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We theoretically investigate the properties of a two-electron system confined in the three-dimensional po-
tential of coupled quantum dots formed in a quantum wire. For this purpose, we implement a variational
Heitler-London method that minimizes the system energies with respect to variational parameters in electron
trial wave functions. We find that tunnel and exchange couplings rapidly decay with increasing interdot
distance and interdot barrier height. In the quasi-one-dimensional limit achieved by reducing the wire diameter,
we find that the overlap between the dots decreases, which results in a drop in the exchange coupling. We also
discuss the validity of our variational Heitler-London method with respect to the model potential parameters;
we find good agreement between our results and available experimental data.
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I. INTRODUCTION

Very recently, the advance in nanoelectronic fabrication
techniques has enabled artificially forming coupled quantum
dots (QDs) with controlling gate grid adjacent to an InAs
quantum wire (QW).! In these device structures, electrons
are laterally confined (i.e., perpendicular to the axial direc-
tion of the wire) by the wire external surfaces (wire diam-
eters are tens or even a few nanometers)® and longitudinally
confined in the wire axial direction by the electrostatic po-
tential barriers created by the local controlling gates. The
local gate width and separation range from ~10 to
~100 nm, which results in small effective dot sizes and in-
terdot separations, so that size quantization effects and ex-
change coupling between the QDs are expected to be signifi-
cantly larger than that in the two-dimensional electron gas
(2DEG)-based semiconductor QDs.? In quantum wire quan-
tum dot (QWQD) systems, the distance between the control-
ling gates and the QD region (~25 nm) (Ref. 1) is smaller
than that in 2DEG-based QDs (~100 nm),* leading to better
electrostatic control of the charge (spin) states in the QDs.
Furthermore, QWQD structures offer linear scalability (i.e.,
with the linear grid of the controlling gates) instead of the 2D
scalability resulting from top or side gate patterning in
2DEG-based QDs.!

In laterally coupled 2DEG-based QDs, electron coupling
occurs between the two QDs in the same plane as the 2DEG,
and carrier confinement is much stronger in the perpendicu-
lar direction.*~® In vertically coupled 2DEG-based QDs, car-
rier confinement is weaker in the 2DEG plane than that in the
coupling (vertical) direction (see, e.g., Refs. 7 and 8 and
references therein). The electron confinement and coupling
defined in the fabrication processes of coupled QWQDs con-
siderably deviate from those achieved in the 2DEG-based
coupled QDs: The electrons are strongly confined in the
plane perpendicular to the axial direction of the wire because
of the small wire diameter, while quantum-mechanical cou-
pling is achieved between two quantum wells with relatively
weaker confinement because of the controlling gate spacing
and biases.
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While a wealth of literature has been dedicated to the
theoretical study of 2DEG-based coupled QDs,’~!7 less atten-
tion is paid to the QWQD systems. Among all investigated
approaches, the Heitler-London (HL) technique is relatively
simple in its conceptual methodology for extracting the ex-
change coupling between coupled QDs:*!” Its validity has
been discussed for systems of various dimensions,'®!° and
efforts have been pursued to improve the energy calculation
by integrating variational parameters in the HL method.?*?!

In this paper, we compute the electronic structure of
coupled QWQDs containing two electrons with a variational
Heitler-London (VHL) method. We first construct a three-
dimensional (3D) model confinement potential for the
QWQDs and introduce three variational parameters in the
HL wave functions that account for the specific 3D confine-
ment profile. We then numerically minimize the QWQD en-
ergies with respect to these parameters and obtain the
quantum-mechanical and exchange couplings between the
two electrons, as well as the addition energy of the second
electron in the dot. In our analysis, special emphasis is
placed on the geometric effects in the coupled QWQDs. We
discuss the limitations of our VHL method but indicate its
improvement over the conventional HL. method. We finally
compare our results with the available experimental data.

