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Abfmct. Charged particle potential scattering in bath arbitrary scattering and intense 
monochromatic electromagnetic wavefield is investigated within the framework of rela- 
tivistic classical theory, treating the wavefield exactly and the scattering potential by 
perturbation to fint order. The effect of strong wavefields an the coherent energy change 
of the particle in this process is revealed for large (exceed the initial momentum of the 
particle) momentum transfen of the scattering potential. The rate of the coherent energy 
exchange of an electron beam with an intense electromagnetic wave due to the stimulated 
bremsstrahlung process is also obtained, particularly for the high-intensity limit. 

1. Introduction 

Many papers have been devoted to the theoretical investigation of the electron-atom 
or -ion scattering processes in the presence of a laser field using quantal as well as 
classical considerations. These investigations have been carried out mainly within the 
framework of non-relativistic quantum theory, which is valid for laser fields that are 
not very strong. Only in a few papers (Denisov and Fedorov 1968, Kaminski 1985) 
have fields of arbitrary intensities been considered and the relativistic cross sections 
of stimulated bremsstrahlung (SB) been calculated to the first Born (Denisov and 
Fedorov 1968) and low-frequency (Kaminski 1985) approximations. In addition, rela- 
tivistic corrections have been taken into account in single photon SE absorption- 
emission cross sections in the weak laser field (Fedorov 1966) and in the dynamics of 
the SB process for wavefields that are not very strong (Avetissian and Jivanian 1980, 
Avetissian et al 1986). 

The purpose of this paper is to reveal the effect of strong monochromatic electromag- 
netic (EM) fields on the dynamics of the SB process, which will also enable one to 
clarify the possibility of electron acceleration in practice during free-free transitions 
related to the renormalization of electron energy in the strong wavefield in a vacuum. 
This renormalization can be written in the following form (Brown and Goble 1968): 

where g is the mean energy of the electron in the wave, 8< is the initial energy of the 
electron, 6 is the relativistic intensity parameter and a is a constant. This renormaliz- 
ation has a virtual nature because, in the absence of a third body (in our case without 
the scattering centre) a free electron cannot really absorb or emit a photon. From the 
classical viewpoint the electron energy oscillates in the wavefield and, after the wave 
is switched off, when g+O,  again X = %(. In the presence of the scattering centre the 
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g = 8 j ( l + a 5 * )  
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corresponding part of the energy conditioned by the intensity of the wavefield can 
become real and, hence, the magnitude of acceleration will be conditioned by the full  
dynamics of the interaction process (the part of the energy that has been transferred 
from wave to electron and remains with it depends on the momentum that the scattering 
centre can compensate during the scattering process). In our previous papers (Avetissian 
and Jivanian 1980, Avetissian et al 1986) this problem was investigated without taking 
into account the intensity effect of the wavefield, i.e. the dependence %(t2j. Such an 
approximation is valid up to  a certain wave strength. In these works the coherent (over 
the wavefield) energy exchange depending on the initial wave phase was derived. It 
has a periodic nature and, therefore, the effective energy exchange of the beam vanishes 
when it is averaged over the initial phases. Thus the results obtained strictly concern 
the coherent SB process. One can expect that accounting for the field intensity will 
violate the strictly periodic dependence on the initial phase of the wave, and will 
change the behaviour of the effective energy exchange of the electron beam in the SB 
process. Thus, in order to clarify the possibility of a single electron acceleration by a 
strong wavefield in the SB process or to study the wave absorption by an electron beam 
one needs an exact investigation of SB dynamics, taking into account the intensity 
effect of a strong wavefield on the bremsstrahlung scattering process. 

Within the framework of classical theory the SB process has also been studied by 
Brown and Gobie (1968), Pert (197ij, Bunkin ef ai (i972j and -Goii and Watson 
(1973); however, the scattering is taken into account in the instantaneous interaction, 
or low-frequency approximations, which are applicable when T<< T, where 7 is the 
scattering duration and T the wave period. We shall exceed the limits ofthis approxima- 
tion to  take into account the dynamics of SB scattering. In this case one is able to 
account for the wavefield exactly if the scattering potential is treated perturbatively. 
However, we note that this approximation does not actually mean weak scattering 
potentials, because the interaction with the scattering centre is treated perturbatively 
not with respect to the electron initial energy (in that case one cannot expect the 
essential acceleration of electrons because the energy change would be less than the 
electron initial energy) but with respect to its energy in a strong wavefield, which can 
exceed many times the electron initial energy. In  this case electrons can be initially 

approximation when applied in practice does not confine even the potentials of existing 
very strong scattering centres and, hence, one can consider that the results obtained 
do not practically contain the approximation. 

