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Boundary conditions for electron tunneling in complex two- and three-dimensional structures
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We present boundary conditions given in integro-differential form for the single-particle two-dimensional
(2D) or 3D Schrodinger equation, which allows for a treatment of nontrivial geometries, and an arbitrary
number of input and output channels. The formalism is easy to implement using standard finite element
packages. We consider a resonant dot structure and transport through a ringlike waveguide without barriers.
The current in the dot is focused on an ellipsoid dot via a tunneling tip. The current-voltage characteristic is
calculated for this system at the temperature 4.2 K. Our results show that the current maxima appear close to
the eigenstates of the quantum dot. We show, however, that only those modes which obey certain symmetry
properties give rise to resonance in the dot, and current maxima are absent for antisymmetric modes at low
temperatures. The current in the waveguide is shown to be a resonant function of the voltage, and the system
exhibits current feedback and turbulence. Finally, we extend the formalism to other types of channels and
equations other than the Schrodinger equation and we discuss some possible applications for these systems.
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I. INTRODUCTION

Advances in growth techniques have created a lot of the-
oretical interest in electron transport in low-dimensional
structures. The interaction of the base region with the leads
must be modeled accurately with the increasing miniaturiza-
tion of devices. The scattering of an electron in 1D is the
simplest scattering problem, and the current is dominated by
the tunneling through resonant states as in a RTD (resonant
tunneling diode!). The real system, however, contains the
local atomic potential, scattering of various kinds, and many-
body interactions. These effects can be treated by adding
new terms to the single-particle Hamiltonian and by using a
self-consistent Schrodinger-Poisson formalism.2 However,
when considering electronic transport in systems with higher
dimensions using an effective mass approximation, the pure
problem of wave transport becomes itself complicated.
Hence, the fundamental study of electron scattering in low-
dimensional (mesoscopic) structures has become a growing
field in physics and many different approaches have been
devised.

The formalism presented in this paper is based on wave
function matching. We consider the interface surfaces be-
tween leads and a complex scattering region into boundary
surfaces, and we show that the boundary conditions must be
of an integro-differential type. The wave function matching
method has been used extensively throughout the years, but
it is not trivial in generaling the approach for an electron
and/or hole traveling through a low-dimensional structure
with an arbitrary shape and potential. Most calculations are
for systems with high symmetry, for example, the calculation
of electrons tunneling through quantum dots,® in which a
lenslike dot with cylindrical symmetry was assumed. In ad-
dition, Mizuta and co-workers* performed a high symmetry
three-dimensional numerical calculation on multimode quan-
tum transport through a quantum dot including the phenom-
ena of mode mixing. The symmetry allowed the wave func-
tion to be separated from the form ¢(x,y)x(z).

Tunneling through a nontrivial structure has been reported
by Xia and Li® who studied electron wave transport through
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a circular planar quantum dot structure. The wave functions
in the input and the output channels were matched to an
analytic expansion of the wave function in the circular struc-
ture. Another interesting matching approach that allows for
complicated structures has also recently been reported,® but
relies on a finite difference treatment. This method allows, in
principle, the study of complicated structures but with the
constraint that the structure must consist of connected rect-
angular blocks.

The Landauer-Biitticker approach and advanced Green’s
functions methods are also commonly used to calculate elec-
tronic transport in mesoscopic systems and a good introduc-
tion of these methods is given in Ref. 7. Recently, a 2D finite
element Greens functions method that included a density-
functional treatment was presented by Havu et al.® The chan-
nels and the base region are represented by Green’s functions
and the boundary conditions are obtained through basis func-
tions used in the numerics. The numerical Green’s functions
method has been generalized to consider multiterminal two-
and three-dimensional systems.” The Green’s functions were
expressed in a numeric matrix form and contact block reduc-
tion was then applied. The Green’s function was expanded in
terms of the 3D eigenstates of the empty base region using
Neumann boundary conditions towards the channels.

For a more complete overview we cite other tunneling
approaches, which includes time-dependent methods!®'? and
density functional methods (DFT) methods.'® The effect of
spin polarization in quantum point contacts has also been
studied by the use of the Kohn-Sham local spin-density
formalism.'*

The integro-differential boundary method used here dif-
fers from other numerical wave function matching methods
in the sense that it can be integrated with commercially
available finite element programs. Such programs often al-
low the user to draw the (complex) structure in a CAD
(computer-aided design) environment where the potential
and effective mass in different sub-domains (representing
different material regions) can be defined without consider-
ing the internal boundary surfaces between these regions.
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The energy levels in a quantum dot, although not all, as
we shall show in this paper, are manifested as peaks in I-V
characteristics. Therefore theoretical predictions can often be
directly compared with measurements. Relevant experiments
may include I-V measurements on planar tunneling devices
(e.g., Jung' and co-workers). A similar experiment for a
three-dimensional tunneling transistor has been performed
by Lind et al.'® In addition, there have been reports on one-
dimensional RTD’s (Refs. 17 and 18) and zero-dimensional
RTD’s.19-2!

This paper is organized as follows: In Sec. II we first
develop the overall theory for the boundary conditions for
cylinder shaped input and output channels. Next, we gener-
alize the concept of channels and give an example of plane
wave scattering in 2D. Thereafter we describe also how to
derive integro-differential boundary conditions for types of
equations other than the Schrodinger equation, illustrated by
a Poisson equation example in 2D. In the Sec. II D we finally
derive the expression for the total current using standard
thermal statistics. The results of two different applications of
the tunneling theory in two dimensions are presented in Sec.
III. Section IV is devoted to conclusions. In the Appendix we
give some details of the integro-differential boundary condi-
tions and of the numerical procedure, where we show how to
implement these for a simple case but also in the specific
FEMLAB software (Ref. 23).

II. THEORY

The following section is divided up into four subsections.
In Sec. IT A we develop the boundary conditions for input
and output channels with general cylinder shapes in two and
three dimensions. Next, in Sec. II B we present the boundary
conditions for plane-wave scattering in 2D. Section II C ex-
plains, through a Poisson equation example, how the match-
ing technique that results in integro-differential boundary
conditions is not uniquely valid only for the Schrodinger
equation. In Sec. I D we give the derivation of the total
current.

A. Tunneling theory

We consider the time-independent single-electron prob-
lem and derive boundary conditions for input and output
channels where the scattering region can be arbitrary shaped.
The matching of various scalar fields (such as a wave func-
tion) and their normal derivatives at the boundaries between
the channels (leads) and the scattering region (sample) is
well known.”?? In our case this matching results in integro-
differential boundary conditions (which are unusual) and for
the sake of clarity we therefore present a detailed derivation.
Explicitly, the derived boundary conditions are input into a
commercial finite element software, which is suitable for
treating arbitrary complex scattering domains and which
generates a numerical grid.

