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Suprathreshold stochastic resonance and noise-enhanced
Fisher information in arrays of threshold devices

David Rousseau, Fabing Duan, and Franc¸ois Chapeau-Blondeau
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We analyze the parametric estimation that can be performed on a signal buried in noise based on the
parsimonious representation provided by a parallel array of threshold devices. The Fisher information con-
tained in the array output about the input parameter is used as the measure of performance in the estimation
task. For estimation on a suprathreshold input signal, we establish that enhancement of the Fisher information
can be obtained by addition of independent noises to the thresholds in the array. Similar improvement by noise
is also shown to be possible for the estimation error of the maximum likelihood estimator. These results extend
the applicability of the recently introduced nonlinear phenomenon of suprathreshold stochastic resonance.
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I. INTRODUCTION

Stochastic resonance~SR! is a nonlinear phenomeno
which was introduced some twenty years ago and which
scribes the possibility of improvement of the transmission
the processing of a signal, thanks to the action of the no
@1#. Since its introduction, SR has gradually been shown f
sible under many different forms, with various types of s
nals, nonlinear processes, and measures of performanc
ceiving improvement from the noise@2–10#. Most
occurrences of SR involve a signal which is by itself t
small or ill conditioned to elicit a strong response from
nonlinear system. Addition of noise then brings assistanc
the small signal in eliciting a more efficient response fro
the nonlinear system, for instance by overcoming a thresh
or a potential barrier. Very recently, another interesting fo
of SR has been introduced under the name of suprathres
SR @11,12#. In this case, SR is obtained in the response o
parallel array of threshold devices. The input signal by its
is strong enough to overcome the threshold of a single
vice, and it needs no assistance from noise for this. With
noise in the array, the input signal usually elicits the sa
output response from any one of the devices. If differ
noises are independently added on the devices of the a
then each device will in general produce a distinct respon
When all these responses are collected over the array,
shown in Refs.@11,12# that the global response can be mo
efficient than the response of a single device with no no
Furthermore, an optimal nonzero amount of noise can
found that maximizes the efficacy of the global response
the array. This suprathreshold SR, as introduced in Ref.@11#,
is important since it significantly extends the mechanis
under which SR, as an improvement by noise, can occu

Suprathreshold SR in Refs.@11,12# is observed and mea
sured by means of the input-output mutual informati
across the array. It is shown in Refs.@11,12#, for the trans-
mission of a suprathreshold input signal, that a maxim
mutual information is obtainable for a nonzero amount
noise added to the thresholds. Here, in the present pape
propose further explorations of the phenomenon of supr
reshold SR. We consider the same type of parallel arra
1063-651X/2003/68~3!/031107~10!/$20.00 68 0311
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threshold devices as in Refs.@11,12#, but we use this array
for a markedly distinct information processing operatio
The array is used here for estimation of a signal parame
To assess the performance of the array in the estimation
and to investigate the possibility of suprathreshold SR,
rely on, instead of the mutual information, the Fisher info
mation, which is specifically relevant to quantify the effica
of estimation processes. Applications of the Fisher inform
tion to quantify standard~subthreshold! SR have been pro
posed in Refs.@13–15#. In those studies, a single thresho
device along with a subthreshold input signal is consider
It is shown that noise can help the subthreshold input
overcome a single threshold, this being reflected by the p
sibility of a noise-enhanced input-output Fisher informatio
Here, in the present paper, we examine the behavior of
input-output Fisher information in the transmission of a s
prathreshold input signal across the parallel array. We es
lish that noise enhancement of the Fisher information can
obtained, demonstrating a distinct manifestation of a supr
reshold SR phenomenon. The associated possibility of
provement by the noise is also exhibited in the performa
of the maximum likelihood estimator from the array outpu

II. NONLINEAR TRANSMISSION IN A PARALLEL
ARRAY

A random signalx(t) is dependent upon an unknown p
rametera, the value of which we seek to estimate. The me
surements on the signalx(t) are obtained by means o
threshold devices or one-bit quantizers. We consider, a
Refs.@11,12#, a parallel array of a numberN of such one-bit
quantizers. A noiseh i(t), independent ofx(t), can be added
to x(t) before quantization by quantizeri. Quantizeri, with
thresholdu i , delivers the output

yi~ t !5H@x~ t !1h i~ t !2u i #, i 51,2, . . . ,N, ~1!