II. MODEL AND METHOD

Figure 1(a) shows a schematic of coupled QDs D1 and D2
formed in a single quantum wire: gates G1 and G5 define the
outer barriers of the QDs, G3 controls the interdot coupling,
and G2 and G4 are used as plunger gates for fine tuning of
the potential in each QD. The charging current flows from
source to drain along the wire. The material under consider-
ation is InAs, for which we use the electron effective mass
m=0.023m, (Ref. 22) and dielectric constant e=14.6. Hence,
the effective Bohr radius ry=#%’e/me>=33.6 nm and the ef-
fective Rydberg constant Ry=me*/2€h>=1.468 meV. We
assume a parabolic confinement potential in the xy plane
V(p)zme,pz/Z, wherein we take ,=%/m(D/2)? and D is
the nominal value of the wire diameter. In the z direction
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FIG. 1. (Color online) (a) Schematic of coupled QDs D1 and D2
formed in a quantum wire. Gates G1 and G5 define the outer bar-
riers of the two QDs; G3 controls the interdot coupling; G2 and G4
are plungers tuning the confinement in each QD. Charging current
flows along the wire from source to drain. (b) Schematic of the
confinement potential of the coupled QDs along the z (wire axial)
direction. ¢;(r) and @g(r) denote the localized s states in the left
and right QDs, respectively.

(along which the QDs are coupled), the confinement poten-
tial is modeled by a linear combination of three Gaussians:

iy 2
V(z)=- Vo{exp{— G lzd) } +exp{— %]}

2
+ V,,exp(— lj), (1)

bz

where V|, gives the depth of two Gaussian wells describing
the confinement of the two individual QDs (we fix V,
=20 meV), V,, controls the barrier height between the two
wells (V,=0 except specified otherwise), /. is the radius of
each QD, 2d is the nominal separation between the two QDs,
and /,, denotes the radius of the central barrier. A schematic
of V(z) is shown in Fig. 1(b) by the solid line. The two
electrons in the coupled QDs are described by the following
Hamiltonian:

H=H .+ Hy, (2)

3)

e 2 1
(pp. + -Ai) +V(p)+——pi+V(z), (4
i 2m= ci

I:Iz=8MBEB'Si~ (5)

Note that we separate the motion of the electron in the xy
plane and in the z direction in the single-particle Hamiltonian

I;,». In this work, we consider only magnetic fields applied in
the z direction for which A=(—yB£+xBYy)/2. Such a mag-
netic field effectively enhances the confinement of the in-
plane (xy plane) ground state while preserving its cylindrical
symmetry.

In order to obtain the system energies, we use the follow-
ing trial wave functions:
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In the above, x,, x_, V., and W_ denote the single-particle
ground and first excited states and two-electron singlet and
triplet states, respectively. S=( ¢, |@g) is the overlap between
s orbitals ¢, (r) and @g(r) localized in the left and right QDs,
respectively, and their specific expressions are

mao. \ V2 mo mo. /4
QDL/R(r):(ﬂ_ﬁe) exp{—j(x2+y2)}<ﬂ’h'>

maw

2%

Xexp{— ‘(7 + a)z} ) (8)
Figure 1(b) shows the schematic of ¢;(r) and @g(r) in the z
direction as dashed lines on top of the potential. With the
variational wave functions, we calculate the single-particle

ground- and first-excited-state energies ¢”'=(y.|h|x.) and
the two-electron singlet- and triplet-state energies E
=<\I,i|Horb|\I,i>~

In our VHL approach, we use the effective in-plane con-
finement strength ®ps Z direction confinement strength .,
and effective half interdot separation a as variational param-
eters to minimize the system energies.”® By fixing these
variational parameters equal to their nominal values w,
=\rQ,2J+wf, with w.=eB/mc; wzzﬂzzy’ZVO/mlg; and a=d,
we recover the results from the conventional HL. method. We
calculate the Coulomb energies in the singlet and triplet
states by using

EY = (V. |C|VP.)