Since we treat a tunneling problem, i.e., an open system,
the Schrodinger equation is not an eigenvalue problem, but
takes the form of the Helmholtz equation
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where E is the energy (an invariant for the whole system), /7
is the effective mass tensor, and V(7) is the potential energy
in the structure. We consider the mass as piecewise isotropic
and constant but the analysis could easily be modified to take
the anisotropy into account, if needed. It is also instructive to
consider Eq. (1) in a scaled form, together with the local
wave number k as

VAW (7) + KPP () =0, ()
2
() = 25 E - Vi), ®)

where a is a scaling constant for the space coordinate 7 of the
system (thus 7 and k are both dimensionless). When V(r)
=0 the solution is a plane wave exp(iiE-?).

The intricate part of the analysis of the wavelike solution
of Eq. (2) [when V(7) # 0] are the boundary conditions. Our
goal is to calculate the quantum current through an arbitrary
three-dimensional (3D) scattering region and the way we can
do this is by introducing input and output channels connected
to the scattering region. The concept of incoming and outgo-
ing channels (leads) with simple properties is not new and
has been applied extensively for the treatment of transport
through mesoscopic systems (Landau-Biittinger approach).’

The channels have to be general cylinders, similar to the
cylinders shown in Fig. 1. The potential inside these cylin-
ders must be separable of the kind V(r)=V(x,y)+V,, and no
dependence on z is allowed inside the channels. For conve-
nience we assume that the wave propagates in the z direction
and that the wave function is confined in the x-y plane (we
will use the Cartesian coordinate system rather than 7, and 7,
for the rest of this paper). The boundary condition on the
channel surface is the homogeneous Dirichlet boundary con-
dition i.e., ¥'=0. The length of the cylinders are semi-infinite
to allow wave solutions in the z direction. In connection with
the scattering region the cross section surface must be flat
(i.e., no curvature of the surface). The effective mass should
satisfy m;;=my,;6;;, where my, is a constant and where my,
and m,, are functions of x and y only.

For each channel (either input or output), we are inter-
ested in the eigenfunctions ¢; and the corresponding eigen-
value \;, determined from the geometry and the equation

- Vz‘Pj(x,)’) = )\j(;pj(x’y)- 4)

This equation is also dimensionless, or in other words,
scaled with a. In an input channel we could express the com-
plete wave solution (here denoted with the index r1 for chan-
nel 1) as

W, =i, (x,y) + 2 re e x,y),  (5)
J

where z; is the coordinate for the interface between input
channel 1 and the scattering region. The subscript w indi-
cates the mode of the incoming wave [for example, the
ground state mode ¢y(x,y)]. The reflected waves (negative
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FIG. 1. (Color online) The rectangular cylinder is the input
channel (of infinite length) and is described by a wave function WV,
and wave numbers k;. The circular cylinder is the output channel in
where we have a wave function ¥,; and wave numbers «;. The

input- and output-boundary surfaces of the complex structure (the
conical volume in this case) are denoted as u;(x,y) and u,(x,y).

sign in the exponential) are weighted with the reflection co-
efficient r for the jth mode, respectively. Indeed, the wave
function W, in Eq. (5) is a solution to Eq. (2) if we demand

that k; must satisfy the relation

2

2mia
K== (E-Vi) -\, (6)
where V; is a constant potential in channel 1 (not included in
\;) and m, is the effective mass in channel 1. For example,
we may use the potential difference AU between a source
and a drain contact so that V,=Vy and V,=Vj and eAU
=Vs—Vp. For small values of the energy E and for higher
modes, k; could hence be imaginary and represent decaying
solutions so that |¥|— 0 when |z] — .

The solution ¥ in Eq. (2) and its derivative with respect
to the plane normal coordinate (in this case z) should be
matched at z;. We denote the scattering space with () and
boundaries to it with d€);. At the boundary surface (), (the
surface toward the input channel) is denoted as u,(x,y) to
avoid confusion with W, i.e., d(); is a subspace of () and
hence u,(x,y) is a subset of W (7) (see Fig. 1). The matching
condition W, =u; at z=z, reads then

M]()C,y) = GDM(X,)’) + 2 ’”]<P](X,y) (7)
J
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We must also match the normal derivative on the bound-

ary by the equality
1

Maq,

1
- —A-VV,
my .

7 4

ﬁ'Vul

. (8)

where M0, is the effective mass inside () close to channel 1
and m; is the effective mass in channel 1. In this case
A=-7 so we get
1 1 9¥,

A-Viu=-———"
mml my Jz

I
- m_1<_ ik, (x,y) + 2}‘, ikjrjq;j(x,y)), ©)

On this form all r; are unknown and we therefore take
advantage that ¢; is an orthonormal and a complete set to
determine r; in terms of u;(x,y). By multiplying Eq. (7) from
the left with ¢;(x,y) and integrating over d€); we finally

obtain

rj == 5M,j+f QD;(X,Y)”I(xsy)dx dy (10)

We take this expression for r; and insert it into Eq. (9) to

obtain an integro-differential boundary condition

A ma&z . . ~
}’l-VI,{l = ( 1)(— Q'ZkM‘PM(x’y)-l-E lkjul’j(pj(x,y)>,
J

nmy
(11)

where i ; is the jth Fourier component of u,(x,y) in terms of
the basis functions ¢;(x,y)

= f @ (x.y)uy (x,y)dx dy. (12)

Equation (11) is the boundary condition used in finite el-
ement software programs. It is an integro-differential bound-
ary condition in the sense that it contains both a derivative
and surface integrals [Eq. (12)] but it is similar to the general
Neumann boundary condition —7i- Vu+bu=g, where b and g
are coefficients and where g is a source term. In the Appen-
dix we give a more detailed comparison between the Neu-
mann boundary condition and the derived integro-differential
boundary conditions and we also compare them with Green’s
functions.

The first term on the right-hand side of Eq. (11) is the
source term for the wave solution of the Helmholtz equation.
Without the source term, the solution of the Helmholtz equa-
tion in the 3D scattering region would be trivial, i.e., W(r)
=0. The sum is a linear expression in terms of the discrete
and numeric u,(x,y); the problem is purely linear. By com-
bining Eq. (12) with Eq. (10) we could express the reflection
coefficients in terms of the Fourier components as

rj=—5lu’j+171’j. (13)

Matching of wave functions and their derivatives assumes
normally that the wave function is known at one place, but
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this is not the case here since the wave function is unknown
on both sides (i.e., the reflection coefficients are unknown,
and must be “removed” by the orthogonal integration trick).
This method could also be seen as a generalization of the
transfer matrix method used for one-dimensional structures
(see, for instance Ref. 22).

The boundary condition could also be treated for a 2D
problem, if we instead consider u;(y) and the corresponding
integration over a boundary line instead of an area (d€;). In
ID the corresponding boundary condition (where the input
boundary is a point, described by the scalar u;) reads

du myq
iutad Y (—‘)(— ik, + ikyu,). (14)
dZ m

We now analyze the boundary conditions for an output
channel. A complete wave solution in an output channel
(here denoted by the index 71) has the form

U, =2 1" 2 (x,y), (15)
J

where the outgoing waves (positive sign in the exponen-
tial) are weighted with transmission coefficients ¢; for the jth
mode, respectively. Here we choose the basis set ¢;(x,y) and
wave numbers ; to distinguish from the input channel, since
the output channel could have a different shape as well as a
different potential offset V, (see Fig. 1). The basis functions
d)j, the eigenvalues )\; and wave numbers K; are determined
from

- V2¢j(x’y) = )\7@”]()@}7), (16)
2
@ = 2";22‘1 (E=V,) - \7, (17)

where m, is the effective mass in channel 2.

