that is being exam-
ined.

The particular property of interest for chiral nematic
phases is the pitch of the director helix which spontaneous
forms in the mesophase. In order to discuss both single co
ponent and binary mixtures, it is convenient to introduce th
helical twisting powerh, which is the ratio of the helical
wave numbenq to concentration of chiral moleculesat low

Let us consider a chiral nematic liquid crystal composed
f biaxial molecules. The orientation of such a molecule can
e specified by the two unit vectoasandb in the direction
of the long and short molecular axes, respectivedyb
=0. One notes that for a fixed long axasthe short axish
gan only rotate abow. This rotation can also be specified by

he Euler angley. In a statistical theory such a system is
echaracterized by the orientational distribution function
f((a-n(r)],[b-n(r)]), which depends on the orientation of
the molecular axea andb with respect to the local director
n(r) that may depend on the positionFor example, in the

_1-
c<L: equilibrium chiral nematic state the director describes a helix
Jq along thez axis.
h=% , In the context of continuum theory the chiral nematic
c=0 state is described by the following distortion-free energy
density:

where q=2m/p and wherep is the helical pitch. At low
concentrations the helical twisting poweis independent of
concentration, and in appropriate units can be expressed as

1
— 2
- == . + .
an area per molecule. Ferrargti al. [29,30 have developed Fa=7Ka(n-rotn)"+k, (n-rotn), @

2
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where K, is the twist elastic constant ard is a pseudo-
scalar parameter which is sensitive to molecular chirality.

In the homogeneous chiral nematic state the director dis-
tribution is a pure twistn={cos@ 2),sin(g 2,0}, whereq is
the macroscopic helical wave number. The equilibrium value
of the wave numbeg which corresponds to the minimum of
the distortion free energgl) is given by

ka
=y, (2
The coefficientsk, and K, can be evaluated using a €

molecular-statistical theory.

In the molecular-statistical approach the free energy of a
chiral nematic liquid crystal can be written explicitly in the
mean-field approximation

F=kBTpf dxlf(xl)ln[16w2f(xl)] FIG. 1. Mutual orientation of t_he biax?al molecules 1 and
“2.” The unit vectorsa, anda, are in the direction of the primary
molecular axes and the vectdos and b, are in the direction of

1
+ 507 f dxadxof (x)f(X) O(r1p— £1U(1,2), (3)  Short molecular axes.

B oo o Spherical invariants make a complete set of orthogonal
wherex;={a,b;,ri}, dx;=d°ad°bdr;, i=1,2, and where {nctions and can be defined in terms of spherical harmonics
U(1,2) is the intermolecular interaction potential; hei@  [32_34. In some cases an expansion in spherical invariants
=[r—ry| Is the intermolecular vector. The step function js more convenient then the expansion in spherical harmon-
O(ri,— &5 represents the excluded volume effects. Thecs pecause in the former expansion each term is invariant
function® (r,,— £,5) =0 if the two molecules penetrate each ynger rotation of the laboratory frame. Thus, spherical in-
other andd (r;,— £15) =1 otherwise. The first term i E)  yariants are the natural basic functions for an expansion of
repr_esents the orientational entr(_)py while the second term isarious two-body functions like the pair potential or pair
the internal energy of the nematic state. correlation functions, which do not depend on the absolute
The chiral nematic phase is nonpolar and therefore onlyrame. Moreover, the order parameters of the nematic phase
the nonpolar part o_f the effective !nte.rmolecular PQte”t'a|<P|> are directly obtained by orientational averaging of the
O(ri,— £2)U(1,2) (i.e., the part which is even both in the gpherical invariants in the mean-field approximatidi).
long axesa, ,a, and the short axeb;,b,,¢;,¢, of the two  g5ome useful properties of these functions are described in
interacting moleculgswill contribute to the value of the Appendix C and several low-order invariants are presented,
pitch. This part of the interaction potential can be expandedq, example, in[35]. One notes that the invariants with one
(e T'%(x,y)=Pi(x-y).
{0(ri;—£2)U(1,2)}, The first term in Eq(4) describes the coupling between
_ NN the long molecular axes of the two molecules; the second
- _%\ JET M (a,u,8,) term is the interaction energy which depends on the orienta-
tion of the long axis of one molecule and of the short axis of
TN ILx another molecule. The coupling between the two short mo-
_%\ MR (@, u,b2) =T (8, u,¢2) ] lecular axes is neglected.
Substituting Eq(4) into Eqg. (3) and using the properties

of the spherical functiong'-* one obtains
_2 MlL)\[TlL)\(bl,U,az)_TIL)\(Cl,U,az)], p
ILN

where u=r,,/|r;5, and the coupling constan‘* and 1, ILaerlLA

M'“* depend on the intermolecular separatign The func- TP % SIS, | drydrpd =T (N, u,ny)

tions T'""*(x,u,y) are the so-called spherical invariafig2]

which depend on the relative orientation of the two mol- 2 TREIRN

ecules(see Fig. 1 The functionT'-*(x,u,y) depends on the P %‘\ S‘DAJ drydroM™=A TG, ung), - (9)
three unit vectorx,u andy and containx to the power ,u

to the powerl, andy to the power. The summation in Eq. where the order paramete8s, which characterize the nem-