where H(u) is the Heaviside function, i.e.,H(u)51 if u
.0 and is zero otherwise. We will consider here that theN
noisesh i(t) are white, mutually independent, and identica
distributed with cumulative distribution functionFh(u) and
©2003 The American Physical Society07-1
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FIG. 1. Fisher informationJY of Eq. ~3!, as a function of the rms amplitudesh of the array noisesh i(t) chosen zero-mean Gaussian. T
input random signalx(t) is Gaussian with meana and standard deviationsx51. All thresholds in the array are set tou50. PanelA, when
a50 and panelB, whena51.
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probability density functionf h(u)5dFh /du. The response
Y(t) of the array is obtained by summing the outputs of
the quantizers as

Y~ t !5(
i 51

N

yi~ t !. ~2!

The estimation of the parametera is to be based on the
observation ofY(t) alone. Such conditions, with arrays o
one-bit quantizers, are specially relevant for existing and
ture multisensor networks having to cope with limited tim
and resources for data processing, storage, communica
and for energy supply.

For the estimation ofa from Y(t), a key quantity@16# is
the Fisher informationJY contained inY(t) abouta. Fisher
informationJY , via the Crame´r-Rao inequality, sets a boun
to the efficacy of any conceivable unbiased estimator oa
from Y(t): the variance of any such estimator is low
bounded by the reciprocal of the Fisher information. F
Y(t), which assumes integer values between 0 andN, the
Fisher informationJY is

JY5 (
n50

N
1

Pr$Y~ t !5n% F ]

]a
Pr$Y~ t !5n%G2

. ~3!

At time t, for a fixed given valuex of the input signal
x(t), we have the conditional probability Pr$yi(t)50ux%,
which is also Pr$x1h i(t)<u i%, amounting to

Pr$yi~ t !50ux%5Fh~u i2x!5qi~x!. ~4!

In the same way, we have Pr$yi(t)51ux%512qi(x).
We assume for the present, as done in Ref.@12#, that all

the thresholdsu i share the same valueu i5u for all i, and
Fh(u2x)5q(x). The conditional probability Pr$Y(t)
5nux% then follows, according to the binomial distributio
as

Pr$Y~ t !5nux%5Cn
N@12q~x!#nq~x!N2n, ~5!
03110
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whereCn
N is the binomial coefficient. We therefore obtain th

probability

Pr$Y~ t !5n%5E
2`

1`

Cn
N@12q~x!#nq~x!N2nf x~x!dx, ~6!

where f x(u) is the probability density function of the inpu
signalx(t).

For the sake of definiteness, concerning the parame
dependence ofx(t) on a, we shall consider in the sequel th
broad class of processes wherex(t) is formed by the additive
mixturex(t)5j(t)1sa(t). The signalj(t) is a random~na-
tive! noise, white, independent of theh i ’s and of a, with
probability densityf j(u). The signalsa(t) is deterministic
and contains the parametera. For instance,a can be the
value of a constantsa(t)[a, the amplitude or frequency of a
periodic sa(t), or any other parameter entering the spec
cation of the deterministicsa(t). We then have for the den
sity f x(u)5 f j@u2sa(t)# and for the derivative of Eq.~6!
with respect toa,

]

]a
Pr$Y~ t !5n%

52
]sa~ t !

]a E
2`

1`

Cn
N@12q~x!#nq~x!N2nf j8@x2sa~ t !#dx.

~7!

The Fisher informationJY of Eq. ~3! follows directly from
Eqs. ~6! and ~7!, possibly through numerical integration, i
broad conditions concerning the noisesh i(t) and the input
signalx(t).

