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Abstract

We have theoretically studied the non-linear dielectric effect in the isotropic phase of anti-

ferroelectric liquid crystals on the basis of phenomenological theory. We find an analytical

expression for the non-linear dielectric effect in the isotropic phase of the I-SmC∗

A
transition.

The temperature dependence of the non-linear dielectric effect is presented in the isotropic

phase of the I-SmC∗

A
transition.
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I. INTRODUCTION

Since it’s discovery by Chandani et al [1–3], much progress has taken place in the field of

antiferroelectric liquid crystals (AFLC). The most frequently studied and best understood AFLCs

is the chiral antiferroelectric smectic (SmC∗A) phase. This phase is a chiral smectic C (SmC∗)

phase where the molecules in adjacent layers are tilted from the layers normal in almost opposite

directions and, thereby, the direction of the spontaneous polarization reverses from one layer to

the next and the net polarization is vanishing over two successive layers.

In recent years the transitions from the isotropic phase to the smectic phases have been at-

tracted much attention. The isotropic to SmC∗A (I-SmC∗A) is one such transition which has a

considerable current interest. There are relatively few papers [4–8] on the I-SmC∗A transition. The

most interesting aspect of their results is that the optical activity becomes nearly linear with tem-

perature near the I-SmC∗A transition when the chirality is high. Uchiyama etal [4] studied the

dielectric properties in AFLC with the I-SmC∗A transition. Gorecka et al [6] studied the properties

of the induced SmC∗A phase by doping ferroelectric liquid crystals with Bent-shaped molecules. The

temperature stability of the SmC∗A phase increases quickly with increasing dopant concentration

and for higher concentration the direct I-SmC∗A transition is observed. In an another study [8],

the binary mixture of the (S,R)-enantiomer of the M7BBM7 AFLC mesogen with the non-chiral

SmC-forming compound HOAB also shows a direct I-SmC∗A phase transition. The temperature

dependence of the spontaneous polarization in the SmC∗A phase close to the I-SmC∗A transition was

measured. Experimentally, the I-SmC∗A phase transition is found to be first order.

On the theoretical studies there is only one attempt [9] to study the I-SmC∗A transition. In this

work one of the present author with his coworker developed a Landau model to describe the direct

I-SmC∗A transition and explained the key features of the I-SmC∗A transition.

The first order behavior of the I-SmC∗A transition can also be verified by the quantitative test

in the non-linear dielectric effect (NDE). The SmC∗A phase is accompanied anomalous behavior

in the dielectric properties. The pretransitional behavior is rather complex in the isotropic phase

of the chiral liquid crystal compounds [10]. There is so far practically no experimental as well as

no theoretical observation of the NDE near the I-SmC∗A transition.

The purpose of the present paper is to explain the pretransitional behavior of the NDE in the

isotropic region of the I-SmC∗A transition within the framework of Landau theory. Following the

approach in [9, 11] we calculate directly the temperature dependence of the NDE in the isotropic

phase of the I-SmC∗A transition.
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II. THEORY

The construction of the Landau free energy for the I-SmC∗A transition is rather complex, since

one needs four different order parameters: the modulus of the orientational order parameter, S, the

smectic order parameter characterizing the density wave, ψ, the tilt angle, θ and the antiferroelectric

polarization, Pa as well as the wave vector q of the helix to describe the I - SmC∗A phase transition.

The layering in the SmC∗A phase is described [12] by the order parameter ψ(r) = ψ0 exp(−iΦ),

whose modulus ψ0 is defined as the amplitude of a one-dimensional density wave characterized

by the phase Φ. The wave vector ∇iΦ is parallel to the director ni in the smectic-A phase. The

anticlinic tilt in the SmC∗A phase can be described by the tensor order parameter [9, 11, 13, 14].

According to the previous paper [9], the two tensorial order parameters Q
(1)
ij and Q

(2)
ij which

represent, respectively the orientations of molecules in the alternatively odd-numbered and even

numbered layers are defined as

Q
(m)
ij =

S

2
(3n

(m)
i n

(m)
j − 1) (2.1)

where m = 1, 2 and ni is the director in the ith layer and the z-axis is set to be parallel to the layer

normal. Here n
(m)
i is not parallel to ∇iΦ. The quantity S defines the strength of the orientational

ordering.