(4) runs over all integers,L, and A with I, x\=0 and|l  atic ordering of the long molecular axes, are given by
—\|<L=<I+N\. In nonpolar liquid-crystal phases the terms

; ; ILA _ qALI
ﬁ/ld'g"lgllvl?{]'(_j)\ do not contribute and thug*-"*=J*-" and Snzf d2ad?bP,(a-n)f (2 n).(b-n)). ©
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The order parameteid, which specify the ordering of the 11 27
short axes of biaxial molecules in the uniaxial nematic phase SZ:TJ dtJ dyPo(t)exd Uwe(t, #) ],
are expressed as -rJo

111 2 3
D.=fdzadzb{Pl(b-n)—Pl(c-n)}f((a-n),(b-n)). 7) Dz=|—f ldt . dt/fz(l—tz)cos(Z prexdUne(t,¢)],
(15

Here P|(x) are the Legendre polynomials.

One notes that Eq5) presents an expression for the free with
energy of an inhomogeneous liquid crystal. This total free N o
energy includes the free energy of the homogeneous nematic | = f dt| dyexgdUue(t,¢)] (16)

-1 0

stateF, and the free energy of the director distortibg,
F:F0+f Fq(r)dr. g and

p 3
The distortion-free energy of the chiral nematic state is given Unr(tg)= @_T[J(Z)OZSZPZ(U + M(Z)OZSZE(l_tZ)COS(ZW
by Eq. (D).
The free energy of the homogeneous statas given by
the same Eq(5) but with n,=n;=n. The distortion energy
can be extracted using the gradient expansion of the director
n(r,), wheret=(a-n). The numerical solution of Eq$15) gives
1 the temperature dependence of the order param8ieamd
= . Z(f15- V)2 o Ds.
N(rz)=n(ra)+ Nz V)nra)+ 2(r12 vyt One notes that in the nematic or chiral nematic phase
(9 composed of biaxial molecules the mean-field poter(id)
depends on the two order paramet8@ndD. In this simple
derivation, however, we have neglected the term propor-
tional toD? because we did not take into account a coupling
between short molecular axes. This term does not change the
qualitative behavior of the system because usually the pa-
rameterD is much smaller theis. The complete expression
or the mean-field potential of the biaxial nematic phase
(which takes into account both long- and short-range biaxial
ordep has been presented by Bergersenal. [36]. For
uniaxial molecules the coupling constaWt;’? in Eq. (17)
FO:kBTPJ dxf (x)In[ 1672f (x) ] vanishes and the mean-field potential is reduced to the
Maier-Saupe form.

+MZPD,Py(1) |, (17)

Explicit expressions for the constaitsandK, (and thus
for the helical wave numbeg) can be obtained after the
substitution of Eq(9) into Eq. (5) and the truncation of the
sum overl,L,\. The simplest truncation of the expression
(5) is achieved by neglecting all the terms withh>2,L
>1. The calculations presented in Appendix A result in th
following expressions for the free enerdy,, pseudoscalar
k,, and the twist elastic constaKt,:

1 212022 2pn 1 20
BPLAC S p"MGSD, (10 IIl. NEMATIC-CHOLESTERIC BINARY MIXTURES
1 1 In this section we consider a more general case of the
k2=50235123§+ §P2Mi1252|32, (1) nematic uniaxial liquid crystal doped with biaxial chiral mol-
ecules. This system is characterized by the number density of
1 2022 2x120 the two componentsy, and the corresponding orienta_tional
Ka=5p"J2 S5+ p?M37%8,D,, (120 distribution functionsf ,([a-n(r)],[b-n(r)]) for nonchiral
and chiral moleculesg=N, C. Here the directon depends
where on the position of a molecule Similar to Eq.(4) the non-
polar part of the effective interaction potential between the
J'n“=47-rfwdr12r'{2+23'“(r12), molecules of the componentsand y can be expressed as
0

{®a7(r12_ §12) U ay( 112)}6

M'n""=477J0 dryr 15 2MIMN(r ). (13

== 2 I TN @, ua)

The order parametefs, andD, in Egs.(11) and(12) can
be determined by minimization of the free enefgy (10), =3 MIMTN gy, u,b,) — TN &y, u,¢))]
subjected to the constraint f «r

f dxf(x)=V, (14) —% MM T (@p,u,by) =T Map,u,c0)],

whereV is the volume of the system. One obtains (a,y=N,C). (18
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Now the expressions for the free enefgyand the elastic a a a
constantsk, and K, for the mixture can be obtained as a
straightforward generalization of Eq4.0)—(12),
Fo=keTp 3, [ dxf c0m[167,00] ,
a=N,C c
_%pZ E naﬂy[‘l%?czly)sasy
a,y=N,C
202 202
T MG(ay)SeD y T MG(50)S,D ol (19
(@ (b)

ko= 2p? 2 Na ny[Jf%ﬁ 9SS, FIG. 2. Moleculgr model_for a biaxia_l chiral mesogenic mol-
a,y=N,C ecule(a) and nonchiral uniaxial mesogenic molecuie.

