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We demonstrate that the radiation-induced ‘‘zero-resistance state”” observed in a two-dimensional
electron gas is a result of the nontrivial structure of the density of states of the systems and the photon-
assisted transport. A toy model of a quantum tunneling junction with oscillatory density of states in
leads catches most of the important features of the experiments. We present a generalized Kubo-
Greenwood conductivity formula for the photon-assisted transport in a general system and show
essentially the same nature of the transport anomaly in a uniform system.
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The recent discovery of the “zero-resistance state” in a
two-dimensional electron gas (2DEG) presents a surprise
to the physics community [1-6]. In these experiments
[1-3], the magnetoresistance of a 2DEG under the influ-
ence of a microwave radiation exhibits strong oscillations
vs magnetic field. Unlike the well-known Shubnikov—
de Haas oscillation, the period of such an oscillation is
determined by the frequency of the microwave radiation,
and the resistance shows minima near w/w, = n + 1/4,
where w is the frequency of the microwave radiation and
w. is the cyclotron frequency of electron in the magnetic
field. When the microwave radiation is strong enough, the
zero-resistance states are observed around the resistance
minima. Durst ef al. proposed a theory [4] that success-
fully explains the period and the phase of the magneto-
resistance oscillation and also yields the negative
resistance at the positions where the zero-resistance state
was observed in the experiments. The existence of the
negative resistance was also predicted by Ryzhii [7].
Andreev et al. [5] pointed out that such a negative re-
sistance state is essential to understanding the zero-
resistance state, because the negative resistance is
unstable in nature and could be interpreted as the
‘“zero resistance” by the measurement techniques em-
ployed in those experiments. A similar conclusion is
also reached in Ref. [6]. In essence, the existence of
the negative resistance state is crucial in the current stage
of theoretical understanding of the phenomenon.

In this Letter, we show that such a negative resistance
state is the result of the nontrivial structure of the density
of states of the 2DEG system and the photon-assisted
transport. The similar effect of photon-assisted transport
could be observed in other systems. A generalized Kubo-
Greenwood formula is presented to provide a formal
theory for such phenomena.

To demonstrate our point in a clear and simple way, first
we consider the transport through a quantum tunneling
junction. We show that such a toy model catches most of
the qualitative feature of the 2DEG experiments [1-3]. At
the same time, the simplicity of the model provides us a
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clear view to the origin of the transport anomaly. Then
we present a generalized Kubo-Greenwood formula to
calculate the conductivity of a general system under the
influence of radiation and provide a natural explanation of
the success of the simple toy model.

The structure of the toy model is shown in Fig. 1. Anac
voltage V,. = A coswt is applied across the junction to
model the microwave radiation. The current through the
junction is written as [8]

[=eD f deZ]ﬁ(%)[}‘(e) ~ (e + nhw + V)]

X pr(€)pr(€ + nhw + eV), (L

where py () is the density of states of the left (right) lead,
f(e) is the Fermi distribution function, D is the trans-
mission constant of the junction, and J,(x) is the Bessel
function of nth order.

For simplicity, we consider a symmetric system,
p1(€) = pr(e) = p(e). In this case, the zero-bias conduc-
tance o = dI/dV|,—, can be written as

Z A
o=c¢e € an o

XA{[—f'(e)lp(e)p(e + nhw)
+[f(e) = f(e + nhw)lp(e)p'(e + nhw)}.  (2)
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Hp
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FIG. 1. Toy model of a quantum tunneling junction. A dc

voltage V and an ac field V,. = Acoswt are applied on a
quantum tunneling junction.

© 2003 The American Physical Society 086801-1



VOLUME 91, NUMBER 8§

PHYSICAL REVIEW LETTERS

week ending
22 AUGUST 2003

The first term of the equation is always positive, while the
second term depends on the derivative of the density of
states and can be negative. The contribution from the
second term is purely due to the photon-assisted tunnel-
ing process and vanishes when there is no ac field.

Based on Eq. (2), it is not difficult to design a system
with the necessary form of the density of states to realize
a negative conductance. This is especially feasible for
artificial quantum systems [9]. However, to make our
following discussion more focused, we assume the den-
sity of states in the leads is a periodic function of energy
near the Fermi surface with a period iw,.. By assuming
that, we show that such a simple toy model catches most
of the important features of the experiments [1-3].

Without invoking a special form for the density
of states, we can show that the conductance at the ac
frequency w = nw, is identical to its dark field value,
as observed in the experiments [1-3]. In this case,
p(e + nhw) = p(e), the second term of Eq. (2) vanishes,
leading to

o= oD [ e R(50 -l
— D [ de[— f(€)]p™(€) = Taune 3)

where we have used the identity 3, J2(x) = 1.
We now assume the density of states has the following
form:

ple) = (l + /\cosﬁ>p0, 4
ho

c

with A being a dimensionless constant. A straightforward
calculation yields the conductance of the system,

o(T)/ oy = i J,%(%)[l +%2cos<2qmﬁ>

n=—oo .