Denoting the wave function at the output boundary (), as
u,(x,y) we obtain after some steps the integro-differential
boundary condition of output type

A Vi = (mmz) (E ixjﬁz,j@(x,y)), (18)

my

where it ; is the jth Fourier component of u,(x,y) in terms of
the basis functions ¢;(x,y) [compare with Eq. (12)]. The
transmission coefficients ¢; are in this case given by

t‘zﬁz’j. (19)

J

In one dimension the corresponding Neumann boundary
condition is given by

d e
ﬂ—l.Kzl/l2( ’ 2) =O, (20)
dz my

where the output boundary is a point, described by the scalar
uy. In the 1D case [see Egs. (14) and (20)] we assume the
input wave to be explik,(z—z;)]+r exp[—ik,(z—z;)] and the
output wave to be: fexplixy(z—z,)]. When the solution
(which includes u; and u,) has been obtained we can calcu-
late the reflection and the transmission coefficients as r=u;
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—1 and t=u,. For some cases this method is better suited
than the transfer matrix method since the local k(z) in the
transfer matrix method causes singularities for some types of
potentials (resonant tunneling potentials, for example) and as
well as for long wavelengths (the solution by the transfer
matrix method gives normally numerical errors in this limit).
Note that the well-known tunneling through a barrier prob-
lem easily could be solved with this method using the bound-
ary conditions described above and without the matching of
wave functions (this is already included in the boundary con-
ditions).

The solution of Eq. (2), together with the boundary con-
ditions given in Eqgs. (11) and (18) is unique. The solution
W(r) incorporates as well the boundary functions u, and u,.
These functions could then be decomposed into their Fourier
components, i.e., we could obtain r; and 7; from u; and u,.
Further on this means that we also have the full solution of
the whole system, not only in the scattering region, but also
in the input and the output channel. For this purpose we use
Eqgs. (5) and (15), where it should be noted that these expres-
sions are defined using the specific z dependence relative to
the adjacent surface normal. Generally, we should replace
exp(—ik;(z—z;)) with exp[ik;i-(r—ry)] for an input channel
and we should use exp(—ik;i-(r—7,)) for an output channel,
where we define the plane normal 7i; we point outward to-
wards the boundary of the inner scattering geometry.

It is of crucial importance that all eigenfunctions are nor-
malized to unity, since the whole derivation is made with this
assumption. Also, the complex conjugate of the normalized
basis functions, used in the expressions for #; j and ﬁzj, is
also important to keep in the 3D case (when, for example,
the eigenfunctions could be found to be analytical complex
functions).

Note here that there is no coordinate dependence on any
of the boundary conditions. This implies that our system is
invariant under translation and rotation. We could therefore
safely consider a channel coming in or out from any direc-
tion and not only from the z direction. The important prop-
erty of a channel is its cross-section eigenvalues and eigen-
functions (which also are independent of rotation and
translation).

Finally the normalization of the wave function is of inter-
est. Consider that the input and the output channel have the
length L in dimensionless units, which in turn must tend to
infinity as we assume plane-wave solutions in the z direction.
It is thus evident that the integral of |W|? in the scattering
region () will be relatively small in comparison with the
normalization integrals in the channels if L—cc. The total
normalization integral N is then (here for the case when we
only have one input channel and one output channel) given
by

N:aSL(l + 2+ |tj|2]). (21)
J

The factor a® stems from scaling and L (dimensionless)
will however disappear when the total current is summed up,
as will be shown in Sec. II D. When the numerical solution

has been found, the quantum current density ;(7) could be
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calculated (and be visualized) directly by using the well-
known expression

eh
m(r)aN

FGES Re{iW’(7) V W(9)}, (22)
where e is the charge of the electron, m(r) is the coordinate
dependent effective mass, a is the coordinate scaling param-
eter, and N is given from Eq. (21). Finally, the procedure to
include more than one input and output channel is straight
forward, even if the physical interpretation of how an elec-
tron has its source from two different infinite channels seems
to be absurd. However, interesting interferometry phenom-
ena may be studied by introducing a phase difference be-
tween two input channels for a similar electromagnetic prob-
lem.

B. Plane-wave scattering

In Sec. IT A we gave the boundary condition for cylinder
shaped channels. To illustrate the generality of the wave
matching method we show here how this technique could be
used to treat plane-wave scattering in 2D.

The idea is to enclose the complex scattering region, also
including an arbitrary potential V() within a circle, say with
radius R. Outside this radius we assume V(r)=0 and we here
have an incoming plane wave given by exp(ik,x), where k; is
the wave number determined from the energy relation k;
=\2mE/h>.

Using the Jacobi-Anger expansion of a plane wave we
could write the wave function outside the radii, ¥, as

o]

i(p.a)= 2 [i*],(kip) +r,H,) (kip)le™,  (23)

pu=—0

where T is the uth reflection coefficient, J u are the Bessel
functions, and HLI) are the outgoing Hankel functions, valid
for p=R. The angle « in the x-y plane is defined so that x
=p cos(a), etc. Denoting the numerical solution of W(7) at
the boundary (p=R) as u(a) we match it with the wave func-
tion in Eq. (23) and we also match their normal derivatives
(with respect to p). The same procedure as in Sec. I A re-

sults in the integro-differential boundary condition

o

A-Vu= X k[ (kR) +r,H) (kR e, (24)

==

where the reflection coefficients are given by

i1~ 2w, (kiR) (3)

rp= )
“7 2aH(kR)

and where finally the Fourier components i, are defined by

2w

i, = f e My (a)da. (26)
0

It is also possible to combine different types of channels,

depending on the specific geometry of interest (in 2D, semi-
circles and lines and in 3D, semispheres and cylinders). The
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second term on the right-hand side of Eq. (23) represents a
scattered wave. The reflected terms could be used to estimate
the angular-dependent magnitude of the echo from an arbi-
trary object, given a pulsed incoming signal, even though
this, in principle, is a time-dependent problem.

C. Other equation types

The technique to derive integro-differential boundary con-
ditions for the Schrodinger equation could also be adopted
for other equations such as the Maxwell’s wave equations,
acoustic wave equations, and Poisson’s equation to name
some examples. In fact, the technique could be used for any
type of partial differential equation (PDE) if a complete ana-
lytic expansion exist in a semi-infinite space. To illustrate
this we give a simple example where we derive integro-
differential boundary conditions for Poisson’s equation in
2D.