This paper is organized as follows. In section 2 we outline the classical theory of 
SB and derive the energy change of a single electron in the SB process, treating the 

analysed in detail issection 3 for the screened Coulomb potential and for the geometry 
when an electron falls in the wave propagation direction. We also consider, in 
section 4, the effective energy exchange of an electron beam with an intense wave 
arising from SB. A summary and conclusions are presented in section 5.  

H K Avefissian ef al 
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sczttcrizg pntcntiz! to the first order of pcrt??rt..!ian thecry. This genera! result is 

2. Induced energy exchauge of electrons with a strong electromagnetic wavefield in the 
SB process 

In the classical consideration of SB our concern is with the electron energy change. 
To derive an expression for it we shall start by presenting the relativistic Hamilton- 
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Jacobi equation for electron scattering by a static potential a( r )  in a plane transverse 
monochromatic EM wavefield A ( t -  w / c )  (Landau and Lifshitz 1973), 

[VS-:A( f -:)I*-$ (i S - e @ ( r )  I* + m 2 c 2 = 0  

where e and m are the electron charge and mass, respectively, and U is a unit vector 

Introducing the new coordinates r = r and 9 = f - v r / c  we write (2.1) in the 
in !he Plave prapagatian direction. 

following form: 

e2 
-7 @(I)+ m2c2 = 0 

C 

where V = d/Jr. We seek the solution of (2.2) in the form 

s ( r 3  n) = so(r, 9) +S,(r, 7) 

where &(r, 9) is the electron relativistic action in the EM field, pi =pi - u ~ J c ,  and pj 
and gi are the electron initial momentum and energy, respectively. Inserting (2.3) into 
(2.2) we obtain for &(r, 7) the following equation: 

where 

are the electron momentum and energy in the EM wavefield, respectively. 
We shall solve (2.4) approximately, considering the strong EM wavefield exactly, 

applying perturbation theory to account for the scattering potential. In order to treat 
the scattering potential perturbatively we require that 

x = G ” c 2 / (  g0(7 )v39) )  << 1 (2 .6)  
for any 9, i.e. during motion in both scattering and EM fields the momentum of the 
electron is always close to the momentum of an electron which interacts only with the 
EM wave. In (2.6) UmaX is the maximum potential energy which an electron can have 
when scattered in the presence of an EM wave, and oo(q) is the electron velocity in 
the wave. 

Confining ourselves to the first order of perturbation theory, we leave in (2.4) only 
terms of order x, thus obtaining 
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One can easily solve (2.7), making a three-dimensional Fourier transform over the 
space coordinates r, using the initial and boundary conditions described below. At 
large distances from the scattering centre, where the scattering field vanishes, the 
particle moves only in the EM wavefield, and therefore S, = 0 when r+m.  Also, as the 
wave is switched on adiabatically at 7 + -m, then SI( 7 + -m) = 0 too. Thus, after a 
straightforward calculation we write the solution of (2.7) in the form 

H K Aoetissian et al 

%,(r) exp(iq ro(r ) )  d7 

Here 6(q) denotes the Fourier transform of the potential and ro(v) is the electron 
trajectory in !he EM wave !in!Pgra?ion conotBn?s %?qua! to zero!, 

Now let us deal with the electron energy change. Following well known procedures 
(Landau and Lifshitz 1973), one can find the electron energy change in the SB process, 
up to the first order of perturbation theory over the scattering potential as the expression 
& = - J S , / J ~  at the moment 7 + +m, by substituting the electron trajectory in the EM 
wave t ( 7 ) = r o + r o ( q )  for I (to is the radius vector of the electron at 7=0). After 
straightforward calculations one has 
Ag= %,(7 = +m) 

Thus, (2.10) presents the induced energy change of an electron with a plane EM wave 
of arbitrary polarization and field strength in an  SB process. Moreover, (2.10) holds 
for any type of static potential satisfying criterion (2.6). However, to proceed in the 
evaluation of (2.10) one has to concretize the polarization or potential type. Leaving 
the scattering potential in a general form let us carry out integration over 7 for a 
monochromatic EM wave of frequency o. As we shall see below, contrary to the weak 
field case, SB in the strong field of an EM wave is sensitive to the type of wave 
polarization. The reason for this is that the electron impact parameter p is changed 
essentially during the scattering process, depending upon the type of EM wave polariz- 
ation caused by large amplitudes of electron oscillations in the strong wavefield. 
Therefore, we shall consider separately two types of polarizations, circularly and 
linearly polarized wavefields. These are described by, respectively, 