For illustration of the possibility of a suprathreshold S
measured byJY , we consider the case wheresa(t) is the
constant signalsa(t)[a and j(t) is a zero-mean noise
Therefore, the input signal isx(t)5a1j(t) and our estima-
tion task amounts to estimating the meana of the random
signalx(t), whose standard deviation is denoted bysx @it is
also the standard deviation ofj(t)]. Figure 1 shows evolu-
7-2
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SUPRATHRESHOLD STOCHASTIC RESONANCE AND . . . PHYSICAL REVIEW E68, 031107 ~2003!
tions of the resulting Fisher informationJY of Eq. ~3!, as a
function of the rms amplitudesh of the array noisesh i(t),
in some typical conditions.

It is remarkable that the evolutions of the Fisher inform
tion in Fig. 1 are quite similar to those of the Shannon m
tual information presented in Refs.@11,12#, although these
two information measures area priori quite distinct. In Fig.
1, the input signalx(t) is always suprathreshold. AtN51,
with a single threshold, addition of the threshold noiseh1(t)
always degrades the Fisher informationJY , much like in
Ref. @11# with the Shannon information. ForN.1, with no
added noisesh i(t) on the thresholds, all the quantize
switch in unison and the array acts just like a single one
quantizer. It is when the threshold noisesh i(t) are added tha
the quantizer outputsyi start to behave differently for differ
ent i, giving access to a richer representation of the supr
reshold inputx(t). This is conveyed in Fig. 1 by a Fishe
information JY which increases when the levelsh of the
threshold noisesh i(t) grows, up to an optimal nonzerosh
where JY is maximized. For increasingN, this maximum
Fisher information also increases. This maximum ofJY tends
to reach 1/sx

2 which represents, in the conditions of Fig.
with a Gaussianx(t), the input Fisher information containe
in the analog input signalx(t) about the parametera. Again,
at N.1, the behavior of the Fisher informationJY in pres-
ence of the threshold noisesh i(t) is quite reminiscent of the
behavior of the Shannon information in Refs.@11,12#. These
observations tend to prove that suprathreshold SR, as in
duced in Ref.@11#, much like standard~subthreshold! SR
~although the mechanism is different!, is a general nonlinea
phenomenon which can occur and be quantified in m
different ways. It expresses that an array of nonlinear dev
in charge of the transmission of a suprathreshold signal
be more efficient if the devices of the array are allowed
respond in a nonuniform way, thanks to the addition of ind
pendent noises on the devices, with an efficiency which
be assessed ina priori many different ways.

Figure 1 shows the Fisher informationJY from a single
measurement at the output of the array ofN devices. The
Fisher information from M independent measuremen
would beMJY . It is then observable from the curves of Fi
1 that N independent measurements from a single dev
would in general contain more Fisher information than o
measurement from an array ofN devices. The benefit with
the array is the quasi-instantaneous character of a si
measurement, whileN measurements require much long
time. The array will allow a much larger repetition rate f
successive estimation tasks. The picture is similar with
Shannon information of Refs.@11,12#.

The evolutions of Fig. 1 have been obtained through
merical evaluation of the integrals of Eqs.~6! and ~7!. Nu-
merical integration allowed us here to demonstrate the
prathreshold SR in the Fisher information for the practica
very important case of Gaussian noisesj(t) andh i(t), much
like the demonstration of the suprathreshold SR in the Sh
non information was obtained in Refs.@11,12#. Later on, for
the suprathreshold SR in the Shannon information, com
mentary studies appeared that found special configurat
allowing one to push further the analytical treatment, co
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firming the effect in other special cases and bringing ad
tional insight to the description@17,18#. In a similar perspec-
tive here, for the suprathreshold SR in the Fish
information, we address in the Appendix the case of unifo
noisesj(t) andh i(t), these conditions allowing us to pus
further the analytical description.