1
= 1= g (ererlClerer) = (orerlCleren).  (9)

where C=¢?/€|r;—r,|, and we have used the notation

<€DL<PR|C|<PL<PR> = <<PL(1'1)SDR(1'2)|C| e(r)er(ry)), (10)

<<PL<PR|C|<PR<PL> = <<PL(1'1)<PR(1'2)|C| er(r)ep(ry)). (11)

Using both the HL and the VHL methods, we calculate the
tunnel coupling 2t=e'-¢® and the exchange coupling J
=E"-ES. From the two-electron wave functions, we compute
the electron density as [ g(r) are real]

1
PS/T(H) = 2f |‘1’t(1’1,r2)|2dr2 = 1i—S2[(’Di(rl)

+ <P]2e(r1) *+28¢;(r) @r(ry)]. (12)

III. RESULTS

In Fig. 2, we plot (a) the single-particle ground-state en-
ergy ¢ and (b) single-particle first-excited-state energy e'.
The solid and dashed lines show the results obtained from
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FIG. 2. (a) Single-particle ground-state energy, (b) single-
particle first-excited-state energy, (c) tunnel coupling 2¢, and (d)
exchange interaction as a function of the half interdot separation d
for ;=30 nm and D=20 nm. The inset in (c) shows 2¢ in the
zoom-in region 20<d<<30 nm. On each panel, the solid (dashed)
line shows the VHL (HL) result.

the VHL and HL methods, respectively, from which we see
that the VHL method indeed gives lower system energies
than the HL method. We note that the single-particle energies
are positive simply because of the large energy contribution
from the in-plane confinement: for D=20 nm, ﬁwp
~33 meV and is changed by less than 1% by varying d. For
1,=30 nm and d=20 nm, the two Gaussian wells in Eq. (1)
are strongly coupled. As a result, the z-direction potential has
a single minimum at z=0, corresponding to a single QD. As
d increases, a potential barrier between the QDs starts to
emerge (for d>21.2 nm). Meanwhile, the potential mini-
mum is raised, and the z confinement in each individual QD
becomes stronger. The behavior of the single-particle ener-
gies is a result of these combined effects. For example, as d
increases from 20 to 38 nm, both ¢ and e' sharply increase
due to the large increase in the potential minimum [Figs. 2(a)
and 2(b)]. For 38<d<60 nm, €° still slowly increases,
while e' starts to decrease. Our analysis based on the varia-
tional parameters shows competing effects of the kinetic and
potential energies in this region: for ¢, the kinetic-energy
increase dominates over a slight drop in the potential energy,
whereas for e!, the potential-energy increase is offset by the
drop in the kinetic energy. For very large d, both ¢° and e!
approach a constant value (18.53 meV), which corresponds
to the limit of two decoupled quantum wells. Similar analy-
sis shows that the VHL method also yields lower energies for
the two-electron energies and a monotonic decrease in the
Coulomb energy in both singlet and triplet states.

In Figs. 2(c) and 2(d), we plot the tunnel coupling 2¢ and
exchange coupling J as a function of d, respectively, both of
which exhibit rapid decay with increasing d. In these figures,
the solid (dashed) line corresponds to the VHL (HL) result. A
decrease in J (~107%) much larger than 2¢ (~107%) as d
increases from 20 to 60 nm agrees qualitatively with the
Hubbard model J <« (2£)%/ Uy, assuming that the intradot Cou-
lomb interaction Uy retains the same order of magnitude as d
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FIG. 3. (Color online) Main panel: Exchange coupling J (solid
curve) and tunnel coupling 2¢ (dashed curve) as a function of the
effective barrier height V}e,“. Values of half interdot separation d
corresponding to different V]e,ff values are shown on the upper hori-
zontal scale. Inset: z-direction potential profile at szf values of 0
meV (red, solid), 5 meV (green, dashed curve), and 10 meV (blue,
dotted curve). Corresponding V), values are —14.71, —1.16, and 6.65
meV, respectively. The values of other parameters are D=20 nm,
d=1,=30 nm, and /,,=30 nm.

varies. Figures 2(c) and 2(d) show a large difference between
the tunnel and exchange couplings obtained by using the HL
and VHL methods, from which we notice that the HL method
substantially underestimates the coupling between the two
electrons,'®>* especially for large interdot separations. For
example, at d=60 nm, the VHL result of 2¢ (J) is ~10
(~100) times of the HL result.