212 212
+M1(“7)Sa D7+M1(7a)SyDa]! (20)

. p
L, o we(t )= =§N)C ny[J%?iy)Sypz(tHM%?iy)Dsz(t)
K2:5p N }/ZN c Na ny[‘JZ(ay)SaS‘y e
A 3
+M32%2 '3 —(1—t?)cog2 } 24
+M3%2S,D,+ M2, S,D,]. (21) 0(ya)Sy5 (1~ t9)cod2¢) (24)

i A ILX
Here the definitions of the constanlu,.,’(ay) andMy,,) are The order parametey,Se, andD¢ can be determined

I LA
analogous t_o those faF, * and M, given by E_qs.(13), by numerically solving Eqs(23) provided the coefficients
where the indexn denotes the power of the distance, 3202 M 202 (a,y=N,C) are known. These coefficients
under the integral. 0(ay)r Vo(ay\ &Y= N, -

In Egs.(19—(21) Sy, Sc are the nematic order parameters depend only on 'molecular structure and can be evaluated
‘ . ; using an appropriate molecular model. In this paper we use a
of the nonchiral and chiral components of the mixture. The_: Lo : AN . i
arameteD is the additional order parameter which char- su_nple site-site Interaction model, which IS described in o_le-
gcterizes thce ordering of a biaxial molecule in the uniaxialtall in the following section. The calculation of the coeffi-
nematic phase. One notes tliag=0 because the nonchiral cients in Eqs(19)-(21) is performed in Appendix B.

compound is assumed to be uniaxial.

L 12
Jn Bq. (20 the pseudoscalar coefficienth,,) and IV. SITE-SITE INTERACTION MODEL FOR CHIRAL
Ml%ay) are different from zero only if at least one of the AND NONCHIRAL MOLECULES
interacting molecules is chiral. Therefore, for two nonchiral ] )
molecules the coefficientd?2.. =M212 —0. As a result Let us consider the following molecular model presented
: 1(NN) 1NN = Y- - . . X
Eq. (20) can be rewritten as in Fig. 2. A chiral moleculdsee Fig. 2a)] is composed of
seven identical ellipsoidal sites. Such flattened ellipsoids
1 may be considered as simple images of aromatic rings. The
ko=5 12 7SI Sc+ Mifo Do) symmetry axes of all the sites of a molecule are parallel to
each other and to the short molecular agisAt the same
212 212 i insoi i i
+7cSc(J5égSc+2M T Do) . (22) time the centers of ellipsoidal sites are twisted about the

principal molecular axis. This twist determines the molecu-
lar chirality in the framework of the present model. The cen-

The order parameterSy,Sc, andDc can be obtained by ter of the sitel is determined by the position vector

minimization of the free energgl9):

s _ 11 dtfzwd bt Uz (t s, cogix h+ ¢}
a_la 1 0 l// 2( )eXF{ MF( !(v[/)]i S‘= SH Sin{iKh+qD} ’ (25@
ih

111 2 3
Dc=,—f dtf dyr5 (1-t)cosd 2¢)exf Ue(t, )],
el Jo 23 whereh is the distance between neighboring sites along the
principal molecular axisk is the wave number of the mo-
lecular twist, and the phase determines the turn of the
central site with respect to the the short molecular &x{$
1 o =0 for the central site
I“:f dt| dygexdUpye(t,¥)], The model of a nonchiral molecule is presented in Fig.
-1 Jo 2(b). A nonchiral molecule is composed of seven sites,
which lie on the principal molecular ax& Their positions
wherea=N,C and are determined by the following vectors:

with
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0 TABLE |. Model parameters for the Gay-Berne potential.
s=| 0 |. (25b) N-N N-C c-Cc
ih elks(10° K) 1.60 1.28 1.03
oylo, 1 0.73 05
In both casesof chiral and nonchiral moleculgsve take the eslee 1 0.9 0.7

distance between the neighboring sites 2d/3, whered is
the average diameter of a site. For a chiral molecule we take

the step of the molecular helix h=0.8. The phasep is g .

considered as a model parameter, which specifies the particu- Uay(1,2)= ;1 le Ui (uir.uy), (27)
lar structure of the chiral molecule. It should be noted, how-

ever, that a change of the paramegedoes not change the \here the number of sites in both cages chiral and non-
molecular handedness because all sites remain to be locatgfliral moleculeshave been chosen equalrg=mc=7.
on the same helix with the constant wave numké¢see Eq. The chiral Coeﬁicientgi%g . Mf%ﬁ ,, which are used in
(253] for all values ofe. At the same time we show in this g4 (22) for the pseudoscalag constek’;t and the two sets of
paper that both value and sign of the macroscopic helicgl ,,chiral coefficients, J292., M292_~ and J202_ \202

i i i i O(ay) "™ 0(ay) 2(ay) " 2(ary)
Eletl(r::n:gt;?e chiral nematic phase strongly depend on thGfused in Eqs(21) and(24)], are calculated in Appendix B in
p.

. . . the framework of this molecular model. The results are dis-
We assume that each site of a molecule interacts W'ﬂ&ussed in the following section.

each site of another molecule via the standard Gay-Berne

otential[37]:
P [37] V. RESULTS AND DISCUSSION
d 12 The nonchiral(scalaj coupling constantéégﬁlm ,Jég,ﬁc),
XY(U: )= ) } 202 202 202 202 202 20 202
Uii (Ui T U) = 8.4 (U7,T,Uj) (r_aay(uivrluj)+l JO&%ZC)vMO(NC)v Mace) Jaainy J2Ney» J2(co) :M2e) s
M5¢Ec), and chiral (pseudoscalar coupling constants
B d 6 26 JE%NC).,Jf%éC) MZe . Migdc . which determine the cho-
F—oa (U, ru)+1) |’ lesteric pitch and the order parameters, are presented in Fig.