Consider a complex charge distribution between two
grounded plates in 2D separated by a distance of b, (0<x
< D). We demand that the electric potential should approach
towards zero as |y|— ce. If the charge distribution (and pos-
sibly also additional inner boundaries), are kept within the
domain —-d<y<d, we only have to solve the PDE within
this domain, but with boundary conditions at y=+d that are
similar to those described in Sec. II B. The electric potential
¢, in the region y>d is then given by

¢1(X,)’) = 2 ry Sin(nbﬂ)e_kn(y_d), (27)

where k,=nm/b to fulfill the solution of the charge-free Pois-
son equation for each term and where r, are coefficients.
Denoting the numerical solution at the boundary y=d as
u,(x) we obtain the boundary condition

AV ()= — ki, sin(%), (28)

where i, and r, are given by the Fourier components of
u,(x) in terms of the x-dependent basis functions as

1 b
ﬁn=rn=?f ul(x)Sin<@)dx' (29)
Vb b

0

The boundary condition at y=-d is similar. The inner
region could contain inner boundary regions with arbitrary
boundary conditions as well, since they are treated by the
numerical solver program (FEMLAB, for instance).

An interesting application of this method is the Coulomb
integral problem. For a charge distribution that is restricted
within a certain radius one could obtain the electric potential
by solving Poisson’s equation numerically, without sticking
into the image charge problem (by use of the spherical har-
monics).

D. Thermal statistics of total current

In the derivation of the total current, which is obtained by
the use of the Fermi-Dirac statistics, we assume noninteract-
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ing electrons. A more precise treatment would be to include a
self-consistent potential field arising from the electronic
charge density in the structure. In that case we must perform
a self-consistent 3D Schrodinger-Poisson calculation. We ig-
nore this phenomenon here since we want to focus on the
tunnel mechanisms in this paper.

With the noninteracting electron assumption, the total cur-
rent I(E) in the outgoing channel, contributed from a single
electron, with the energy E, is obtained by integrating the z

component of f(?) over the channel surface. Using orthonor-
mality of the basis functions we obtain

my j

Note that the wave vectors «; also are dimensionless.
Both presented expressions in the above equation could be
used, since we know the current density numerically [see Eq.
(22)]. The normalization constant N involves the length L of
the incoming channel. Hence, the factor 1/L could be inter-
preted as a line density for one electron. However, when we
sum up the current from all free electrons in the channels, we
should rather use the Fermi-Dirac statistics to respect the
Pauli principle. The standard procedure is to perform the
following replacement:

1 dk
z“f (;) 31

The factor 2 stems from spin degeneracy. More precisely,
we also include the Fermi-Dirac distribution f, containing
the Fermi energy Er and the temperature 7. We must also
sum over all eigenmodes in the channel. Particle conserva-
tion results then in the following equation for the Fermi en-

ergy:
* dk
o expl(\j+ k> —ep)/pl+1°

ma’An = E
J

(32)

where A is the area of the channel in dimensionless units, n
is the electron density in bulk, and 7=2ma’kgT/%* is a
dimensionless temperature. The Fermi energy is also scaled
here for simplicity, i.e., Ep=fi’ep/2m,a*. At T=0 K we ob-
tain the simplification

7m3An=E \e"eF—)\j®(8F—)\j), (33)

J

where ©(x) is the unit step function. This expression is easy
to draw by hand, and it can be used to graphically estimate
the numerical solution of &p. If the number on the left-hand
side is small (i.e., if ma’An<\\,—\;) we only need to inte-
grate up k in the first subband in the expression for the total
current. But if it has a larger value, more subbands have to be
included (even at T=0 K). For small, but finite temperatures,
the graph is smooth so that we may need to take the first two
subbands into account and so on.

When the Fermi level has been found, the current can
easily be obtained. For a case where the structure is very
thin, i.e., an effective two-dimensional system, the total cur-
rent is given by
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eh f’o I(k)dk (34)

2 T Jo exp[(\j+ K> —ep)/n]+ 1’
where I(k) is the dimensionless surface integral (i.e., line
integral for two dimensions) of the current density at the
incoming (or outgoing) channel if we omit the factor a’L, but
keep the normalization sum in Eq. (21) and omit the factor
efi/m in the current density expression [See Eq. (22)].

In the given expression for the total current we ignore the
backward current from the output to the input channel. The
arguments for this approximation are the following; (i) The
temperature is low. (ii) The current is small everywhere ex-
cept at certain applied voltages where current resonance ap-
pears. Physically we must have /=0 at V=0, but since the
current given in Eq. (34) is extremely small at V=0 (far from
resonance) we can ignore the influence of the backward cur-
rent. The backward current will only be significant in the
thermal energy range, which corresponds to 0.3 mV for T
=4.2 K. We will show in the result section that the first reso-
nant current peak in the /-V characteristic will appear first at
approximately 50 mV, which is hence far away from
0.3 mV.

III. RESULTS

The result section is divided into two subsections. In Sec.
IIT A we present numerical results for electron transport
through a ringlike waveguide structure. In Sec. III B we
present results of resonant electron tunneling through a struc-
ture with a sharp tunnel tip and a quantum dot.

A. Transport through a ringlike waveguide structure

The structure we study here is shown in the upper part of
Fig. 2 (in dimensionless units), where the horizontal and ver-
tical axis are referred to as the x and the y axis, respectively.
An electronic wave is assumed to be injected at the top of the
left side and a transmitted wave is assumed to exit at the top
of the right side. The steady state currents, i, i,, and i,, are
shown with arrows in the figure. Kirchhoff’s first law for the
node at the left side (i.e., close to the point x=—1.5 and
y=-0.5 in Fig. 2) is given by iy=i,+1i, and at the right node
(x=1.5 and y=-0.5) it is given by i,+i,=i,, using the direc-
tions shown in the picture. Note also that input current (i)
equals output current, i.e., influx equals outflux. In the lower
part of Fig. 2 the real part of the electronic wave function is
shown for a case when an electron is accelerated through a
linear potential drop between the input and the output chan-
nel. The situation is clearly analog to the case of an electro-
magnetic wave propagating through a waveguide.

The voltage drop through the structure is obtained by
solving the Laplace equation. The obtained potential is then
coupled to the Schrodinger equation numerically. In a real
situation, we have to calculate charges in the structure and
solve Poisson’s equation self-consistently with the wave so-
lution of the Schrodinger equation for all energies of occu-
pied states. However, we ignore this phenomenon here, since
we want to focus on the transport mechanism. Therefore, we
mimic the potential by the following assumptions: (i) The
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FIG. 2. (Color online) The upper figure shows the structure with
incoming and outgoing current i,. The x and the y axis are oriented
horizontally, respectively, vertically in the figure. The arrows la-
beled i, and i, indicate currents in the lower and the upper branch,
respectively. The lower figure shows the real part of the wave func-
tion W for a low voltage bias (V=0.2). The grayscale ranges from
black [Re(¥)=-1] to white [Re(¥)=+1]. Re(¥)=0 corresponds
to “medium” gray, also valid for the boundary where W=0.

input surface is grounded and at the output boundary we set
the potential to —V, where the applied voltage V is varied for
different calculations (a positive voltage bias). (ii) On all
other boundaries in the structure we apply homogenous Neu-
mann boundary conditions (in conductive media electrostat-
ics this corresponds to zero current through the walls).

For the wave function we use a homogenous Dirichlet
boundary condition on the rectangle in the middle, represent-
ing hard walls. In principle, we can replace this region by a
region with a high barrier, but it is our intention to define our
system in this way for two reasons. First, we want to show
that our model can treat inner boundaries with arbitrary
shapes. This is an advantage of our approach that we want to
emphasize. Second, this opportunity allows us to reduce our
numerical grid essentially. The outer boundaries are also of
the Dirichlet type.