III. DISTRIBUTION OF THRESHOLDS

When the thresholdsu i , i 51 to N, no longer share the
same valueu, the conditional probability Pr$Y(t)5nux% of
Eq. ~5! has to be computed as

Pr$Y~ t !5nux%5(
(n)

)
i 51

N

@12qi~x!#yiqi~x!12yi, ~8!

where ( (n) stands for the sum over the states available
Y(t) for which the number ofyi equal to 1 is exactlyn,
among the 2N distinct states available toY(t). After this
replacement of Eq.~5! by Eq. ~8! is done, the probability
Pr$Y(t)5n% follows in the same way as

Pr$Y~ t !5n%5E
2`

1`

Pr$Y~ t !5nux% f x~x!dx ~9!

and its derivative witha whenx(t)5j(t)1sa(t) and f x(u)
5 f j@u2sa(t)#, as

]

]a
Pr$Y~ t !5n%

52
]sa~ t !

]a E
2`

1`

Pr$Y~ t !5nux% f j8@x2sa~ t !#dx, ~10!

providing access toJY of Eq. ~3!.
Establishing the exact distribution of the thresholdsu i ,

which maximizes the Fisher informationJY of Eq. ~3!, is a
complicated problem, especially whenN is not too small. We
shall avoid this problem here, since our purpose is m
focused on establishing the feasibility of a noise-enhan
Fisher information with arrays of quantizers in various re
sonable conditions. Although not proven optimal in relati
to the Fisher information, a reasonable choice for the thre
olds u i is the maximum-entropy distribution making a
the output states equiprobable by imposing*u i

u i 11f x(u)du

51/(N11), as in Ref. @19#. When f x(u) is zero-mean
Gaussian with standard deviationsx , the thresholds follow
as

u i5sxA2 erf21S 2i

N11
21D . ~11!

For such a distribution of the thresholds, Fig. 2 illustra
that a suprathreshold SR is still possible, in definite con
tions. Figure 2 considers the case of the estimation of
meana of a Gaussian random inputx(t) with standard de-
viation sx51. We choose a numberN57 of thresholds ac-
cording to Eq. ~11!, especially yieldingu450 and u7
'1.15. Figure 2 shows various evolutions of the Fisher
7-3
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formationJY of Eq. ~3!, for different values of the meana.
The value ofa determines how the inputx(t) is seen by the
array of thresholdsu i . For any value ofa in Fig. 2, the input
x(t) is always suprathreshold. Fora equal or close to zero~at
the scale set bysx51), the inputx(t) is well centered in
relation to the array of thresholds. In such conditions
array noisesh i(t) are always detrimental, as expressed
the monotonic decay of the Fisher informationJY in Fig. 2,
assh grows. By contrast, for largera the inputx(t) comes to
be, on average, not well centered in relation to the array
thresholds. In such conditions, the array noisesh i(t) bring
the possibility of some shift in the array of thresholdsu i ,
and this on average, tends to be beneficial to the transmis
of the inputx(t). This is conveyed by a Fisher informatio
JY in Fig. 2, which can be increased as the levelsh of the
array noises grows, withJY culminating at a maximum for
an optimal nonzero noise level. This is an instance of
prathreshold SR, under the form of a noise-enhanced Fi

FIG. 2. Fisher informationJY of Eq. ~3!, as a function of the rms
amplitudesh of the array noisesh i(t) chosen zero-mean Gaussia
The input random signalx(t) is Gaussian with meana and standard
deviationsx51. The thresholdsu i are set according to Eq.~11!, for
i 51 to N57.
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information across an array of distributed thresholds. Whe
suprathreshold signal to be estimated is not well positio
in relation to the array of thresholds, noise addition to t
thresholds can bring improvement to the performance in
timation.

Other conditions exist, allowing a suprathreshold SR in
array of distributed thresholds. For instance, if the thresho
are set according to Eq.~11! with sx51, and subsequently
the array is used to transmit an inputx(t) with a different
standard deviationsx ~above or below 1), then a suprath
reshold SR can occur in conditions qualitatively similar
those of Fig. 2. VaryingN and the distribution of threshold
u i ~for instance, equispaced thresholds! also preserve the
possibility of a suprathreshold SR.