The director n
(m)
i in terms of the tilt angle θ and the azimuthal angle φ can be expressed as

n
(1)
i = ex sin θ cos φ+ ey sin θ sinφ+ ez cos θ (2.2)

n
(2)
i = −ex sin θ cosφ− ey sin θ sinφ+ ez cos θ (2.3)

where θ is the angle between the layer normal and the director ni. While the tilt direction is varying

from layer to layer, the layer normal (z-axis) is fixed. The azimuthal angle φ which describes the

average position of the molecules on the tilt cone changes with the coordinate z as φ = qz, q being

the wave vector of the helix.

The spontaneous polarization in the neighboring layers are opposite in the SmC∗A phase. If

P1 and P2 are the polarization in the neighboring layers ”1” and ”2”, then the anti-ferroelectric

polarization in the SmC∗A phase can be expressed as

Pa = {Py} =
m−1∑
i=0

(P2i
1 −P2i+1

2 ) (2.4)

where the subscript i runs over the number of layers m and P1 = 1
2m
P0P̂ and P2 = −P1 are the

alternating polarizations in the sublayers (1 and 2) and P̂ denotes the preferred direction within the
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layers. The staggered polarization Pa = P0P̂ has the same properties as the polarization P in the

ferroelectric case. The procedure outlined closely parallels that well-known for anti-ferromagnets.

All these order parameters jump simultaneously at the I-SmC∗A transition.

Following Kittel [15], we assume that when we apply a small electric field ΔE in the helical

modulated SmC∗A phase, a small but finite macroscopic polarization ΔPa = P1 + P2 is produced

in the unit cell in the helical modulated SmC∗A phase. In this case we assume P1
∼= −P2. This is

justified since the direction of the in-plane spontaneous polarization in the helical modulated SmC∗A

phase is changing from layer to layer by a phase angle slightly less than 180o. This macroscopic

polarization ΔPa couples with electric field ΔE.

Considering the above described order parameters, the total free energy density near the I -

SmC∗A transition in the presence of an electric field can be expanded as [9]

F = F0 +
1

6
a

(
Q

(1)
ij Q

(1)
ij +Q

(2)
ij Q

(2)
ij

)
−

4

18
b
(
Q

(1)
ij Q

(1)
jk Q

(1)
ki +Q

(2)
ij Q

(2)
jk Q

(2)
ki

)

+
1

18
c1

(
Q

(1)
ij Q

(1)
ij +Q

(2)
ij Q

(2)
ij

)2
+

1

18
c2

(
Q

(1)
ij Q

(1)
jk Q

(1)
kl Q

(1)
li +Q

(2)
ij Q

(2)
jk Q

(2)
kl Q

(2)
li

)

+
1

2
α |ψ|2 +

1

4
β |ψ|4 +

1

2χa
(ΔPa)

2 +
1

2
d1 |∇iψ|

2 +
1

2
d2 |Δψ|

2

+
1

18
ηQ

(1)
ij Q

(2)
ij +

1

108
λ

(
Q

(1)
ij Q

(2)
ij

)2
+

1

4
L1

(
∇iQ

(1)
jk ∇iQ

(1)
jk +∇iQ

(2)
jk ∇iQ

(2)
jk

)

+
1

4
L2

(
∇iQ

(1)
ik ∇jQ

(1)
jk +∇iQ

(2)
ik ∇jQ

(2)
jk

)
+

1

2
L3εijk

(
Q

(1)
il ∇kQ

(1)
jl +Q

(2)
il ∇kQ

(2)
jl

)

+
1

6
μ

(
Q

(1)
ij Q

(1)
ij +Q

(2)
ij Q

(2)
ij

)
|ψ|2 +

1

4
e

(
Q

(1)
ij +Q

(2)
ij

)
(∇iψ)(∇jψ

∗)

+
1

2
γ(Q

(1)
ij +Q

(2)
ij )ΔPaiΔPaj +

1

4
gijkl(∇kQ

(1)
ij +∇kQ

(2)
ij )ΔPal −ΔPa ·ΔE (2.5)

where F0 is the free energy of the isotropic phase. Here a = a0(T − T
∗
1 ), and α = α0(T − T

∗
2 ). T ∗1

and T ∗2 are the critical temperature for a hypothetical second-order transition. a0, α0, c1, c2, β, d1,

d2, η, λ, and γ are positive constants. μ is a coupling constant. A negative value μ increases the

smectic ordering and favors the SmC∗A phase. χa is the relevant dielectric susceptibilities. L1 and