The geometry, the Schrodinger equation, the energy, and
the voltage are all scaled (i.e., they are dimensionless) to be
of the order of unity.

For the analysis of this subsection we introduce the con-
cept of current gain, denoted G and current feedback, de-
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Current / Gain

Voltage

FIG. 3. (Color online) Total current (i, solid line) and gain (G,
dash-dotted line) vs applied voltage. The current is a resonant func-
tion of the voltage. The gain is changing sign abruptly at V=10.8,
where ip=0. For G<0 and G > 1, the current circulates clockwise
or counter clockwise, respectively (see Fig. 2).

noted B. Based on our numerical result, we find that the
current may circulate clockwise or counter clockwise in the
circuit at certain ranges of the energy and the voltage bias-
ing. In other parameter regions, the incoming current i, is
only “classically” divided into i, and i,. The phenomenon of
feedback in the structure is possible because of wave func-
tion coherence, but it is not easy to understand from a sim-
plified signal model. Therefore we introduce the concept of
feedback phenomenologically. For the case of counter clock-
wise current circulation we assume that the current i, is a
fraction of the current i, given as i,=—fi,, where the minus
sign indicates an opposite direction. The feedback fraction 8
is strongly dependent on the wavelength and the voltage drop
in the structure. Further on, we define the gain as G=i,/ij.
Combining Kirchhoff’s first law and the definitions of G and
B we obtain G=1/(1-4). Thus if 8=0.99 (99% feedback)
we obtain a gain G=100. This means that 7, is a factor 100
times larger than the incoming current and that i, is 99 times
larger than i,. The same discussion can be applied to turbu-
lence phenomena, obtained in our calculations as well.

By plotting the gain as a function of the voltage we obtain
information of whether there is circular current or not. In the
range 0 <G <1 (B<0) we have no feedback and the incom-
ing current i is divided into i, and i,. If G=1 (0<B<1)
the current circulates counter clockwise and finally if G=0
(B=1) the current circulates clockwise.

In Fig. 3 the current and the gain are plotted as a function
of the voltage. All results are given in dimensionless units.
The energy is kept fixed for this calculation and is equal to
the mean value of the first and the second eigenvalue of the
boundary, e=(\;+\,)/2 [See Eq. (4)]. The incoming wave is
assumed to be in the ground state mode, which is true for
low temperatures and moderate doping levels in the input
channel. For a large bias voltage we get a long wavelength in
the input channel and a short wavelength in the output chan-
nel [i.e., compare Eq. (6) and Eq. (17)]. We see that the
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FIG. 4. (Color online) (a) Current density shown for a low volt-
age bias (V=0.2) where the current in the lower branch (i,, see Fig.
2) is larger than the incoming current (i.e., positive feedback G
>1). Arrow lengths are proportional to current density. (b) Current
density shown for V=4.8, where the incoming current is divided
equally between i, and ij.

current is a resonant function of the voltage, which could be
understood if we look upon the structure in Fig. 2 as a reso-
nant “cavity” with certain resonant modes. In this calcula-
tion, we keep the energy fixed and vary the voltage, but a
parallel calculation, when the energy is varied and the volt-
age is kept fixed, results in the same characteristic resonant
current variation. It is worth noting also that the resonant
peaks are not as sharp as for a barrier structure.

The gain covers all three ranges as has been mentioned
before. We have therefore plotted the quantum current den-

sity f, visualized with arrows, for three different regions of
G. In Fig. 4(a) the current is shown for V=0.2, where G
>1. We clearly see here that the current circulates counter
clockwise and that the current in the lower part of the struc-
ture is larger than the incoming current (i.e., compare with
current i, in Fig. 2). The fact that the current goes back is
purely a quantum phenomenon. This means that an electron
travels “upward” a potential hill. Classically a particle will
proceed only to the output channel since the potential is
lower there. This is possible because of coherence and the
fact that the wave function on the right side “feels” the left
side. The explanation is also analog to the case of tunneling
through a barrier, something forbidden in a classical system.
In Fig. 4(b) the current arrows are shown for V=4.8, where
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FIG. 5. (Color online) Current density (arrows) and streamlines
(thick lines) obtained by the equation system dx(r)/dt
=j(x(2),y(t)) and dy(t)/dt=j,(x(¢),y(?)). In the figure the stream-
lines have finite lengths (of numerical reasons); they end at different
places depending on where they start. The thin lines correspond to
the isolevels of j,=0 and j,=0. At several places we obtain so-
called critical points (j,=j,=0) around where streamlines circulate.
The flow goes from the input channel to the output channel via the
upper branch. The lines starting from the middle of the upper
branch circulate in clockwise direction.

G=0.5 and the current i; has a maximum. For this voltage,
the current i, is divided “classically” into i, and i, (inter-
preted as probability that a billiard ball goes in one of the
possible paths). Obviously, there is no effect of feedback in
this case.

In Fig. 5 the current arrows and the corresponding stream-
lines (numerically they have finite lengths) are shown for V
=10.8 with G=-2 which is very close to a current minimum
(we may call this antiresonance since the current is almost
equal to zero here). In this case the current is circulating
clockwise. The feedback seems to be assisted by the different
centers of turbulence. The thin lines in Fig. 5 shows the
iso-levels of j,=0 and j,=0. At the points where these lines
cross each other we have so-called critical points (the term
critical point stems from the stability theory, established by
the famed mathematician Lyapunov). Streamlines that start
close to such a point will propagate in closed circular loops
around this point, which can be seen in the figure, i.e., that is
what we refer to as turbulence. Note also that the current
density arrows near some of the critical points have a signifi-
cant larger magnitude than the incoming current density ar-
rows. In fact, one could claim that the effect of turbulence is
a consequence of “local” feedback or a constructive interfer-
ence of a coherent wave function.

All the discussion about feedback relies on the fact that
the wave function is coherent, but in reality we know that
scattering processes of various kind will destroy the coher-
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FIG. 6. (Color online) Upper figure: j,(x) shown for y=1 solid
line, y=0.3 dash-dotted line, y=0 dashed line, and y=2 dotted line
in the input channel (see Fig. 2 for information about coordinates).
Lower figure: Current density shown for y=1 solid line, y=1.2
dash-dotted line, y=1.6 dashed line, and y=2 dotted line. j,(x)
takes the ground state shape for large positive values of y (see the
dotted lines in both figures). Currents above the boundaries (y
> 1) are obtained from the analytic expressions of the wave func-
tions; meanwhile the profiles below the boundaries are interpolated
form the numerical solution. It is instructive to compare jy(x) in the
upper figure at y=0 with the current arrows and flow lines in Fig. 5
at the same position.

ence. However, we believe that the destruction of coherence
will be small at low temperatures. Experimentally, the exis-
tence of a magnified circular current could be detected indi-
rectly by measuring the magnetic field close to an inner loop,
for example, by using some SQUID equipment (i.e., super-
conductive quantum interference device, used for magnetic
flux quanta detection). However, the total current is a sum of
currents from many electrons with different energies and the
feedback effect will, therefore, be diminished at high tem-
peratures.