IV. AVERAGE FISHER INFORMATION

A difficulty for drawing full benefit of SR for estimation
is that in general the optimal level of the noise to be adde
dependent upon the unknown value of the parametera we
seek to estimate. This is the same picture for the stand
~subthreshold! SR for estimation considered in Refs.@13–
15#, as well as for the suprathreshold SR shown here in F
1 and 2. In practice it is reasonable to admit that some p
knowledge is available concerning the possible values
range for the parametera to be estimated. If this prior knowl-
edge is expressable by a prior probability densityf a(u) for
the possible values ofa, then an optimal noise level can b
determined to maximize the average, over this prior dens
of the Fisher informationJY of Eq. ~3! seen as a function o
a, i.e.,

J̄Y5E
2`

1`

JY~a! f a~a!da. ~12!

For estimation purpose, this will guarantee that for a la
number of values ofa, drawn from f a(u), the average per-
formance will be optimized.

Figure 3 illustrates the possibility, in various condition
FIG. 3. Average Fisher informationJ̄Y of Eq. ~12!, as a function of the rms amplitudesh of the array noisesh i(t) chosen zero-mean
Gaussian. The input random signalx(t) is Gaussian with meana and standard deviationsx51. The constanta is uniformly distributed over
@0,1#. All thresholds in the array are set tou50 ~panelA) andu50.5 ~panelB).
7-4
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SUPRATHRESHOLD STOCHASTIC RESONANCE AND . . . PHYSICAL REVIEW E68, 031107 ~2003!
of a suprathreshold SR on the average Fisher informationJ̄Y
of Eq. ~12!, in the case where all the thresholdsu i share the
same valueu.

Curves like those of Fig. 3 can be used toa priori select
the optimal levelsh of the array noiseh i(t) that maximizes
J̄Y of Eq. ~12! for definite conditions of operation concernin
f a(u), N, and the common thresholdu. Furthermore, the
present treatment also allows us to determine the opti
value of the common thresholdu to maximizeJ̄Y of Eq. ~12!
at the optimal noise level@in many conditions the outcom
will be the expectationu5E(a)].

Another distinct strategy to bring the array to operate
the optimal level of the noisesh i(t) for estimation of a given
a is to adjust the noise level through an adaptive proced
Adaptation strategies for subthreshold input have b
briefly discussed in Ref.@13#, and recently in more detail in
Ref. @20#, especially in the context of neuronal signal tran
mission aided by noise. An adaptive procedure is also u
with standard~subthreshold! SR for estimation from a single
one-bit quantizer in Ref.@21#. In the context of suprathresh
old SR, the approach here would be to start with no ar
noises, atsh50. Get an estimate ofa, which will not benefit
from operation at the maximal Fisher information. Use ca
bration curves like those of Fig. 1 or 2, givenN and the
commonu or the distribution ofu i , in order to deduce the
optimal noise level corresponding to the current estima
value fora. Add array noises with this level, redo an estim
tion of a, and iterate the process. After a few iterations, t
procedure will bring the array to operate in the vicinity of t
optimal noise levelsh associated to the maximum Fish
informationJY of Eq. ~3! for a givena.

Adaptation strategies could also be envisaged for
thresholds, but the possibility of threshold adjustment is
always easily available, for instance in neuronal conte
Also, this means falls outside the scope of SR, which s
cifically aims at exploiting the noise to assist the signal, a
whose potentialities we are investigating here.

V. MAXIMUM LIKELIHOOD ESTIMATION

For actual estimation, a reasonable strategy is to col
from the output of the array a set ofM measurementsYj
5Y(t j ) at M distinct timest j , for j 51 to M, and to consider
the estimation ofa from the data set (Y1 , . . .YM)5Y by
means of the maximum likelihood@22# estimatorâML . The
likelihood L(Y;a) is defined as the probability Pr$Y;a%, and
since we are dealing with white noises, we have

L~Y;a!5Pr$Y;a%5)
j 51

M

Pr$Yj ;a%. ~13!

For a given measurementYj , which takes on an intege
value between 0 andN, the probability Pr$Yj ;a% is the prob-
ability of Eq. ~6! seen as a function ofa at givenYj , i.e.,

Pr$Yj ;a%5E
2`

1`

CYj

N @12q~x!#Yjq~x!N2Yj f j@x2sa~ t !#dx.