3 as functions of the molecular model paramegerOne

notes that the nonchiral interaction constants depend only
whereu; and u; are the symmetry axes of the interacting weakly on¢ [see Figs. @) and 3c)] while the chiral coef-
sites, and is the vector connecting these sites. ficients strongly depend ogp and may even change sign.

The functions ,,, ando,,, are defined in Ref37]. These  This difference is related to the fact that in the present model

functions contain three model parametesswhich mainly  the parametep mainly effects the molecular chirality while
determines the nematic-isotropic transition temperaturethe averaged molecular shape remains to be intact. Using
olo, which is the axial ratio of the molecular site, and these coupling constants one can calculate numerically the
es/ee Which determines the ratio of the interaction energiesorder parameter§y,Sc, and D¢ from Egs.(23) and then
for side-by-side and end-to-end configurations of two sitessubstitute them into Eq$22), (21), (2) for the helical wave
These parameters, however, should be different for differenfumber. As a result one obtains the helical wave numeer
pairs of interacting sites reflecting their different symmetry.a function of the concentration of chiral molecules in the
In this paper we assume that the nonchiral molecules arginary mixture. The results are presented in Fig. 4 for differ-
uniaxial while the chiral ones are strongly biaxial. Therefore,ent values of the parameter. (We take five values of the
in our model the nonchiral molecule is assumed to be comparametere, which are shown in Fig. @) by the dashed
posed of simple spherical sites with the diametewhile the  |ines) One can readily see that in all cases the concentration
chiral molecule is composed of flattened sites. Thus, for anyependence of the helical wave number of a mixture appears
two sites of interacting nonchiral molecules we should tak&o be strongly nonlinear. At low values of the structural
(oy/o)nn=1 and Es/eg)yn=1. Taking the shorfprinci-  model parametep the helical wave numbeg changes sign
pal) dimension of the flattened site of a chiral molecule equakt some concentratiofsee curves 1 and 2 in Fig).4Thus,
to 0.6d and its long(secondary dimension equal to 1@,  the present model describes a helical sense inversion in a
one obtains for two sites of chiral molecules|(o,)cc  mixture of chiral and nonchiral nematics with the increasing
=0.5 and for a site of nonchiral molecule and a site of chiralconcentration of the chiral compound. As discussed in the
molecule: /o, )nc=0.73. We take £s/e¢)cc=0.7 and  Introduction, this kind of helical sense inversion in binary
(es/ee)nc=0.9 to have a good agreement with the experi-mixtures has been observed by several autf®«§] and one
mental values of the biaxiality order paramelg in pure  notes that the curves 1 and 2 in Fig. 4 are very similar to the
cholesterics and in nematic-cholesteric mixtures. Finally, paexperimental ones which have been obtained for various
rameters in each case have been chosen in order to accoumtematic-cholesteric mixtures.
for the transition temperatures of para-azoxyanisdig, ( For higher values of the model paramegeftsee curves 3
cholesteryl chloride €), and their mixture[7]. All param-  and 4 in Fig. 4 the helix inversion is becoming less pro-
eters are presented in Table I. The total interaction potentiatlounced and finally disappedisee curve b One notes that
between the two molecules is calculated as a sum over alhe concentration dependence of the helical pitch in real bi-
site-site interactions, nary mixtures of liquid crystals is very sensitive to the mo-
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FIG. 4. Dimensionless helical wave number as a function of the
molar fraction of chiral molecules in the binary mixture for four
different values of the model parameter (1) ¢=0.24 rad;(2) ¢
=0.39 rad;(3) ¢=0.55 rad;(4) ¢=0.71 rad;(5) ¢=0.86 rad.

lecular structure. A small change in the structure of chiral
molecules may result in the disappearance of the helical
sense inversion. This effect has been observed, for example,
in the series of cholesterol derivatives with different structure
of the 3B chain[38].

There have been several attempts to explain the behavior
of nematic-chiral nematic mixtures in the context of a mo-
lecular theory[11,35,39. As shown by Hansomt al. [39],
an experimentally observed concentration dependence of the
helical wave number of a nematic-cholesteric mixture can be
described by Eq(2) where the pseudoscalar coefficidot
and the twist elastic constakt, are quadratic functions of
the concentration of chiral and nonchiral molecules in the
mixture. In this cas¢compare with Eq(22)] the coefficient
k, is expressed ak2=kcc77%+ 2Knemnme - However, the
helical sense inversion can be described only if the coeffi-
cients ke and kyc possess opposite signs. The latter re-
quirement appears to be the most challenging one for a mo-
lecular theory. Simple models, based on chiral dispersion
interactions[35], yield the same sign for both coefficients
kcc andkyc. In this case both coefficients are proportional
to the same pseudoscalar parameter that characterizes the
molecular chirality.