The inset of Fig. 3 indicates that both the effective barrier
height V;ff (i.e., the energy difference between the minima of
the potential and its value at z=0) and the distance between
the two QDs (i.e., the distance between the two minima of
the potential) become larger as V, is increased. Conse-
quently, both 2¢ and J exhibit rapid decay'® with increasing
Vf]ff as shown in the main panel of Fig. 3, similar to the rapid
drop in these two quantities with increasing QD separation
2d [cf. Figs. 2(c) and 2(d)]. Again, we observe that J decays
at a much faster rate than 2¢ does. In experimental QWQD
devices, the effective barrier height between the two QDs
can be tuned by varying the central gate bias,' and our analy-
sis shows that the magnitude of the exchange coupling can
be controlled by proper biasing the central gate as in 2DEG-
based coupled QDs.!°

In Fig. 4, we plot the exchange energy as a function of the
wire diameter (normalized to its value at D=1 nm) for dif-
ferent d=[,. Here, we set d=I,, noting that in experiments
coupled QWQDs are defined on top of a linear gate grid with
a particular periodicity,! which indicates that the effective
QD size and interdot separation are approximately the same.
At fixed d=1, as D is decreased from 80 nm, J decreases,
and the decreasing rate becomes larger as D approaches
1 nm, which is the quasi-one-dimensional (ID) limit. The
faster dropping rate of J near D=1 nm is due to (), 1/ D?,
and the influence of the variation of (), on J becomes stron-
ger at smaller D (through the Coulomb interaction). Here, we
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FIG. 4. J as a function of D for different d=1[, values shown in
the figure. The J value on each curve is normalized to its value at
D=1 nm. For (d=1)=20, 30, 40, 50, and 60 nm, J(D=1 nm)
=233X107", 247Xx1072, 3.53X107, 1.37X107, and 4.8l
X 107* meV, respectively.

note that, although the general trend of J is to decrease as D
is made smaller, the decreasing rates are much larger for
intermediate d=/, values than for small or large values.
These effects of the wire diameter variation on the ex-
change coupling are rather unexpected as they show that J
depends on the wire confinement perpendicular to the cou-
pling direction. In fact, we find that the D variation not only
changes w, but also induces significant changes in o, and a,
which minimize the singlet- and triplet-state energies. One
can directly visualize such changes by inspecting the
electron-density variation with respect to the wire diameter.
In Fig. 5, we plot the electron density [Eq. (12)] for different
D values (d=1,=30 nm) in (a) the singlet and (b) triplet
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FIG. 5. (Color online) Electron-density plot in the z direction for
(a) singlet and (b) triplet states at d=/,=30 nm. In each figure, the
density is plotted at D=1 nm (red, solid curve), D=10 nm (green,
dashed-dotted curve), D=40 nm (blue, dashed curve) and D
=80 nm (black, dotted curve). For each D, the density is normal-
ized to its peak value.
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FIG. 6. Variational parameters w, (shown as fiw,), half separa-
tion a, the overlap S, and the Coulomb energies as a function of D
at d=1,=30 nm. The left (right) panels are for the singlet (triplet)
state.

states. For the singlet state, as D decreases, the separation
between the two density peaks becomes larger, and the width
of each peak becomes smaller. Consequently, the overlap be-
tween the two electrons is reduced. Similar effects are ob-
served in the density of the triplet state to a less extent.

We now provide a physical argument upon the three-
dimensional (3D) dimensionality effect on the two-electron
behavior. One can imagine the interaction between the two
electrons in separate QDs as a summation of the interaction
between parallel charged disks. As the wire diameter de-
creases, if the z profile of the density were unchanged, then
two disks belonging to different dots would have a stronger
Coulomb interaction since more portions on the two disks
interact at an effectively shorter distance. This enhanced
Coulomb interaction will “push” the two electrons farther
away in the coupling (z) direction. However, since the elec-
trons are confined by the outer energy barriers, they can only
become more localized in each dot with a larger separation.