S il sin<277n ﬂ)}
a)C wC
m

)
where oy = e?Dp3, and g(u/liw,, T) is the contribution
from the Shubnikov—de Haas oscillation which dimin-
ishes rapidly at finite temperatures. The conductance os-
cillation minima can be easily determined from Eq. (5):
for the kth harmonics of the oscillation, the positions of
the conductance minima are given by the equation tanx =
—x/2, where x = 2wkw/w,. For k=1, it yields the
conductance minimum positions very close to w/w, =
n + 1/4, although not exactly. When the higher orders of
harmonics become important, we expect that the con-
ductance minima deviate from the n + 1/4 rule. The
amplitude of oscillation is independent of the tempera-
ture, indicating any temperature dependence observed in
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the experiments should come from the temperature de-
pendence of the density of states, i.e., A.

Next we use a more realistic density of states for the
leads: when the leads are the 2DEGs under a perpendicu-
lar weak magnetic field, A is a function of w, [10],

A= 26xp(— Z ) ©)
clf

where w,. is the cyclotron frequency of the electron and 7,
is the relaxation time of the electron which depends on the
scattering mechanisms of the system and the temperature.
The conductance for such a system is shown in Fig. 2. It is
evident that our model system, although very different
and much simpler, shows striking resemblances to the
experimental observations [1-3] and the more realistic
calculation [4]. The conductance minima are found at the
positions near w/w, = n + 1/4 for the low and inter-
mediate intensities of the ac field. When the intensity
becomes even higher, the multiphoton process sets in,
presenting the high order harmonic components to the
conductance oscillation. As in the experiments [1-3], one
can see two sets of crossing points at w/w, = n and
w/w,. =n+ 1/2. As we have shown above, the former
is a general property of the periodic density of states,
whereas the latter will be destroyed by high intensities of
radiation, as shown in Fig. 2.

The system becomes unstable when entering into the
negative conductance regime. The consequence of such
instability can be easily foreseen in our toy model. In the
case of constant voltage measurement, a negative con-
ductance means the current across the junction is in the
reversed direction to the electric field applied, as shown in
Fig. 3(a). As a result, the tunneling electrons cannot be
removed from the junction by the electric field in the
leads. Instead, they accumulate near the junction and
increase the effective voltage difference. The process

N=OO
cow
eee

TRTE

FIG. 2 (color online). Conductance dependence on 1/w, for
different radiation intensities. The parameters are the same as
those used in Ref. [4]: u = 50hiw, kT = 0.25/hw, wTp = 6.25.
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continues on until the effective voltage difference be-
tween the junction reaches such a point that the current
becomes zero, as shown in Fig. 3(b). Consequently, the
measurement will yield a zero conductance. On the other
hand, in a constant current measurement, the system will
be in a bistable state with either positive or negative
junction voltage, depending on the history of the applied
current, as shown in Fig. 3(c). We stress that the analysis is
very sensitive to the detailed setup of the system. In the
case of this toy model, many parameters such as barrier
thickness, lead configurations, and dielectric constants
may affect the resulting phase. However, the instability
itself is totally determined by the radiation power and the
density of states.

The photon-assisted transport process, which is re-
sponsible for the transport anomaly in the tunneling
junction, also exists in a uniform system like the 2DEG.
This becomes clear when we look at the Kubo-
Greenwood conductivity formula [11], where the total
conductivity is a summation over all possible “tunnel-
ing” between single electron states. A generalization of
the Kubo-Greenwood formula [see Egs. (12) and (15)]
shows the similar contribution of the photon-assisted
tunneling. The effective ac voltage A in such tunneling
is determined by the spatial separation between the in-
volved single electron states and on average is of the order
of E, I, where [ is the mean free path of the electron and
E,, is the radiation field strength. Based on the parameters
given in the experiment [1], we deduce that [ ~ 10™% m,
E, ~ 10 V/m; thus A, ~ 1 meV, which is the same
order of the radiation frequency Ziw ~ 0.4 meV. The es-
timation indicates the photon-assisted process is suffi-
cient to understand the observed transport anomaly.