The model presented in this paper enables one to explain
the helical sense inversion in nematic-cholesteric mixtures in
a consistent way, without using any additional assumptions.
One can readily see from Fig(a8 that the chiral interaction
constants in Eq(22) may possess either equal or opposite
signs depending on the parameterThus in the context of
one and the same model for a rigid molecule with a simple

FIG. 3. Interaction coupling constants as functions of the strucchiral distortion one can qualitatively explain different types

tural factore. (a) Chiral coefficients in Eq(22) rectanglele(Nc),
crossele(CC), stars, Ml(CC) (b) Nonchiral
coefficients in Eq.(19): circles, JO(NN), rectangles JO(NC), tri-
anglesMO(NC), crossesJO(Cc) : stars MO(CC) (c) Nonchiral coef-
f|C|ents in Eq.(21): cwcles JZ(NN
M2 NC) crosses,J

triangles, Mfﬁ,ﬁc) ;

2)' rectangles,]z(NC), triangles,

of concentration dependence of the helical pitch in nematic-
chiral nematic mixtures, including the ones with or without
helical sense inversion. Similar to real binary mixtures of
liquid crystals, in the context of the present model, different
types of the concentration dependence of the helical pitch are
obtained by changing the structure of chiral moleculag
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changing the model parametej.

The microscopic mechanism of the helical sense inversion 0.8 |}
in the present model can be understood in more detail if one
considers the behavior of the helical pitch at very low and
very high concentrations of chiral molecules in the mixture. o6l
At low concentrations of chiral moleculeg)¢<1) the heli-
cal wave number is expressed as

0.4 |
a~27ncSilIifoSet MigoDel- (28 2
In the opposite limit, i.e., in the pure one-component choles-
teric phase fc=1,7y=0) one obtains 0.2
A~ 7eScl (e Se+ 2MiqDel, (29
0.0 |
Wr;(lazre the four pseudoscalar coefficient§c, . J5c) . . . . .
MiWNc) ,Ml(cc) are presented in Fig(#® as functions of the 250 300 350 400 450

model parametep.
In Egs. (28) and (29) the second terms in the square () T (K)
brackets, which are proportional to the secondary order pa-
rameterD¢, are determined by molecular biaxiality. Gener-
ally these terms are smaller then the leading contribution
proportional to the primary nematic order parameSey. 0.6
Now it is possible to ask how important are the biaxiality i
contributions for the qualitative behavior of the pitch. One [

notes that for each curve in Fig. 4 the helical wave nuntper 04 2
possesses opposite signs 6Qf<1 and nc=1. This means 1
212
that 2the terms J3{ic)Sc+ Ml(NC)DC and J5éoSc o
+2Ml C)DC must have opposite signs. One can see from ~,

Fig. 3(a) that for the first two values af(¢, andg,), which 0O o2}
correspond to the curves 1 and 2 in Fig. 4, the coefficients
I Rc) andJ5; (CC) possess opposite signs. In these cases the
helical sense inversion is preserved, even if one neglects the
order parameteD . determined by the molecular biaxiality. 0.0 |
For <,o cp3 and o= ¢, [see Fig. 83)] the coefﬂuents]l(Nc)
andJl(CC) have equal signs. In these cases the helical sense
inversion(see curves 3 and 4 in Fig) #akes place because
the coefficientsM$ (g, and Ml& o have large posmve val-
ues, and in the third caslls:!ll co dominates ovet:]l cor
whereas in the fourth CaSM (NC) dominates Oveﬂl(NC) FIG. 5. Temperature variation of the order parameters of chiral
Therefore, in case 3 the helical wave number is positiveand nonchiral molecules in the binary nematic mixtuge=(0.39
when the cholesteric is purepg=1), and in case 4 the rad): (a) primary nematic order paramete8g andS¢ for 7c=0.1;
helical wave number is positive when the cholesteric is &b) ratio of the two order parameteBy. /S for 7c=0.1(curve
small dopant gc<1). In both cases 3 and 4 the helical and 5c=0.9 (curve 2, whereDc is the biaxiality order parameter
sense inversion takes place due to biaxiality of chiral molfor chiral molecules.
ecules. Thus the biaxiality contribution to the helical pitch is
very important and can even be responsible for the helicanined by the ratid ¢ /S¢ [see Eqs(28) and(29)]. This ratio
sense inversion in some cases. Finally, the helical wave nunis depicted in Figs. ®) and Fig. &b) as a function of tem-
ber g has no inversion in case 5 in Fig.[dorrespondent to perature and concentration, respectively, for one particular
o= s in Fig 3(@)]. Such a behavior of the helical pitch is value of the parametep. It is interesting to note that the
also confirmed by experiment with some nematic-cholestericatio D /Sc increases with the decreasing concentration of
mixtures. chiral molecules in binary mixture. This means that at least
The helical pitch of a nematic-chiral nematic mixture alsoin the present model the order paramebes for a chiral
depends on the orientational order parameters of chiral andopant in a nematic host is higher thBxg for a pure cho-
nonchiral molecules. Typical values of the nematic order palesteric phase composed of the same chiral molecules. This
rametersSy and S, calculated in the framework of the result is expected to be more general and intuitively should
present model, are depicted in Figapas functions of the correspond to any biaxial dopant in a uniaxiaf less biax-
temperature and in Fig(# as functions of the concentration ial) host. Indeed, rather high values of the paraméer
of chiral molecules. One notes that both parameg&rand ~0.2+0.3 have been measured for various nonchiral dopant
Sc strongly depend on concentration. At the same time thenolecules in nematic hosf40].
relative importance of the biaxiality contribution is deter-  Finally we note that a strong temperature variation of the