A = A O [ & ,  c o s ( o ~ + 4 ) - ~ ~ s i n ( o ~ + ~ ) ]  (2.11~1) 

A = AO& cos(wq + 4 )  (2.11b) 

where A ,  is the vector potential and 4 is the initial wave phase. 
Inserting the expressions for electron energy and trajectory in the wave respectively 

from (2.5) and (2.9) into (2.10) and using (2.11a) and (2.11b). one easily integrates 
over 7 with the help of the following well known expansion in Bessel functions of the 
first kind, J,,: 

+m 

exp(iz sin 4) = J . ( z )  exp(in4). "-- 
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As a result of calculations we obtain the following expression for the electron energy 
change: 

Here, for circularly and linearly polarized EM waves respectively, the functions fn(q) 
are defined as 

@( 
& ) ( q ) = - J n ( a Q )  e-'"' 

o 

(2.136) 

Q = q -p. -  vq 
( E ,  + i E 2 ) Q  = QeiP 

' U P <  

where 

A =  -&%(! for CP 

C C U P !  4 for LP 
are the average energy and momentum of the electron in the EM wave and a = 
-eA,/ovp, is the amplitude of electron oscillations in the wave. Vector ro in (2.12) is 
the radius vector of the electron in the coordinate system introduced above at the 
moment 7 = 0. If one chooses the start of the time count so that at the moment t = 0 
the electron appears at the point closest to the origin of the coordinate system, then 
one can relate ro to the 'impact parameter vector' p as follows: 

p&i = 0. - UP Io = p -pi - 
VPi 

(2.14) 

Thus, (2.12) together with (2.14) determine the induced energy exchange of the electron 
with an intense EM wavefield in the SE process, when the strong EM field is considered 
exactly, whereas the scattering potential is determined by perturbation theory to first 
order. As (2.12) shows, in the strong EM wavefield the electron energy change is 
presented as a sum of partial energy changes AX'"' on frequencies nw. We note that 
those energy changes of the electron in the EM wave mainly contribute to AX'"', the 
averages of which are equal to the quantal changes of energy during the absorption 
or emission of n quanta in the SE process. In reality, the electron energy in the wave 
reads 

m2c2+pz 
2WO ' 

X o = - C  (2.15) 

Let us assume that in the SE process an electron has emitted or absorbed n quanta of 
an external EM wave and as a result its momentum is changed by hq, becoming po+ hq. 
Then, with the help of (2.15) for the electron energy change, we obtain to the lowest 
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order of q : A 1 4 =  - c h w ~ / v p ~ .  If its average is equal to the energy of n quanta of the 
EM wave 

H K Avetissian et al 

(AX).,= -ch&upi = hon 
then, after cancelling h out, we obtain the conservation law of the &function entering 
in (2.12), which provides the main contribution to A%'"'. 

Unfortunately, to date no quantal consideration of SB exists which directly corre- 
sponds to the classical result (2.12) for electron energy change, derived by treating the 
scattering potential perturbatively to first order. Such a quantal investigation is now 
in progress and the comparison of this classical result with quantal calculations will 
be considered elsewhere. Here we shall only elucidate the connection between the 
classical energy change (2.12) and the other classical results obtained by applying 
perturbation theory to first order over both scattering and EM fields (Avetissian and 
Jivanian 1980) or within the approximation of instantaneous interaction (Brown and 
Goble 1968, Kroll and Watson 1973). With this aim for low EM intensities, when the 
maximum of the classical oscillatory velocity of an electron in the wave is too small 
compared with the incident electron velocity, namely U,,, = oa cc vi (or writing otherwise 
eAoo/cpiQ <c 1, Cl = ~ ( 1 -  U U J C )  being the Doppler-shifted frequency of the wave), we 
keep in (2.12) only the terms linear in the wavefield and transform it as 

I(ro) = 6(q) exp(iqr,)S I (2.17) 

where the scattering potential is assumed to be central symmetric, and 8 denotes either 
E or sI f i e 2  for linearly and circularly polarized EM fields, respectively. Parenthetically, 
we remark that, as (2.17) shows, the electron energy change during the SE process in 
the EM field linear approximation does not actually depend upon the type of wavefield 
polarization. 