In Fig. 6, we show finally the current density j,(x) at the
input and output boundaries at various positions of y, for the
same situation as in Fig. 5. The total current i is the line
integral of j,(x) over the boundary. The upper figure shows
the current density at the input boundary (at y=1). In the
calculation we take 15 terms into account in the expression
for the integro-differential boundary condition in Eq. (11),
which is a very good approximation (no tracks of numerical
oscillations can be seen). The output current density (lower
figure) is a little bit more complicated and shows that we
actually have a partial incoming current close to its left
boundary. Nevertheless we see that 15 Fourier terms is fairly
enough to use in the boundary condition. The use of too few
terms in the Fourier sum results in an oscillation of the cur-
rent density at the boundaries. The phenomenon of negative
outgoing current at the output boundary could be explained
by the fact that there is a turbulent center very close to it (see
the critical point in Fig. 5). When we extend the output
boundary outwards the channel (i.e., to y=2 in Fig. 2), we
see that the shape of j, is almost dominated by its boundary
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FIG. 7. (Color online) (a) The structure specifying different ma-
terials and their effective barrier potentials in the structure (barriers
are gray and channels are white). The x and the y axes are oriented
horizontally, respectively, vertically in the figure. The shortest dis-
tance between the tip and the ellipsoid dot is 2.5 nm. (b) Wave
function [W|' (grayscale), with corresponding values at the bar to
the right. The potential barrier is 113 meV and the figure shows the
first resonant state (see Fig. 9, V=143.1). (c) Streamlines for the
current flow (lines) for the same case as in (b) also including current
probability density j.(y) at the input and the output, boundaries
(Gaussian-like functions). (d) Current density (arrows) and input
and output j(y) for V=298.3 between the first and the second reso-
nant state (see Fig. 9). The flow lines are focused onto the dot via
the tunnel tip, but are then divided inside the dot. (e) Laminar and
turbulent (circular) current streamlines and j,(y) at the input and the
output boundaries for V=313.8. The laminar flow lines are focused
on the dot via the sharp tunnel tip but splits into three beams. The
turbulent (circular) current flow is located between the tip and the
right side of the dot. (f) Current streamlines and j,(y) at the anti-
symmetric state 2p, (see Fig. 10, V=215.8). The current at y=0 is
zero and due to symmetry reasons the current must go a longer
distance within the barrier. A focusing effect exists in the dot.

ground state, but this will, of course, also increase the size of
the numerical grid. Actually, we can place this channel
boundary at a lower position of y if we want. It is, however,
easier to visualize the transport behavior by extending the
channels this way.

B. Resonant dot

The investigated structure for this subsection is a thin pla-
nar structure and is shown in Fig. 7(a). The input channel
extends along the horizontal axis (x axis) and has a width of
40 nm (in the vertical y direction) and it is connected to a
60° triangular tip. The triangular tip consists of the same
material as the channel. The output channel has the same
width as the input channel, also of the same material as the
input channel. Between the tip and the output channel we
have an elliptic dot with the semiradii R,=5 nm and R,
=15 nm. The dot consists of the same material as the tip,
input, and output channel. The difference in radii separates
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the resonant energies between the x and the y direction. The
dot is surrounded with a barrier material which is connected
to the tip and the channels and we assume everywhere per-
fect heterojunctions. The thickness of the whole structure is
taken to be 0.4 nm and it is assumed to be connected to an
underlying barrier layer. Above the structure we may, for
instance, assume that it is covered with an oxide cap layer (or
vacuum) in which the wave function decays very quickly.

According to the one-dimensional tunneling theory, the
resistance increases exponentially with the thickness of the
barrier. Therefore we expect most of the current to take the
shortest path through the barrier. It is also clear from the two
barrier potentials, shown in Fig. 7(a) at y=0 and y=10 nm
(solid lines), that the structure is a resonant tunneling struc-
ture due to the potential cavities between the two barriers.

The material for the input channel, tip, dot, and the output
channel is taken to be GaAs, n-type doped with a concentra-
tion n=2.5%10'"® cm™ in the channels and no doping in the
dot. This is a high concentration for this material and it is
chosen to guarantee full ionization of the donors at T=0 (i.e.,
full ionization occur above the Mott-transition doping con-
centration, but this phenomenon refers to physics that is
present in this single-particle calculation). The chosen con-
centration guarantees thus a metal-like characteristic at very
low temperatures. For our calculation we choose T=4.2 K,
which is a standard temperature. The concentration is also
low enough for the first channel subband to play a dominat-
ing role. This means that only the ground state A, (at the
boundary of the input channel) gives contribution in the ex-
pression for the total current. The barrier material is taken to
be Alj4GajgAs with no doping. This structure could be re-
alized experimentally using E-beam lithography and chemi-
cal vapor deposition of Al, Ga and As to the structure. The
width of the channels, the doping concentration, and the tem-
perature are chosen this way since the calculation time is
essentially reduced and also since this choice emphasizes
pure quantum phenomena.

We effectively treat the problem as a two-dimensional
system in the x-y plane since the thickness in the z direction
is much smaller than the dimension of the structure. At low
temperature and modest doping concentration of the input
and output channel, the large energy separation between the
ground state and the first excited state in the z direction will
be so large that the ground state totally dominates, i.e., the
three-dimensional wave function is taken to be W(r)
=i(x,y)&(z), where &(z) is the normalized ground state
function in the z direction.

The used material parameters are calculated as follows.
For the Al,Ga,_,As/GaAs interface, the band gap E,, the
conduction band offset AE,, the effective mass m”", and the
dielectric constant & are taken to be given by the empirical
interpolation formulas??

E,(x) =x3030 + (1 — x)1424, (35)
AE (x) = 0.65[Eg(x) - Eg(O)], (36)
1 X 1—x

m =— 4+ s 37
m (x) 0.15 0.065 (37)
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e(x) =x10.06 + (1 —x)12.85, (38)

where E, and AE, are given in meV, m" is given in units of
the electron mass and, e is given in units of the vacuum
dielectric constant (gy). This gives for x=0.4, AE,
=417.6 meV (the barrier potential in the structure).

We use the numerical solution of the Laplace equation
(the electric potential) V(x,y) in the Schrodinger equation. A
given voltage bias V between the input and the output chan-
nel scales the solution of the the Laplace equation. The elec-
tric field close to the tip is discontinuous and the numerical
grid is therefore refined in this region (we use an adaptive
solver), but the discontinuity does not affect the result since
the potential is continuous. The boundary condition for the
Laplace equation at the input boundary and on the tip surface
is given by V=0, i.e., the potential in the tip is constant. The
potentials at the barrier walls are taken to be of Neumann
type, to mimic a realistic linear potential drop through the
structure. The same argument as for the previous result sec-
tion applies here also (see Sec. III A for details).

We add the barrier potential to the electrical potential, so
that the effective potential used in the Schrodinger equation
is given by V(x,y)— V(x,y)+AE (x,y), where AE.(x,y) is
the conduction band offset.