250 300 350 400 450

(b) T (K)
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0.25 |
020 1 1 1 2 1 1 1 0
00 02 04 06 08 1.0 [ . . .
@ Mo 280 300 320 340
T (K)
0.46 FIG. 7. Temperature variation of the dimensionless helical wave
number for pure chiral nematic liquid crystal plotted for four dif-
0.44 ferent values of the model parameter (1) ¢=0.63 rad.;(2) ¢
=0.60 rad; and3) ¢=0.57 rad.
0.42 |
o 0.40 depicted in Fig. 7 for three values of the model parameter
9 T betweeny=0.55 andp=0.65. Two of these curves demon-
£ o038 strate a helical sense inversion with the decreasing tempera-
haa ture.
0.36 Thus one concludes that in the context of the present
e model it is possible also to explain the helix inversion in
0.34 chiral nematics induced by a change of temperature. As dis-
T cussed in the Introduction, such inversion has recently been
032 L4 . . . . . observed experimentally by different authdrs2—-15. It

should be noted that in the present model the molecules are

assumed to be completely rigid and thus the inversion is not
(®) MNe related to any conformational changes. By contrast, in the

. . tpresent theory the inversion is related to molecular biaxiality

FIG. 6. Order parameters as functions of the molar fraction ofgnq among other factors is determined by different tempera-

chiral molec_ules in the binary mixture far=0.39 ra_d andlr=T, ture variation of the order parameted$T) and S(T). One

—4 K: (@) primary order parametef§y andSc; (b) ratio of the two 165 gis0 that the temperature-induced sense inversion takes

order parameters for chiral moleculBg /Sc - place only in the narrow range of the values of the parameter
) i . _ ¢.0n the other hand, this enables one to understand why the

ratio D¢ /Sc [see Fig. 8)] may cause the helical sense in- smperature-induced helical sense inversion has been ob-

version induced by a change of temperature. Such inversiogeneq only for few one-component chiral nematics.

may take place both in mixtures and in pure chiral nematics, Recently the influence of the real molecular shaijpe

and for simplicity we consider only the latter case. The he'cluding the molecular biaxialityon the helical twisting

lical pitch of the chiral nematic is given by EQ9) which  hqwer of a chiral dopant in the nematic solvent has been

can be rewritten as studied by Ferrarini, Moro, and Nordio using a simple sur-
face interaction moddl25,29,3Q. In this model the surface

0.0 0.2 0.4 0.6 0.8 1.0

q= 2_7T~J§12+ 2,\/@12@' (30)  of a chiral dopant molecule is assumed to be directly coupled
P S(T) to the director of the nematic solvent via the local mean-field
potentiale P,(e-n) wheree=¢(R) is the surface normal at
where we have dropped the ind€xeverywhere. point R. Here the vectoR points from the center of mass to

The expression in the right-hand side of EG0) may  some point at the molecular surface. The total interaction of
change sign only if the coefficient]** and M7 possess a dopant molecule with the nematic solvent is then deter-
opposite signs and if, in additiofi2M2'4>]J714. One can mined by the corresponding surface integral. This interaction
readily see from Fig. @) that these conditions are satisfied is sensitive to a molecular shape including the chirality of the
for values of the parametes slightly larger then 0.5. The molecular surface. It is interesting to note that the final equa-
temperature variation of the helical pitch in a pure chiraltion for the helical twisting power of the chiral dopant, ob-
nematic, obtained in the context of the present model, isained by Ferrarinét al,, can be written in the form which is
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mathematically equivalent to ER8) of this paper, TABLE Il. Order parametersSc and D for different chiral

dopants, and contributior§cAQ andD-AQ, to the helical twist-
h~&Sy(AQS+AQ, Do). @31 ing power calculated using the data presentef25,31.

Slmllar to the rgsults obt'alned in this paper, the helical tWist-chiral dopant Se De ScAQ DAQ,

ing power(31) is proportional to the sum of two terms. The

first term in brackets in Eq31) is proportional to the nem-  gjphenyl 4% 0.34 02 0.748 —5.04

atic order parameter of the chiral dopant molecidewhile  pjpapnthyl 43 0.27 04 1.78 —20.24

the second term is proportional to the biaxiality order paramy;nanhthyl 138 031  —037 27 —18.43

eterDc. Similar terms are also present in our E88) al- Heptalene 0.24 0.14 8.38 —42

though the meaning of the coefficients is different. Heptalene 3 0.32 0.28 16 _3

In the model of Ferrarm.l, Moro, and. Nordio the chirality Heptalene 4 017 037 13.5 135
of the molecular surface is characterized by the so-calle

. A . eptalene 6 0.61 0.19 —55.8 22
helicity tensorQ,, which is represented as the following