Assuming a screened Coulomb potential being the potential charge Ze placed at 
the origin of the coordinate system and R the screening radius, 

. 47r Ze 
I @ ( q ) = q 2 + 1 / R z  

integration in (2.17) yields, for the function I(ro), 

I(ro) = 87r2Ze--K0 (:) exp( -iron:) 
vi 

(2.18) 

(2.19) 

where K o ( x )  is the McDonald function of zero order, n is a unit vector in the incident 
electron velocity direction and C2 = 2R-2+ ( Q / V ~ ) ~ ,  ril = ri-(ron)2. Inserting (2.19) 
into (2.16) and using (2.14) we finally write the electron energy change owing to 
electron scattering in the screened Coulomb potential in the presence of the low- 
intensity EM field as 

A14 =A%&) sin(! vp - + + $ ( p ) )  (2.20) 
C 

where 
(2.21a) 

(2.21b) 
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and 

Thus, for a linearly polarized wave this coincides with the classical energy change 
of an electron in the SB process derived by perturbation treatment of the interaction 

1980). 
Now let us clarify the connection between (2.20) and the corresponding classical 

result obtained within the instantaneous interaction approximation (Kroll and Watson 
1973). Note that in the low-intensity limit the validity condition for energy change 
(2.20), namely criterion (2.6), implies electron scattering at small angles without, 
however, restricting scattering duration. However, in the instantaneous scattering 
approximation, while the instantaneousness of the electron scattering is assumed, the 
scattering angles are arbitrary. Hence, the general domain where the energy change 
expressions derived by these two approximations are valid is the instantaneous scatter- 
ing of electrons at small angles. 

ofthe electron with both scattering and EM fie!& to firs! nrdcr (.vc!issim .Ed Jiv2nizn 

3. Energy chnnge of an incident electron parallel to the wave propagation direction 

In the preceding section a general expression was derived for the electron energy 
change owing to SB in an arbitrary scattering potential considering an intense wave 
exactly. Here we shall elucidate how the wavefield intensity and the type of wave 
polarization affects the classical energy change of an electron in the SB process. To 
make the further evaluation of (2.12) possible we restrict our study to the case of a 
screened Coulomb potential and to  an incident electron momentum parallel to the 
wave propagation direction, pillu. Then, as follows from (2.14), ro = p  and integration 
over q'in (2.12) yields 

where U, = C ' I ~ ~ I / % ,  and {"(p, 4) denotes one of the following functions depending on 
the circular (index c) or  linear (index 1) polarization of the wave: 

I.+,+*(fg,L,i.)h-,(fg.L,i") sin(n(+ - rpo+ 57)-2k0). 
Here IJz) is the modified Bessel function of nth order, L,.,,,,., denotes the largest 
(smal1est)ofparameters a orp,andg, = [ ( n o u p , / ~ ~ , ) ~ + R - ~ ] ' ' ~ .  Formulae (3.1),(3.2a) 
aiid (3.2b) preseiii ihe election eiieqji i-haiige due io SB in iiie preseiice of a sirong 
wavefield as the sum of partial changes ASS'"' of energy on the wave frequency o and 
its harmonics no. These partial changes depend on the impact parameter p. on the 
angle (pa between the impact parameter and the EM wavefield, and also on the initial 
wave phase 4; moreover, their contribution to the final acceleration or deceleration 
of the electron in the SB process is determined by 'po and 4. Parenthetically, note that 
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the series in (3.1) converge; therefore, the energy change on large harmonics decreases 
to zero starting from a certain value of n = n o .  However, our primary concern is with 
A8(p, +), the change in energy for the initial wave phase + and a certain impact 
parameter p. In the general case it seems impossible to sum the series in (3.1) and 
(3.26); therefore, temporarily, we shall restrict ourselves to the high-frequency limit. 
Assuming g.L,,. >> 1 and g.L,i. COS 'PO >> 1 ,  respectively, for circularly and linearly 
polarized EM waves, one can substitute K,,(x) and I, ,(x) entering in (3.20) and (3.2b) 
by their asymptotes (Yahnke e f  a/ 1968): 

H K Avefissian et a/ 

(3.3) 

Then (3.2a) and (3.2b) are transformed into 

(3.46) 

From (3.4a), (3.46) and (3.1) we see that in the high-frequency limit the partial change 
of the electron energy falls exponentially with the increase in n. We carry out summation 
over n in (3.1) for the pure Coulomb potential, using (3.4~2) and (3.46), providing that 
g, = n w v p , / c i { ,  and also formula 1.461 from Gradshtein and Rizik (1971). As a result 
one has the following expressions for the electron energy change: 

z e 2  w pi (1  +A/gi) sin + 
(3.56) 

= J apcosqof l  - Fj - cosh[~(L,.,-L,j.cos ' ~ ~ ) / C ~ l + c o s ~  - 
where a= w(1-  vC,/c). 