The above argument is confirmed by the D dependence of
w, and a shown in the top two rows in Fig. 6, where it is
shown that both variational parameters increase as D is re-
duced and the relative increase is more significant in the
singlet state than in the triplet state. As a consequence, the
overlap S=( ¢;|pg)=exp(-mw.a*/%) between the localized s
states decreases with decreasing D in both states, and the
relative decrease is larger in the singlet state (Fig. 6, third
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FIG. 7. Main panel: Exchange coupling as a function of the
magnetic field applied along the wire without the Zeeman effect for
D=20 nm, d=1,=30 nm. Inset: Same as main panel but with Zee-
man effect.

row). It is interesting to note that despite the reduced over-
lap, the Coulomb interaction (Ec,,) still becomes stronger
with decreasing D (Fig. 6, bottom row) for both states. We
also performed analysis for different d=/, and observed a
similar behavior as shown in Figs. 5 and 6.

The in-plane electron confinement can also be enhanced
by applying a magnetic field (B) along the wire without re-
ducing the wire diameter. As with reducing D, J drops with
increasing B as seen in the main panel of Fig. 7. The drop is
nearly linear at large B, which is smaller than the drop rate
when D approaches 1 nm [cf. Fig. 4(b)]. This is because the
in-plane effective (variational) confinement strength w,
=~ \rQ§+ a)? and w, > B, while onc 1/D?. Tt should be pointed
out that the relatively small J drop in Fig. 7 is obtained in the
absence of the Zeeman effect, and it is well known that un-
like the small g factor in GaAs (g=-0.44), InAs QWQD has
a much larger g factor (2-15.5),% for which the Zeeman ef-
fect is dominant over the orbital effect in the J dependence
on B. For example, the inset of Fig. 7 shows that for g=8,%
the Zeeman effect totally smears out the orbital effect illus-
trated in the main panel of Fig. 7, which leads to a negative
J forB>1.1 T.

Because we model the confinement in the xy plane by a
two-dimensional harmonic-oscillator potential, the single-
particle levels in that plane are given by the Fock-Darwin
spectrum, whereby the energy separation between the ground
and first excited states decreases as B increases (in contrast,
this separation increases with decreasing D). In our calcula-
tions in Fig. 7, we take D=20 nm and d=/,=30 nm. At B
=10 T, the separation is 16.44 meV, which is considerably
larger than the sum of the single-particle energy separation in
the z direction (2.11 meV) and the Coulomb energy in the
triplet state (1.91 meV). This observation validates the as-
sumptions of the HL method in which the wave functions are
taken as linear combination of localized Gaussians separated
in the z direction and only the ground state in the xy plane is
taken into account.

Experimentally, the measurement of the addition energy is
frequently performed to probe the energy levels of the QD.?
The addition energy of the Nth electron is defined as E%(N)
=u(N)—u(N-1), where u(N) is the chemical potential of an
N-electron QD. Within the VHL method, we are able to cal-
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FIG. 8. (Color online) Addition energy of the second electron
E“(2) as a function of wire diameter D and half interdot separation
d=I,.

culate the addition energy of the second electron as E“(2)
=u(2)—u(1)=E5-2¢% where ES and ¢° denote the singlet-
state energy and the single-particle ground-state energy, re-
spectively. We plot E%(2) as a function of the geometric pa-
rameters d=[, and D in Fig. 8. In general, as the QDs
become larger in size (larger d=I, or D), the addition energy
decreases, for both Coulomb interaction and size quantiza-
tion effects are reduced. We find (not shown) that at fixed
d=I[, and D, the Coulomb energy between the two electrons
are uniformly smaller than E“(2), which is due to the size
quantization effects in the coupled QWQDs.

IV. DISCUSSION
A. Comparison with experiments

In recent experiments on InAs QWQDs, J
=2.8-3.2 meV was reported for a single QD formed in a
wire with effective harmonic confinement strength #(),
=6.3 meV (corresponding to confinement length 2\,
=2V#i/m€,=46 nm) and %7Q,=40 meV (2\,=2\%/m(,
=18 nm).? By fitting these values in our model (D=18 nm,
Vo=41.6 meV, V,=0 meV, d=0 nm, and [,=117.9 nm),
we obtain J=3.51 meV, which is comparable to the experi-
mental result.