. - CB-2 0.61 0.09 —-9.2 3
surface integral: CB3 0.66 0.08 0 28
BO 0.22 0.4 3.3 —35.2
QaB:J doe,[Rxels. 82 gy 018 047 162  -437
B2(A) 0.24 0.42 1.08 —39.7
Then the coefficientadQ and AQ in Eq. (31) can be ex- B2(B) 0.21 0.45 ~032 —43.9
pressed as B2(C) 0.17 0.49 —28.2 —243
5 1 _ B5(A) 0.42 0.31 —83.2 —16.4
AQ=Q,,~ §(QXX+ Qyy). (33  B5(B) 0.28 0.28 -27.3 -29
B5(C) 0.42 0.32 13.2 -31.5
1. B6(A) 0.41 039  -110.3 -57
AQ, :E(QXX_ ny), (34 B6(B) 0.56 0.26 —-924 18.2
where . .
molecule appears to be a very important factor which
0,,=(a-Q-a), strongly effects the value and sign of the helical twisting
power.
Qu=(b-Q-b), (35 Ferrariniet al. did not consider either the temperature or
the concentration variation of the helical pitch in mixtures of
nyz(c- Q-0), liquid crystals. Nevertheless, the similarity of some existing

results enables one to believe that the main qualitative con-

and the unit vectoa is in the direction of the primary axis of clusions of the present paper are not restricted to a particular
the dopant molecule and the unit vectreindc are in the  model. We expect that the main effects, described in the
directions of the two short molecular axes. present theory, including helical sense inversions induced by

We note that the parametAQ in Eq. (31) has the mean- a change of concentration in a mixture or by a change of
ing of the “projection” of the helicity tensoiQ,; on the  temperature, can be found in any realistic model that takes
primary molecular axig and therefore it represents the prop- into consideration chiral interactions between biaxial
erties of a freely rotatingabout the axisa) molecule. By  molecules.
contrast, the paramet&rQ, represents the biaxiality of the
chiral dopant surface.

Parameterd Q andAQ, as well as the order parameters
Sc and D¢ have been calculated by Ferrariei al. for a A. V. Emelyanenko was supported by the INTAS Grant
number of different chiral dopants. Some of these resultsNo. 96-0457 within the research program of the International
taken from Refs[25] and [31], are presented in Table Il. Center for Fundamental Physics in Moscow. A. V. Emely-
One can readily see from the table that the results, obtaine@inenko is grateful to A. R. Khokhlov and other members of
in the context of a completely different molecular modelthe Polymer Physics Group at the Department of Physics of
[28-30, confirm some important qualitative conclusions the Moscow State University for technical support and assis-
made in the present paper. Firstly, the two terms in the extance. Part of this work has been performed during the stay
pression for the inverse helical pitci31) (i.e., the of M. A. Osipov at the University of Exeter where he was
“uniaxial” contribution AQS; and the “biaxiality” contri-  supported by EPSRQGrant No. GR/MG1030/01 M. A.
bution AQ, D) may possess opposite signs depending orDsipov is grateful to R. Sambles and H. Stegemeyer for
the molecular structure. Secondly, the biaxiality order paimany stimulating discussions, and to the Russian Fundamen-
rameterD of a chiral dopant molecule in the nematic sol- tal Research Fund for financial support.
vent may be sufficiently large and substantially larger than
typical values found in one-component nematic liquid crys- APPENDIX A
tals. As a result the biaxiality contribution is usually compa-
rable with the uniaxial one and for some dopants the former Let us integrate Eq5). If we restrict the sums in Ed5)
is even predominant. Thus the biaxiality of a chiral dopantwith the constraint, \.<2,L =<1, then we have only to con-
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sider the two integrals for the long-long axes interaction, Adding the surface ternW{n(V-n)}—V{(V-n)n} to Eq.
(A5) leads to the following expression f@:

Zy= f drlz]zoz(rlz)Tzoz(nl,U.nz)
Zo=33"2- 332073 {(V 4 )2+ (V gnp)(V,on,)
af

:f dr 1202941 1,)Py(Nny-Ny), (A1)
—(Vang)(Vgn,)}
zl=f dr1,%*(r 1) T?*4ny,u,ny) =J302-23294(V -n)2+ [V Xn]?}
=J302— 2329% (div n)2+ (n-rotn)2+[nxrotn]?}.
- [ ™ ngxn v a2) "o

and their analogs for the short-long axes interaction. Usingrne same procedure for the integzal gives
the gradient expansiof®) for the directorn,=n(r,) and
neglecting terms higher than quadratic in the gradients of

one obtains ZﬁJ dr 02 r 1 ){[NX (r1,- V)n]-u}
Z~fdr 2021 1) {1+ 32n(ry,- V)20
0 12J 2( 12){ 2 ( 12 } — %J%lza%y (nﬁva n’y_n,yvanlg)
:J302+%J§oza§;; N, Van,. (A3) =—1J%4n-rotn).

Taking into account equation Substituting expression@\6) and (A7) for Z, and Z; and
their analogs for the short-long axes interaction into g,

Ea‘, (Vﬁna)2+§a: navzna:; Vg(n,Vgn,) one obtains Eq910)—(12) for Fg,k,, andKo.