From here the calculation of both the initial wave phase at which the electron 
energy change accepts its maximal value and the energy change at this wave phase is 
straightforward, and yields, respectively, 

4 = s i n - ' [ h ~ ' [ n ( ~ , . , - ~ , ~ . ) / ~ ~ l ] - ~ ~  

for circularly polarized waves, and 

for linearly polarized waves. 
As is clear from (3.6a) and (3.6b), the classical energy strongly depends on the 

minimum distance to which an electron can approach the scattering centre during its 
motion in both scattering and EM fields. In contrast to the weak field case, where this 
minimum distance is determined only by the impact parameter, for high EM intensities 
it also becomes dependent on wavefield strength and type of wave polarization. 



Effect of an intense EM wave on SB dynamics 3209 

Comparison of (3 .6a)  and (3.66) shows that because of the cylindrical symmetry of 
the electron trajectory in the circularly polarized EM wave, in this case the minimum 
distance is L,,,- Lmin, whereas in the linearly polarized wave it depends also on the 
angle between the impact parameter vector and the EM field: Lmax- Lmi. cos ‘po. 

To make some numerical estimates of (3 .6a)  we return to the validity criterion of 
(3.6a).  For the Coulomb scattering potential and the circularly polarized EM wave, 
substitution of asymptotes ( 3 . 3 )  for K , ( x )  and I . ( x )  in (3 .2~1)  is legitimate when 

fia/;, >> 1 and f i P / G i  >) 1 .  (3.7) 
Accounting for the field dependence through fi=fL8JEi and Ci shows that (3.7) 

holds for initially non-relativistic electrons and relatively low EM intensities, when 
6 < 1, taking the form 

6 > > 1  and O p l c  >>1 
v;/c+O.S 6’ Ui/C+0.S l2 

Another approximation applied during derivation of (3 .6a )  is initial treatment of 
the scattering potential by perturbative theory to first order. For the Coulomb scattering 
potential and the circularly polarized wave in the domain in which (3.8) is valid 
criterion (2.6) of this approximation can be written as 

(3.9) 

Let an electron with incident energy 8; = 10 eV scatter on an a-particle in a laser 
field with wavelength A = 10-4cm and intensity parameter ( - 0 . 1  ( I p - a \ -  10-’”cm). 
Then for the maximal energy change one obtains, from (3 .6a) ,  Akfmax= 100 eV. Thus, 
the electron energy change in the SB process exceeds its incident energy many times, 
as a result of the intensity effect. As follows from (3.6), the electron energy change 
along with the dependence on lp-al depends also on p and a. Moreover, Akfmnx 
increases with the decrease in p and a. However, condition (3.7) obviously breaks 
down for small p and a and one also needs to evaluate the electron energy change 
(3.1) for small p and a. In the general case there are difficulties with summation in 
(3.1) and we shall overcome them by firstly performing integration over q in the general 
expression (2.10). Then, for the screened Coulomb potential, and the above-adopted 
geometry p J v ,  one can present (2.10) in the following form: 

(3.10) 

where T denotes the wave total phase w~ + 4, with r ( T , + )  = Ir,+ r0(7)1 and X , ( T )  being, 
respectively, the distance between the scattering centre and the electron and the electron 
energy in the wave, 

r f ( T , + )  = p z + a 2 - 2 a p  sin(T+qo)+(T- 4)’((;./6)’ 80( ‘7) = 8i (3.11a) 

and 

- 

Z0( T) = Ei + A cos 27. 

respectively, for circularly and linearly polarized EM waves. 