The contour levels of the wave function |¥|!”° is shown in
Fig. 7(b) for V=143.1 and the current streamlines are shown
for the same case in Fig. 7(c). This voltage corresponds to
the first resonant state as can be seen in Fig. 7(b), where
|W|'3 in the dot is relatively large and also have the 1s shape
(V=143.1 corresponds to the first current maximum in Fig.
9). We visualize the charge density in Fig. 7(b) using the
power 1/5 (of |¥|) instead of 2, since the local maximum in
the dot will be visible in the grayscale contour plot (the
light-gray area in the dot) for this choice of power. Current
flow lines give information of the tunneling paths. The dis-
tances between the flow lines at the input boundary (in the y
direction) are proportional to the current density j.(y). Both
the input and the output current densities j,(y) are typically
Gaussian shaped. The flow lines are focused into the dot via
the sharp tunnel tip and the ellipsoid dot seems also to act as
a “lens” for the incoming current; this is why the shape of
the current density at the output boundary has a smaller
width than the incoming distribution. If the size of the dot
would have been smaller, we also expect this focus effect to
become sharper, since tunneling through the dot gives “least
resistance.”

The input energy is low in comparison with the barrier.
Therefore the wave function within the tip is a smooth func-
tion. At higher energies this changes actually and reflection
at the barrier gives rise to the turbulent current in the tip
region since the wavelength becomes comparable with the
size of the tip.

In Fig. 7(d) the current density (arrows) is shown for volt-
age between the two first resonant levels. The length of the

arrows are proportional to f(x, y). The current streamlines
take interesting paths in this case, where the incoming beam
from the tip splits into two beams. As a result, the current
density at the output boundary is shaped as two separated
Gaussians.

|1/5
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FIG. 8. I-V characteristic for tunneling through the ellipsoid dot.
A zoom of the first peak shows a negative differential resistance of
the order of 500 M(). The first state corresponds to the ground state
in the ellipsoid dot. The second peak with a smaller maximum
current corresponds to a symmetric eigenstate, with three |¥|
maxima along the y direction (3p,). The third peak corresponds to
an eigenstate with two |W| maxima along the x axis (2p,).

Figure 7(e) shows the current stream for V=313.8 (the
second peak 3p, in Fig. 9). It is interesting to observe that
the flow perforfns circular motion (i.e., turbulence) within
the dot for this voltage bias. The current beam from the tip
splits here into three beams, which is also indicated by the
current density at the output boundary (which reminds on a
diffraction pattern of light that passes through a small split).

Figures 7(b)-7(e) share in common that the wave function
within the dot is symmetric. No anti symmetric state is found
during the calculation. The reason for this is that the incom-
ing wave is symmetric. The wave function in the dot cannot
change phase if not the connected wave function in the tip
also change phase. As a result all anti symmetric transverse
resonant modes are suppressed and give no current maxima.
In Fig. 7(f) we show, therefore, the current streamlines and
J(y) for the first antisymmetric channel state. The first reso-
nant state is not the symmetric ground state for the dot, as
one could have expected. Instead, the first resonant state is
antisymmetric. The current density distribution at the incom-
ing and the outgoing boundary are also reflecting this fact.
The (+) and (—) in the figure indicate the phase of the wave
function in respective region of the structure. We see that the
current flow lines must take a much longer path through the
barrier, and as a result, the current must also be much smaller
than for the symmetric case (see Fig. 8 also). Note: The
energy is increased for this case, to allow wavelike solutions
[8: ()\2+)\3)/2]

The calculated /-V characteristic is shown in Fig. 8. Due
to the high barrier and the low temperature the widths of the
three resonant peaks are small (comparable with the thermal
energy for T=4.2 K). A zoom of the resonant ground state
peak (located at 50 mV in Fig. 8) shows that the width of the
peak is about 1 meV and that the maximum current is about
1 pA. In the calculation we solve the Schrodinger equation
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FIG. 9. (Color online) Single-electron tunnel current and rela-
tive probability to find the electron within the dot (both dimension-
less) shown as a function of the voltage at a constant energy. The
peaks of the resonant current and probability appear at the same
kind of resonant states in the dot. The incoming wave is taken to be
in the ground state of the input boundary (\;). The first peak cor-
responds to the ground state “ls” and the second peaks to the ex-
cited state 3p,. The resonant state 2p, appears close to V=500.

for many wave numbers in the input channel (which thus
alters the energy E), and the total current is a sum of all these
values, according to the Fermi-Dirac statistics [See Eq. (34)].

The second peak in Fig. 8 corresponds to a resonant state
with three |W| maxima, which we refer to as 3p,, which is
symmetric with respect to the x axis. The maximum current
is about 1/3 of the ground state peak. The reason for this is
that only a third part of the wave function, located in the dot,
is close to the tip [compared with Fig. 7(b)]. The third peak
corresponds to a resonant state with two || maxima along
the x axis and is referred to as 2p,.

Since the current is a sharp resonant function of the volt-
age a special procedure is used to find the maximum of the
current for all values of the incoming energy, to guarantee a
good precision.

In Fig. 9 we present some interesting characteristics of
resonant tunneling through a barrier that is four times lower
than in the previous case [the same as used in Figs.
7(b)-7(e)]. The peaks are therefore wider (than for the one
obtained in Fig. 8). The solid line represents the probability
P, to find the electron within the dot (in arbitrary units) and
the dash-dotted line shows the single-electron current at a
specific energy as a function of the bias voltage. The prob-
ability peaks correspond to resonance and it is also clear that
the current maxima are strongly correlated to the probability
maxima. The voltage and the current are given in scaled and
dimensionless units.

In Fig. 10 the current and the probability in the dot is
shown for the case when the incoming wave is in its first
excited state (corresponding to the boundary eigenvalue \,).
This eigenstate is antisymmetric with respect to the x axis.
The energy is increased for this case, to allow wavelike so-
lutions [e=(N,+A3)/2]. Current and P, are calculated as a
function of the voltage for a barrier AE=300 [the same as
used in Figs. 7(b)-7(f)].
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FIG. 10. (Color online) Tunnel current and relative probability
to find the electron within the dot (both dimensionless) shown as a
function of the voltage at a constant energy. The same calculation as
in Fig. 9 but the incoming wave is taken to be in the first excited
(\,) antisymmetric state (around the x axis) of the input boundary.
The first peak corresponds to the antisymmetric state 2p, (2
maxima of || in the dot) and the second little peak to the excited
state 4p,, (4 maxima in the dot).

A comparison between Fig. 9 and Fig. 10 shows that the
current for the antisymmetric case is many orders of magni-
tudes smaller than for the symmetric case. The reason for
this is obvious when we compare Fig. 7(c)-7(f). An interest-
ing result of this calculation is that antisymmetric resonant
transverse states in the dot will contribute slightly to the
I-V characteristic when the temperature becomes larger. Fur-
ther on, at room temperature we expect many incoming
modes to contribute with alternating symmetric and/or anti-
symmetric resonant current maxima in the /-V characteristic,
which therefore could take a rather complex shape.