We note that /J~3 meV as obtained above is the result
for a single QD with potential minimum at z=0.2° For double
QDs with D=20 and d=[,=30 nm, we obtain /~0.5 meV
(Fig. 7), which corresponds to a time scale (7,=f/J)
~ 1.3 ps, on the same order as the reported spin decoherence
time 7,=0.5-1 ps in InAs QWQDs (Ref. 22) and much
smaller than the reported spin dephasing time T,
=50-500 ps in self-assembled InAs QDs.?’

B. Limitations of the model

As an inherent drawback of the HL method, our varia-
tional scheme breaks down when the overlap between the
localized s states is large, which occurs for small interdot
separations. For example, in our calculations of the system
energies, the VHL method fails for (d=/,)<12 nm (0.57r,)
independent of D. A signature of the VHL approach break-
down at small d is that the variational parameter a becomes
zero in the minimization process. This numerical behavior
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stems from the fact that at small d, a global minimum in the
system energies does not exist for the physical range of a,
given the expression of the variational wave function. We
note that this shortcoming in the HL method in not apparent
in the conventional HL approach. As long as (d=[,) >0, one
can still use the HL method (without variation) to calculate
the system energies even though the obtained result is likely
to be unphysical.

In Ref. 18, it was pointed out that the HL. method breaks
down as the quantity c=7/2(e?/ eap)/ hwy (ag=\h/mw,) is
larger than 1.95, 2.8, and 5.8 for coupled QDs with
harmonic-oscillator confinement fw, in each direction for
1D, 2D, and 3D potential models, respectively (this is an
extension of the result in Ref. 9). We investigate /, from 15 to
60 nm, which corresponds to ¢ ranging from 0.44 to 0.87 and
is uniformly smaller than the smallest breakdown value ¢
=1.95. However, as a check of this criterion, we extend our
calculation to very large values of d=/, and find that for D
=20 nm, J becomes very noisy and oscillates randomly for
(d=1,)>206 nm, for which the variational parameter i, is
1.553 meV, corresponding to ¢=1.723, which is similar to
the 1D limit claimed above. However, at this point, J
~ 107 meV, which bears no practical interest.

Note that in our calculations, we neglected effects of the
spin-orbit interaction, which is measured and calculated to be
~0.2 meV in InAs QWQDs.>?® This value is comparable to
or larger than the exchange coupling calculated in this work
for interdot separation greater than ~60 nm. As such, the
spin-orbit interaction could play a significant role in deter-
mining the system energies, and in principle, should be taken
into account for spin-qubit quantum computing
applications.?’ Also, in this work we considered isotropic
media; i.e., we assumed the constant value for € in Coulomb
interaction term in Eq. (3) because the electron densities are
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localized by the confinement potential in a much smaller
region of space than allowed by the geometric size of the
wire (e.g., in Ref. 3, the effective wire diameter is estimated
to be 18 nm for a nominal diameter of 50 nm).

V. CONCLUSION

By introducing variational parameters in the HL trial
wave functions, we achieved lower energies of coupled
QWQD system than those calculated by conventional HL
method with the relative difference in the tunnel and ex-
change couplings exceeding 100%. As in coupled GaAs QDs
based on 2DEG, tunnel and exchange couplings exhibit rapid
decay with increasing interdot distance or barrier height. Due
to the 3D nature of the system, increasing the confinement in
the in-plane directions reduces the overlap of the two elec-
trons in the coupling direction (along the wire), which results
in the decrease in the exchange coupling. For QDs with dif-
ferent sizes, the addition energy of the second electron is
found to be uniformly larger than the two-electron Coulomb
interaction because of size quantization effects. By fitting the
model potential to experimental parameters, we obtain ex-
change coupling in agreement with available experimental
data. Experimental structures based on InAs QWQDs may
benefit from the relatively large exchange coupling toward
quantum computing applications.
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