(3.11b) 
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For short-range potentials, when R<< I ( T ,  g), we can obtain an analytical estimate 
of the integral appearing in (3.10) using the fact that the area around the minimum 
of I (T ,  6 )  mainly contributes to this integral. Then the use of the Laplace method (e.g. 
see Lavrentev and Shabat 1973) after some calculation yields for the electron energy 
change 

where rmin(g) = I ( T ~ ,  g), g ( T o ,  g) (particularly for the circularly polarized wave) has 
the form 

g~(TO.g)=apsin(To+g)+(;, /n)'  (3.13) 

and T~ is the solution of the transcendental equation &(T,  g)/&=O. 
In the case of small impact parameters and oscillation amplitudes when ap(fi/6j)2a 

1, this equation has the solution T ~ = $ .  Then, inserting (3.11a) and (3.13) 
into (3.12) one obtains 

(3.14) 

Thus, as (3.14) shows, the dependence of the electron energy change on the initial 
phase 4 is crucial for short-range potentials when the electron impact parameter p 
and oscillation amplitude a are of the same order. For the linearly polarized wave one 
i> &:e io obiaiij ai expiejjioij Cirr ihs eiieigj ihaiige jiiiihi io (3.14), reqiiriiig 
na/i7,<< 1, c< 1 and A/iacc< 1. However, in this case the energy change depends 
essentially on the initial wave phase q5 for short-range potentials and for high EM 
intensities and small impact parameters, when a >> p. 

For long-range potentials, particularly for the Coulomb field, and the circularly 
polarized wave with the help of (3.11a), (3.10) can be transformed to 

. .  

(3.15) 

Expanding (3.15) up to terms of first order in the small parameter Lmjn/Lmax<< 1, we have 

(3.16) 

Note that such an expression is valid for two limits, when a >> p (high intensities) and 
p >> a (large impact parameters). 

In contrast to the weak-field limit, where the classical energy change is proportional 
to the field strength, we find from (3.16) that in the high-intensity limit, when S >> 'y, 

me energy cnange vanes win mt: uriu srrcngrrr a3 LLI 5, 5 . ~ n ~ a  I C J Y I ~  L=I.TLVJ LV 111 

the presence of the circularly polarized wave. For the linearly polarized wave one is 
unable to derive a simple expression similar to (3.16) in the high EM intensity limit 
when a >> p. Such an approximation for the linearly polarized wave is inconsistent with 
criterion (2.6) of the perturbative treatment of the scattering potential because for 
certain initial wave phases the electron can approach the scattering centre very closely. 

. I ~ ~  ~ ~~~~~ ~*~~ ~~~ -~--!.. ...:.- .L. C.I> -...---.I- ^^ 1.. , , , 3  71.:" __"..,* *^ Cn :" 
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For low intensities of the linearly polarized wave, when A/5$<< 1 and p >>a, one can 
obtain, similar to (3.16), the expression 

(3.17) 

Thus, though variation of the electron energy change in the SB process with the field 
strength is the same for both circularly and linearly polarized weak wavefields, in the 
high intensity limit its dependence on the type of wave polarization becomes crucial. 

As the analytical investigation of energy change is mathematically difficult, we have 
done some numerical calculations using (3.15), revealing the dependence of the classical 
change in electron energy on the initial phase (figure 1) and on the EM intensity (figure 
2 )  for the circularly polarized wave. As is apparent from figure 1, the energy change 
varies sinusoidally for weak wavefields with a peak corresponding to m / 2  (see also 
Avetissian and Jivanian 1980). However, upon increasing the field strength deviations 
from sinusoidal type variation appear and the energy change peak moves to m. However, 
as follows from (3.16) for very high intensities, the energy change peak again corre- 
sponds to the phases 4 + ‘po= a / 2  (as in the case of large impact parameters or weak 
wavefields). Note that as A 8 [ 2 n  - (4 + ‘pa)] = -A8[4 + (pa], then one has a symmetrical 
picture of electron deceleration ( A 8 < 0 )  in the phase interval [T, 2 ~ 1 .  

0,5 f :;m * 
a 0.2 

0.1 

90 180 

0 ldegl 

Figure 1. Graph of A%(m) for electrons with incident energy gt = I keV, when fiw = I eV 
and r,in=2x10-9cm fordiffercntwaveficldintenrities: ( a )  5=1W5, ( b )  f=lO-‘and ( e )  
t= IO-’, For curve ( a )  the ordinate is increased 10 times and curve ( e )  it is decreased IO 
times. 

Figure 2. The maximum of the electron energy change (over the initial wave phase) as a 
function of the wavefield intensity parameter 6, when g, = I keV, fiw = 1 eV and rmin = 
2.10” cm. 
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Finally, in figure 2 we see that the maximum of the electron energy change over 
the phase due to SB depends on the wave intensity non-linearly, in contrast to the 
weak field case. In particular it has a maximum at 5 -  ui/c (see figure 2). 