(b) ! (© !
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7
FIG. 3. (a) Charge buildup in the negative conductance re-

gime at a constant voltage measurement. (b) Instability in a
constant voltage measurement. (c) Bistability in a constant
current measurement.
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Now we derive a generalized Kubo-Greenwood for-
mula for the system under the influence of radiation. For
a general system considered, the Hamiltonian can be
written as

H = Hy+ H,(w) + Hy,. @)

Here H, is the original Hamiltonian of a general system.
H,.(w) is the coupling to the external radiation of fre-
quency w. Hg, is the potential induced by a small dc field
and is treated as a small perturbation to the system
defined by H; = Hy + H,.. The standard linear response
theory yields the current density as [12]

. 2E, [t
1) = 1 Y
I = lim 22 /

dr'([§(0, J@)De o e, (8)

where the dc field is simulated by an electric field
Eje @™ with the infinitesimal frequency w, and j =
e/2> [v;6(x — x;) + 8(x — x;)v;] is the current operator.
We have omitted the gauge term which has no contribu-
tion to the dc current. For brevity, we drop lim,, _, in the
following derivations.

According to the Floquet theorem, the wave function of
the system defined by H; can be written as

|oz(t)> — efiEaz/ﬁ Z eii”“”|a, n), 9)

n=-—oo

where E, is quasienergy of the Floquet state. We assume
the external radiation is applied onto the system adiabati-
cally, and the system keeps the adiabaticity during the
process [13], so each Floquet state can be uniquely
mapped to an eigenstate |a) for the system without the
radiation.

Turning to the Heisenberg representation and using the
eigenstates of H, as the basis, we can expand the current
operator as

3) = eiﬁot/ﬁ[ 5 jne—inwt:|e—i1:10t/ﬁ’
n=—oo

\ . (10)
Jn= D la)a mljlg m + n)Bl,

m,a, B

where H, is the quasienergy operator defined by
Hyla) = E,la).

Substituting Eq. (10) into Eq. (8) and following the
usual process of the derivation of the Kubo formula
[12], we have

_27T Jd ORENE
Tgc _78—(1)0; ;(Pz - Pf)|<f|.]n|l>|

where P;;) = e~ PEin /Z is the probability of the system at
the state |i) (|f)) in the limit that the radiation power is
not extremely strong and w7 >> 1, where 7 is the popula-
tion relaxation time of the system.
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For the noninteracting system, the generalized Kubo-
Greenwood formula reads

oy | dedrte.
< (Bli (€ )p . + oy + nhw),  (12)

— f(é, + hwy + nho)]

where [{Blj,]a)|? is the average over all possible initial
and final states for the transitions €, — €, + nhw + hw,.
The same contribution of the photon-assisted process is
evident by comparing it with Eq. (2).

To gain more insight to Eq. (12), we study a limiting
case where the wavelength of the radiation is much longer
than the spatial extent of the electron wave function. As a
result, the ac electric field felt by the individual electron
state can be approximately considered as spatially inde-
pendent. So for state |a), HE =~ Acos(wt—K -r,),
where A = ¢E,,c/w, and r, is the average center of the
wave function. Now the Floquet state can be obtained
analytically,

o = et $ (& femenotar

n=-—o0o

Comparing Eq. (13) with Eq. (9), we conclude |a, n) =
J,(A/hw)exp(ink - r,)|a) and €, = &,. With Eq. (10),
it is straightforward to get

A
(allg) = e, (2 Y a4

where A,z =Alexp(ik ‘r,) —exp(ik ‘rg)| =eE,|r,z-
k/ k| is the effective ac potential between two states,

and jo5 = (aljIB).
We obtain the total conductivity:

= aeoz f deD, (e €+ nhw)[f(€)— fle + €+ nhw)]

X p(€)p(e+ €y + nhw), (15)

where D, (€, € + nfiw) = 2mhJ2(A 4/ fiw)|japl*. The to-
tal conductivity can be considered as the summation of
photon-assisted tunneling between the electron states.
This proves our previous qualitative argument.

Finally, we discuss the implication of negative conduc-
tance. In general, negative conductance signifies the in-
stability of the driven system by an external microwave
radiation. Such instability may drive the system to a far-
from-equilibrium regime where nonlinear and self-
organizing effects dominate, resulting in intriguing and
rich phenomena [14]. One possible phase of such a kind
has been proposed to understand the zero-resistance state
[5,6]. On the other hand, we stress that these are two
separate issues: (a) origin of the instability and (b) a
new phase induced by the instability. As demonstrated
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in the toy model, while the instability is totally deter-
mined by the radiation power and the density of states, the
determination of a new phase requires detailed knowl-
edge of the system and deserves more studies.

In summary, we demonstrate the existence of the nega-
tive conductance in a quantum tunneling junction under
the influence of a radiation field. We trace the origin of
such a transport anomaly to the nontrivial structure of the
density of states of the system and the photon-assisted
transport. A generalized Kubo-Greenwood conductivity
formula is presented to show essentially the same nature
of the anomalies observed in tunneling junctions and in
2DEG systems. We expect similar transport anomalies
could be observed in other systems.
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