L2 are the orientational elastic constants. Here εijk is an antisymmetric third rank tensor. The

chiral character of the SmC∗A phase results in the pseudoscalar first-order spatial derivative term

in the free energy. Thus the coefficient L3 is analogous to the coefficient of the Lifshitz-invariant

term and induces the helical modulation of the SmC∗A phase. The gradient terms ∼ e and ∼ h

involving Qij govern the relative direction of the layering with respect to the director and lead to

the tilt angle of the SmC∗A phase. In general a negative value of e favors the stability of the SmC∗A

phase. There is no direct linear coupling term ∼| ψ |2 Q
(1,2)
ij in the free energy (2.5), since such

a term cannot exist in the isotropic phase [16]. Here gijkl takes the form gijkl = g(δikδjl + δilδjk)
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with δik the Kronecker symbol. The coefficient g is analogous to the flexoelectric coefficient. The

above free energy describes the direct first order I-SmC∗A transition in the absence of an electric

field. The detailed analysis of the I-SmC∗A transition was described in Ref [9].

The pretransitional anomaly of the NDE near the I-SmC∗A transition can appear only when

the antiparallel cancellation of dipole within fluctuations occurs which is the basic results of the

directors −n and n equivalence. Now we consider the phases in which the nematic and smectic

order are spatially homogeneous, i.e. S =const. and ψ0=const. for simplicity of the calculation.

The system being in the isotropic phase, a homogeneous electric field will couple to q = 0 changes

of the order parameters. Accordingly all spatial derivatives of Qij in Eq. (2.5) is zero. The

substitution of Qij , ψ and ΔPa in Eq. (2.5), and eliminating the equilibrium value of θ from Eq.

(2.5), leads to the free energy density

F = f0 +
1

2
a′S2 −

1

3
bS3 +

1

4
c′S4 +

1

2
αψ2

0 +
1

4
βψ4

0 +
1

2χa
(ΔPa)

2

+
1

2
μS2ψ2

0 −
1

2
γ(ΔPa)

2S −ΔPaΔE (2.6)

where a′ = a+ 3η/4, c′ = c+ 3λ/2, and c = (c1 + c2/2).

After minimizing the free energy (2.6) with respect to ΔPa and ψ0, the polarization and the

translational order parameter are obtained to be

ΔPa = ΔEχaM (2.7)

where M = (1− γχaS)−1.

ψ2
0 = −

1

β
(α+ μS2) (2.8)

After inserting these results into the free energy density (2.6), we obtain the free energy density as

a function of S alone as:

F = F ∗0 +
1

2
a∗S2 −

1

3
b∗S3 +

1

4
c∗S4 −

1

2
γχ2

a(ΔE)2S (2.9)

where F ∗0 = F0 −
α2

4β
− (ΔE)2χa

2 ,

The renormalized coefficients are

a∗ = a+
3

4
η −

α

β
− γ2χ3

a(ΔE)2, (2.10)

b∗ = b−
9

2
γ3χ4

a(ΔE)2, (2.11)
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c∗ = c+
3

2
λ−

μ2

β
. (2.12)

The analysis of Eq. (2.10) shows that the influence of the electric field produces a shift of the

transition temperature T ∗I−SmC∗
A

which is proportional to the square of the electric field

ΔT ∗I−SmC∗
A

= W (ΔE)2 (2.13)

with W = γ2χ2
a

(
a0 −

μα0

β

)−1
. The electric field also induces weak orientational ordering in the

isotropic phase. The orientational order parameter induced by an electric field in the isotropic

phase is calculated to a first approximation (b∗ = 0 and c∗ = 0) and can be expressed as

S(ΔE) =
U

(T − T ∗I−SmC∗
A

)
(ΔE)2 +

V

(T − T ∗I−SmC∗
A

)2
(ΔE)4 (2.14)

where

U = γχ2
a

2

(
a0 −

μα0

β

)−1
,

V = γ3χ4
a

2

(
a0 −

μα0

β

)−2
,

T ∗I−SmC∗
A

=
(
a0T

∗
1 − T

∗
2

μα0

β
− 3η/4

) (
a0 −

μα0

β

)−1
.