4. Effective interaction of an electron beam with an intense EM wave in the SB process 

Up to now we have studied the dynamics of a single electron scattering in the SB 

process, considering the EM wavefield exactly. Let us now analyse the effective interac- 
tion of an electron beam with an intense EM wave during the SB process. 

Let an electron beam (for simplicity the beam is assumed to be monoenergetic) 
scatter on a static potential in the presence of a strong EM field. Then the rate of energy 
exchange (EE) between the electron beam and the EM wave (EE per unit time) is defined 
by the expression 

where A8(p, 4) is the energy change of one electron due to the SB process and is 
defined by (2.12)-(2.14), and f (p ,  4) is the distribution function of the electrons in 
the beam over the vector of the impact parameter and initial wave phases, in a unit 
volume. Integration over p is camed out in the plane perpendicular to Cj, and over 
the initial wave phase 4 between the limits 0 and 27l. 

As is seen from (2.12) and (4.1), the rate of EE between the electron beam and the 
EM wave in the SB process essentially depends on the distribution of electrons in the 
beam over p and 4, when the wavefield intensity is taken into account. Thus, starting 
from these expressions it is easy to show that the rate of EE due to SB for an electron 
beam homogeneously distributed over p and 4 is zero. This result is a direct con- 
sequence of the adopted approximation of perturbation theory for the scattering 
potential, according to which, for the first order of this approximation, the contribution 
of the scattering to the electron trajectory is not taken into account. If the beam with 
an electron density N. is homogeneous over the transverse section and is modulated 
and enters the interaction region with a certain wave phase, then, with the help of 
(2.12), (2.13a), (2.136) and by means of (2.14) from (4.1) for the EE rate, one obtains 

(4.2) 

where 

and i = fi; /f i;  is a unit vector in the normalized electron momentum direction in the 
wave, 6(qn) is the Fourier transform of the scattering potential, and the function In(%) 
is defined by (2.13a) or (2.13 b)  for the circularly or linearly polarized wave, respectively. 

In the weak field limit, when eE,/p,n<< 1 ,  one can keep in (2.13a) and (2.13b) 
only terms up to the first order of the field strength. As a result, for the EE rate of 
electrons with the weak wavefield during stimulated scattering in the screened Coulomb 
potential (2.18), from (4.2) we obtain 
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where 2 is defined as in section 2. We remark that for the Coulomb potential and the 
linearly polarized wave (4.3) in the non-relativistic limit coincides with the weak 
Coulomb field limit of the EE rate derived by Avetissian et ai (1986) for the SEI process 
treating the Coulomb field exactly and the wave as a perturbation. In contrast with 
the weak field limit, in the case of the strong EM field to (4.2) contribute all terms of 
the sum and as a result the EE rate becomes sensitive to the type of wave polarization. 
For the circularly polarized wave one can sum the series in (4.2) when 

Then, using the following formulae (Proodnikov et a[ 1983), 

1 - 2  sin t = a 
- 1 .  -sin( na)In(nz)  = f ( t  - a )  

n = !  n 

(4.4) 

(4.5) 

for the EE rate of the electron beam with the circularly polarized intense wave we 
obtain the expression 

where a = Qc, and the phase + is the solution of the transcendental equation 

++ z sin I/I = + + 'pa. (4.7) 
From (4.6) it follows that an incident beam parallel to the propagation direction of 
the wave does not change as a whole its energy due to SB. The absence of EE in this 
case is because of the axial symmetry of the electron trajectories in the circularly 
polarized EM wave. 

For an incident beam perpendicular to the wave propagation direction, from (4.6) 
for the maximum of the EE rate one has 

1 - 2p2+ 0 3 3  - p2).$" -0.25.$'4 
p2+o.25z" (4.8) 5' 

where f ' =  f / y  As is seen from (4.8), the dependence of the maximum of the EE rate 
upon the field of the circularly polarized EM wave for high intensities, when c>> 1, 
becomes linear, as in the case of the weak field. However, for intermediate wave 
intensities, when .$'e 1,  but f " z p ,  this dependence is non-linear. 