~14!
03110
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The expression of Eq.~14! is for the case of a common
thresholdu; for a distribution of thresholdsu i a comparable
expression is accessible from Eqs.~8! and~9!. The maximum
likelihood estimatorâML is then defined as

âML5argamaxL~Y;a!. ~15!

The performance of the maximum likelihood estimator
naturally assessed by the rms estimation errorE defined
through the expectation

E5AE@~a2âML !2#. ~16!

For estimation ofa based onY5(Y1 , . . .YM), the Fisher
information contained inY abouta is MJY . Any unbiased
estimator ofa from Y will have its rms error lower bounded
by the Crame´r-Rao bound 1/AMJY derived from the Fisher
informationJY of Eq. ~3!. The maximum likelihood estima
tor âML of Eq. ~15!, as the number of measurementsM be-
comes large, is asymptotically unbiased and efficient@22#,
i.e., its rms errorE reaches~from above! the Crame´r-Rao
bound 1/AMJY.

We have performed a series of Monte Carlo trials
estimation on a suprathreshold signalx(t), implementing a
numerical evaluation of the maximum likelihood estima
from Eqs.~13!–~15!. This has been done for a fixed consta
signal sa(t)[a5atrue, in the following way. A vector real-
ization of the native noise@j(t1), . . . ,j(tM)# is generated,
with eachj(t j ), j 51 to M, independently drawn from the
known density f j(u). For each signal samplex(t j )5atrue
1j(t j ), theN realizationsh i(t j ), i 51 to N, of the threshold
noises are obtained, with eachh i(t j ) independently drawn
from the known densityf h(u); the correspondingyi(t j ), i
51 to N, are deduced through Eq.~1!. The value ofY(t j )
5Yj is then deduced from Eq.~2!. The M values ofYj , j
51 to M, are collected to provide a given realization of th
measurement vectorY5(Y1 , . . . ,YM). For this realization
Y, the likelihood defined by Eqs.~13! and ~14! is evaluated
as a function of the variablea5adum which now has to be
considered as a dummy variable, distinct fromatrue. The
likelihood function is thus calculated asL(Y,adum), a func-
tion of adum at fixedY given by the observation. This calcu
lation of L(Y,adum) is performed over a discrete set of valu
for the variableadum, which is taken to vary over a finite
interval @amin ,amax# and sampled with a stepDa. The value
of adum achieving the maximum ofL(Y,adum) is then taken
as the maximum likelihood estimateâML of Eq. ~15!. The
current difference (âML2atrue)

2 is accumulated for the nu
merical evaluation of the rms estimation errorE of Eq. ~16!,
as the whole process is iterated starting with another ve
realization of the native noise. On the one hand,atrue
6a(sj1sh), with a53 to 4, measures the possible ran
of equivocation of the estimateâML with large probability. It
is then consistent to choose the interval@amin ,amax# suffi-
ciently large to contain the rangeatrue6a(sj1sh). On the
other hand,âML is expected to have a rms errorE lower
bounded by 1/AMJY. It is then consistent to choose a ste
7-5
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ROUSSEAU, DUAN, AND CHAPEAU-BLONDEAU PHYSICAL REVIEW E68, 031107 ~2003!
Da sufficiently small compared to 1/AMJY. These two
choices, statistically, will guarantee an accurate evaluatio
errorE in the Monte Carlo procedure. These choices rely
prior informations that are usually available in convention
estimation problems, concerning the noise densities and
feasible range for the values accessible to the parameta
5atrue to be estimated. At least, these prior informations
configuring@amin ,amax# andDa are available under the form
of conservative estimates or bounds, which is appropriate
the numerical implementation of the maximum likelihoo
estimator. These considerations lead us, for the condition
Fig. 4, to chooseamax52amin515 andDa50.01. Figure 4
presents evolutions of the rms errorE evaluated with this
Monte Carlo implementation of the maximum likelihoo
estimator.