IV. CONCLUSIONS

In this paper we derive integro-differential boundary con-
ditions for single-electron tunneling problems in complex
two- and three-dimensional structures. We demonstrate the
use of these conditions on two nontrivial tunneling struc-
tures. We also show how similar integro-differential bound-
ary conditions could be obtained for plane-wave problems as
well as for equations other than the Schrodinger equation
(i.e., for open systems).

When we apply our boundary approach on a ringlike
waveguide structure with sharp edges we show that the tun-
neling current is a resonant function of the applied voltage.
Further on we show that this structure exhibits quantum cur-
rent feedback and turbulence.

The study of a tunneling structure with a tip closely con-
nected to an ellipsoid dot shows that the /-V characteristic is
a very sharp resonant function. Current peak values, which
are separated at about 100 meV, are of the order 1 pA. We
explain also how resonant tunneling is obtained only for
wave functions that obey certain symmetry rules. We believe
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that the use of our boundary approach would open new pos-
sibilities to explore rare effects within (nontrivial) electron
waveguides or tunneling devices, as well as in other
branches of science.

ACKNOWLEDGMENTS

The work was funded by SSF-Quantum Devices and the
European SINANO project. Many thanks also to the FEMLAB
support group at COMSOL, who have helped a lot in the
development of the specific integro-differential boundary
code.

APPENDIX: DETAILS OF BOUNDARY
CONDITIONS AND NUMERICS

The numerical solution of the Helmholtz equation with
the boundary conditions given in Egs. (11) and (18) could be
solved using (i) a “homemade” code for simpler geometries
or (ii) finite element method softwares such as FEMLAB,? for
instance.

Before we discuss the treatment of the boundary condi-
tions in more detail we explain here first some basic concepts
of PDE’s and boundary conditions. The Helmholtz equation
could be represented on the form —V-(c¢Vu)+au=f, where
¢, a, and f are functions of space (this is also the FEMLAB
notation?®). For the Schrodinger equation we have ¢
=h%/2m, a=V(r)—E (where the energy E is given), and f
=0. The boundary conditions are usually of Dirichlet (x=0)
or Neumann type. The Neumann boundary condition is given
by 7i-(cVu)+qu=g, where 71 is the boundary surface normal
unit vector.

In Fig. 11 we illustrate how to numerically treat the
integro-differential boundary condition for an output chan-
nel. For simplicity we scale our system so that c=1, etc. In
Eq. (18) we could first put the derivative in explicit form:
i-(cVu)=duldy=(u,,—u,,)/h, if we use the notation
u(x,,y,) =, . From Fig. 11 we can thus see that the nu-
merical approximation of Eq. (18) (using only two terms in
the Fourier sum) is given by

Up1

;

5 — U2 .

- ihY, (K11 01+ Koo u o Jujys (A1)
=

where we approximate the integral (over x) with a Riemann
sum. This equation manifests a linear relationship between
different u,, ,,. It differs from a normal Neumann boundary
condition in the sense that a node, say u;, in Fig. 11, is not
only connected with u5; but also to all other values of u on
the boundary surface. It is interesting to note in this context
that the Neumann boundary condition is a linear combination
of linear operators on u. But an integral is also a linear op-
erator on #; a more general case of a linear boundary condi-
tion could be given in the form

an-(cVu)+ Bu+y+ f K u()dS' =0, (A2)

)

where «, B,y are functions of space and d€) is the space of
the boundary surface. The kernel K(7,7") could for Eq. (18)
be identified as
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FIG. 11. (Color online) In the upper part of the figure, a numeri-
cal grid is shown close to the boundary surface for an output chan-
nel (the output channel extends above the upper line, which is the
boundary surface). The variable u corresponds to the wave function
in the structure (i.e., W) and is on discrete form given by
u(x,,y )=, ,. The lower figures show the eigenmodes ¢;(x) and
¢,(x) with their corresponding wave numbers «; and «,. h is the
step size of the numerical grid.

K(rr) = 2 ingi(N (7). (A3)
J

if c=1, a=m,/myq,, and B=y=0. Note that in the (hypo-
thetical) case when ix;=1 we obtain the completeness rela-
tion, i.e., K(r,7")— &(r—r"). A kernel of special interest is

Green’s function which satisfies (E—H)G(7,7")=8(F—+"),

where H is the Hamilton operator. Note though that G is
given in a three-dimensional space (body); meanwhile the
kernel K is given in a two-dimensional system (surface).
Green’s functions are used extensively in the literature’ and
articles®? but to the authors knowledge, they do not appear
together with normal derivatives in boundary conditions such
as in Eq. (A2), or explicitly as in Eq. (A1).

We describe now briefly how the boundary conditions
could be treated within the finite element method based pro-
gram FEMLAB. In this program it is possible to define so-
called scalar integration coupling variables. Each variable is
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defined in the program on a specific boundary and is given a
name. The output Fourier components i,; are for a case simi-
lar to that shown in Fig. 11 [see also Eq. (18)] defined in the
program as

1= f ¢; (Xu(x)dx, (A4)
where we omit the complex conjugate (*) in one dimension.

The scalar coupling variables 7; appear then in the expression
of the Neumann boundary condition as

i (e Vu)+qu=i(k ()1 + Ky (x)ty + - ++), (A5)

where g=0 and c=1 in this case. The wave numbers «; must
be specified and also the functions ¢;. A similar procedure is
performed for the input boundary. The geometry is drawn as
in a CAD program. When the PDE coefficients, coupling
variables, coefficients, and boundary conditions are speci-
fied, a grid is generated by a built in routine in FEMLAB.
Finally the program is solved and the wave function and the
current density will be visualized in a figure window. The
solution should be specified to be given in a so-called “weak
form.”

To the authors knowledge, FEMLAB is the only software
today that provides a direct access to the weak form of the
problem, which in combination with the scalar coupling vari-
ables makes it possible to treat boundary conditions of this
kind. For complex structures (i.e., nontrivial structures in
two or three dimensions) with different materials regions, we
believe that FEMLAB is easier to use rather than develop a
specific code for it. It is more interesting to concern oneself
about the physics rather than to stick into numerical prob-
lems. The mentioned FEMLAB procedure above is preferred
in 2D (and 1D) and can easily be executed on a modern
standard PC within seconds using a good mesh quality.

For the 3D case, this method consumes, however, a lot of
computer memory (or takes too much to run), because the
numerical matrix is not sparse. In this case we may use all
the Fourier components as independent variables and couple
them to the rest of the system. This will increase the degree
of freedom of the system slightly, but the numerical matrix
will be guaranteed to be sparse. Here we define pseudovari-
ables of the Fourier components as scalar coupling variables
that map the integrals on the boundaries to a point in the
geometry. We have then two coupled modes, one the Helm-
holtz mode and one the so-called point mode (this is what is
called multiphysics in FEMLAB). A set of scalar equations are
specified in the point mode so that v,;—u,;=0, where v,; is
the independent variable, etc. Finally, we define a scalar cou-
pling from the point back to the boundary surface, given the
names w,;=v,; where w,; are used in the expression for the
boundary condition (instead of #; as in the 2D example
above).
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