In contrast to the circularly polarized wave case, for the linearly polarized wave; 
the EE of an incident beam parallel to the propagation direction of the wave is not 
zero. In this case one can sum the series in (4.2) using the first formula from (4.5), if 

For the rate of EE we obtain 
c ( ~ + p )  .$'sin+, 

- ZTN, Ze2 - - dE"' _- 
d f  OJ (1-p)  4+52(1--p2) 

(4.9) 

(4.10) 

where the phase +I is the solution of the transcendental equation 

+ zi sin +, = 24. (4.11) 
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When the EM field is relatively weak,  CC y, then the maximum of the EE rate over the 
wave phase depends upon the wavefield quadratically, 

H K Auefissian el a1 

(4.12) 

and increases as the beam velocity increases. Note that the energy change of the 
incident electron beam parallel to the wavevector direction is a relativistic intensity 
effect, vanishing in the weak field limit (see (4.3)). 

Now let us consider the situation when a beam with a certain impact parameter p 
scatters in a Coulomb field and the electrons ofthe beam are homogeneously distributed 
over the wave phases. For the circularly polarized wave (2,11a), using (2.12), (2.13,~) 
and (4.1), and performing integration over 4 in (4.l), for the effective EE of the beam 
with an EM wave per unit time and per unit transverse section of the beam we obtain 

(4.13) 
(ipjb) (A+! wa2(ub)(iee*) 

AE(p) = N. -=- Re 
ze2c gi 

[J( ipb)2-azd v p i  2 J(@b)’-a2d-(ipb) 

where 

d = e2(~ee*)Z(ee*+i ( iee*) )  

b = [&[e&*]] + i s  (nee* )  

Equation (4.13) is valid when (I <R(p) -12 i ( r ipe ) f (~ee*) l .  In the inverse case, a >  
R ( p ) ,  the effective EE does not depend on p :  

(4.14) 

From (4.14) it follows that, for very large intensities of the wavefield, when c>> y, AE(p) 
decreases to zero as I/.$’. 

Thus, in contrast to the weak field case, when the energy change of the beam 
averaged over the initial phases is zero (Avetissian and Jivanian 1980, Avetissian ef 01 
1986), the effective EE of the beam in the strong field of the wave differs from zero, 
which directly reveals the intensity effect in the SB process. 

Finally, we note that the analysis of the obtained results shows that one can reach 
an appreciable amplification due to  coherent SB for millimetric waves, when f<< vi f c - 1. 
For example, when a modulated electron beam with a density N.-108cm-3 and 
incident energy 625 keV is scattered on an ionized gas stream with ion density Ni- 
IO” cm-’ and diameter 30 pm, a n  EM wave with a wavelength of l mm and intensity 
of 2.1 W cm-2 can be amplified three times. 

5. Summary and conclusions 

The intensity effect of a strong EM field on both the dynamics of the SB process and 
the coherent effective energy exchange between an electron beam and an intense wave 
due to the SB process has been investigated. Within relativistic theory we derived the 
electron energy change during electron scattering in an arbitrary static scattering 
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potential and an intense EM wavefield. Unlike previous investigations we have treated 
the electron interaction with an EM wave exactly, whereas the scattering potential is 
dealt with as a perturbation. This enabled us to reveal the non-linear variation of 
energy change with the field strength, and also its essential dependence on the polariz- 
ation of the wave. In addition, as an apparent effect of intensity on the dynamics of 
SB one finds that in a strong EM field the average of the electron energy change over 
the initial wave phase differs from zero, in contrast to the weak field case. 

Despite the generality of the results, the energy change is discussed for a screened 
Coulomb potential and for an incident electron parallel to the wave propagation 
direction. This shows that the electron energy change in an intense field due to SB can 
exceed its incident energy. Also, the crucial role of the initial wave phase in the electron 
energy exchange with an intense wave for a short-range potential is elucidated. 
Numerical calculations for a circularly polarized wave help to form a notion of the 
dependence of the energy change on the initial wave phase and EM field strength. 

The calculations carried out for the rate of coherent energy exchange of the electron 
beam with an intense field due to SE also show its non-linear dependence on the field 
strength. In addition, it becomes very sensitive to the type of wave polarization for 
high intensities. Thus, there is no coherent energy exchange between an incident 
electron beam parallel to the wave propagation direction when the wave has circular 
polarization, whereas such an exchange does occur for a linearly polarized wave, as 
a result of the intensity effect. It is also shown that the non-linear dependence of the 
rate of coherent energy exchange on the field strength does not always follow for high 
intensities. Thus, the rate of coherent EE of an incident electron beam perpendicular 
to the circularly polarized wave propagation direction vanes with the field strength 
linearly in the ‘relativistic intensity’ limit, as is the case in the low field limit. 
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