APPENDIX B

=3V3> n2=0, (A4

To obtain the interaction coefficienty )., , My, . let
we have us return to expansiofl8) for the even part of the effective
pair interaction. If we retain the only terms withh<2L
7 - J202_ 1 5202 V.n)2 A5 <1 in these series, the effect!ve pair interaction approxi-
00 2v2 g‘; (Ve (A5 mates by the following expression:

{0, (11— £)U (1,2} e=J00+ MO+ M0+ 3272 Py(ay - @) +I22Po(ay - u) + I02P (8, u)

+M (zyoyz{Pz(ar b,) —Py(ay-Cy)}+ Mi?yz{Pz(az' b1) —Pj(ay-¢y)}
+MOZIP (b, U) = Py(Cp U+ M22Y Py(by - ) — Py(Cy- U+ 22 (ay - ap) ([@y X @y] - U)

Y ya

+M22{(ay-by)([ay X by]-u) = (a-C,) ([81X ] - u)}

+ M8 by) ([aXby]-u) = (8- cu) ([ X ea] W)} (8D)
|
Let us introduce the functions Jﬁggy): HXD(1)+ XD (2) = XD (3)—X,(4)], 5

ng(aa ibuz la-'y!by)
Ma0s )= s[ X0 (1) =X,(2)=X)(3) + X0 (4],

n(ay) ™

E—ffwdr12r2;2{®a7(r12_ §12)Ua7(1, )}e (B4)

(B2) and using the relative orientations, presented on Hig), 8
one obtains for the chiral coefficienta1):

Substituting the expansidiB1) into (B2) and using the rela-
tive orientations of the two molecules, presented in Fig),8 I, =3[X0,(5) +X0,(6) = X[ (7) =X, (8)],
one obtains for the nonchiral coefficients=0,2): (B5)
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ap

N
UEERUE

ap ap

a az where the summation runs throughl <m<I,—A<u<A\,
(W and —L<M<L, and where the coupling constant§}*
u depend on the intermolecular distangg. Here the angles
Ik

2 (01,91),(0,,¢,), and @, ¢) specify the orientation of the
unit vectorsa; ,a,, andu, respectively.
One notes that the spherical harmonics in @1) depend
on the orientation of the laboratory frame. Since the function
V(ri2,81,U,8,) is invariant under rotation of the coordinate
system, its coordinate free expansion can be performed by
b the integration of Eq(C1) over all rotations of the coordi-
ﬂ u FL\ nate system and employing the rotational properties of
by L J o &‘J spherical harmonics. Then the expansi@i) can be rewrit-
@ (3) ()

b,

.
\l

-

C ten as

V(rp,a,u,a)=2 I TN a,u,8),  (C2)
ILN
a
Ry
where
7 c2
(6) ZZ§1
L _
= 20 Il (€)1 (3
u

a
az
b2
(5) %%
by
O]
aj Az ay as and
) %% (8) K 9’
by
(b) b,

C1

/6 ;\Cg TIL)\(alyUyaz):CIL)‘EM (erI;I}\\/Ip,)YIm(('Dlvd’l)
\ MM

|/

XYy, (02,02)Y m(0O, ). (CH
FIG. 8. Relative orientations of the interacting molecules used

for calculation of the nonchiral coefficients) in Egs. (B3) and

(B4) and chiral coefficientgb) in Egs.(B5) and(B6). Here C'** is a numerical coefficient introduced for normal-
ization and LL],{‘AM) are the 3 symbols. The functions
MiG,=4[—X,(5)+X}, (6)+X] (7)=X](8)]. T''(ay,u,a,) are rotational invariants, i.e., they do not de-

(B6)  pend on the choice of the coordinate system. These functions
depend on all possible couplings between the three unit vec-

The valuesX;, (i),i =1+ 8, were calculated numerically us- tors a,,a,, andu and containa, to the powerl,u to the
ing the interaction model, described in Sec. IV. The correpowerL, anda, to the power\ with [l=\|<L<I+A.

sponding coefficients obtained in E¢®83)-(B6) are pre- The spherical invariant§'-* are natural basis functions in
sented on Figs. @-3(c) as functions of the structural the statistical theory of anisotropic fluids because the mean-
parametexkp. field average of these functions directly yields the orienta-

tional order parameterd (a-n)). This can be seen by em-

APPENDIX C ploying the following useful mathematical properties of

Spherical invariants are a convenient complete orthogonaﬁpherlcally invariant functions
set of basis functions which are used in the expansion of a
pair potential, pair correlation function and other two-body o 2 —ILx
functions[32,33. In this appendix we present a definition of d®a,d"a, T (a1, u,a)f(ar-ny) (@ ny)
these invariant functions for a simple case of two uniaxial

molecules. The more general case is considerd@2h =T"Nn, u.n J d2a.P,(a-n f d2a,P. (a,-n
Any functionV (rq,,a,,u,a,), depending on the position (ng,U,nz) 1P1(@0-1y) 2Py (32-12),
and orientation of two uniaxial molecules “1” and “2”, can (C5)

be expanded in terms of spherical harmonics as

B MM wheref(a-n) is an arbitrary function and is a unit vector.
V(r121al!u!a2)_% m% Jin Yim(O1, 1) Equation(C5) has been used in the derivation of the results
a of Secs. Il and Il by setting to be equal to the orientational
XY\ u(02,02)Y m(0,0), (CI) distribution function.
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