Note that in the first approximation S(ΔE) = U
(T−T ∗

I−SmC∗
A

)(ΔE)2. The NDE denotes the

change in the dielectric permittivity of a material that originates from the application of strong

static electric field ΔE. The NDE is widely analogous to the electro-optic Kerr effect which applies

to the case of optical frequencies. Transitions from the isotropic to the SmC∗A state are associated

with a pronounced pretransitional NDE since the aligning electric field ΔE couples to the critical

fluctuations and, thereby, induces a certain long range orientational order S(ΔE) of mesogenic units

in the originally disordered isotropic phase [17]. This electric field-induced orientational order gives

rise to an induced dielectric anisotropy which in turn changes the dielectric permittivity observed

in the direction of the measuring field. Hence the dielectric permittivity in the isotropic phase to

a first approximation can be expressed as [18, 19]

Δε(ΔE) = ε(ΔE)− ε(0) = (Δεf )
max

S(ΔE). (2.15)

where ε(ΔE) and ε(0) are the dielectric permittivities in a strong (ΔE) and weak (measuring)

electric field. (Δεf )max denotes the anisotropy of the dielectric permittivity for the given frequency

f . Combining Eqs. (2.14) and (2.15) we find

εNDE =
ε(ΔE)− ε(0)

(ΔE)2
=

W

(T − T ∗I−SmC∗
A

)
, (2.16)

where W = (Δεf )maxU .
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The temperature dependence of the NDE in the isotropic phase is shown in Fig.1. This is done

for a set of phenomenological parameters for which a direct I-SmC∗A transition is possible. Units

of the NDE and temperature are arbitrary. The form of Eq. (2.16) shows that there are several

unknown phenomenological parameters. We have, therefore used (Δεf )max and U as reduced

unknown parameters to draw the Fig.1. Fig.1 shows the temperature dependence of the NDE in

the isotropic phase with parameter values (Δεf )max = 0.87 and U = 1.45.

III. CONCLUSION

We have theoretically shown that the NDE in the isotropic phase of the I-SmC∗A transition can

be observed by an electric field through linear coupling with the polarization. We would like to

point out that the obtained results in this paper, which were based on the free energy density Eq.

(2.6) leading to a first order I-SmC∗A transition will be valid also in the case of the second order

transition. Furthermore, the critical exponent exponent γ′ = 1 indicate the fluid like analogy in the

isotropic phase of the I-SmC∗A transition similar to that at the isotropic-nematic, isotropic-Smectic

A and isotropic to SmC∗ transitions. We hope that the present theoretical analysis of the NDE in

the isotropic phase of the I-SmC∗A transition will stimulate a closer look at this problem. Clearly

the detailed experiments on the antiferroelectric liquid crystals are highly desirable to check the

phase diagrams presented here is actually accessible experimentally.
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[8] J. P. F. Lagerwall, F. Giesselmann, C. Selbmann, S. Rauch, and G. Heppke, J. Chem. Phys. 122 (2005)

144906.

[9] P. K. Mukherjee, J. Chem. Phys. 121 (2004) 12038.

[10] S. J. Rzoska, M. Paluch, S. Pawlus, A. D. Rzoska, J. Ziolo, J. Jadzyn, K. Czuprynski, R. Dabrowski,

Phys. Rev. E 68 (2003) 031705.

[11] P. K. Mukherjee, A. K. Das, Physica B 403 (2008) 3089.

[12] P.G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).

[13] P.K. Mukherjee, H. Pleiner, H.R. Brand, Eur. Phys. J. E 17 (2005) 501.

[14] P.K. Mukherjee, Phys. Rev. E 71 (2005) 061704.

[15] C. Kittel, Phys. Rev. 82 (1951) 729.

[16] P.K. Mukherjee, H. Pleiner, H.R. Brand, Eur. Phys. J. E 4 (2001) 293.

[17] J. Maleki, J.Ziolo, Chem. Phys. 68 (1978) 83. 5349.

[18] S.J. Rzoska, J. Ziolo, Liq. Cryst. 17 (1994) 629.

[19] W. Pyzuk, I. Slomka, J. Chrapec, S.J. Rzoska, J. Ziolo, Chem. Phys. 121 (1988) 255.



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

9

Figure captions:

FIG. 1: The temperature dependence of the NDE in the isotropic phase of the I-SmC∗

A
transition.



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

10

FIG.1
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