The evolutions of Fig. 4 show, as expected, that asM
increases, the rms estimation errorE reaches the Crame´r-Rao
bound 1/AMJY derived from the Fisher information of Eq
~3!. This behavior, asymptotic in principle, is in practice we
realized as soon as moderate values ofM, such asM516 in
Fig. 4. This demonstrates that the possibilities of enhan
ment by noise of the Fisher information, as expressed
Figs. 1–3, will be precisely reflected in the performance
actual estimators like the maximum likelihood estimat
even when using moderate numbersM of measurements fo
estimation. Furthermore, it is visible in Fig. 4 that for sm
values ofM, such asM52, even though the rms errorE is
not quantitatively precisely described by the Fisher inform
tion ~especially at lowsh), there still exists a similar possi
bility of improving the performance~the rms error here! by
means of an increase in the levelsh of the array noises
h i(t). This is expressed in Fig. 4 by the rms estimation er
E which starts to decrease when the noise levelsh increases,
with an optimal nonzero value ofsh that minimizesE.

FIG. 4. Estimation withM measurements from an array ofN
515 threshold devices. In abscissa is the rms amplitudesh of the
array noisesh i(t) chosen zero-mean Gaussian. The discrete se
points are the rms estimation errorE of Eq. ~16! numerically evalu-
ated from 103 Monte Carlo trials of the maximum likelihood est
mator from Eqs.~13!–~15! for eachsh . The solid lines are the
Cramér-Rao bound 1/AMJY from Eq. ~3!. The input random signa
x(t) is Gaussian with meana50.5 and standard deviationsx51.
The common threshold isu50.
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Moreover, it appears in the conditions of Fig. 4 that at sm
M, the improvement by the array noises induced on the e
E, is even more pronounced than the improvement expres
by the Fisher information through the Crame´r-Rao bound. In
other words, at smallM, the suprathreshold SR is more pr
nounced when assessed by the rms estimationn error tha
the Fisher information. Qualitatively, all the evolutions
Fig. 4 point to the same idea, in one form or another:
possibility of an improvement by addition of thresho
noises, of the performance of a parallel array of quantiz
used for estimation on a suprathreshold signal.

Again, the conditions of Fig. 4 are merely illustrative, an
the possibility of improvement by addition of array noises
the rms errorE is preserved in many other conditions
estimation on the suprathreshold signalx(t). It is also
expected that the more elaborate scenarios for estimatio
evoked in Secs. III and IV, will also reflect qualitativel
similar possibilities of suprathreshold SR on the rms estim
tion error.

VI. ESTIMATION ON TIME-VARYING SIGNALS

For estimation on an input signal with the formx(t)
5sa(t)1j(t), the above equations allowing one to deri
the Fisher informationJY , are valid for any type of paramet
ric sa(t), although we have used them only for a consta
sa(t)[a in the examples of Figs. 1–4. Compared to the c
of a constantsa(t)[a, the Fisher information for a time
varyingsa(t) only differs, at any timet, by the multiplication
by the prefactor@]sa(t)/]a#2 of Eq. ~7! or ~10!, the constant
value ofa being replaced by the instantaneous value ofsa(t)
at time t.

For instance, for estimation of the amplitudea of a peri-
odic input sa(t)5a cos(vt) with known angular frequency
v, the derivative in Eqs.~7! and ~10! is ]sa(t)/]a
5cos(vt). Compared to the Fisher informationJY for a con-
stants(t)[a, the Fisher information is obtained through th
changeJY→cos2(vt)JY . We end up with a time-dependen
Fisher information, which is known at every timet, with a
time variation involving the prefactor cos2(vt). At any timet,
the Fisher information keeps the same significance for
sessing the performance in estimation. If the measurem
are taken at timest where the inputsa(t)5a cos(vt) is zero,
the Fisher information at these times is also zero. T
means, in a quite consistent way, that there is no possib
of estimating the amplitudea of sa(t) if data are collected
whensa(t) is zero; and on the contrary, the efficacy in es
mation ~and the Fisher information! will be high if data are
collected at times whensa(t) assumes large values.

As another example, for estimation of the angular f
quencya of a periodic inputsa(t)5A cos(at) with known
amplitude A, the derivative in Eqs.~7! and ~10! is
]sa(t)/]a52At sin(at). Compared to the Fisher informatio
JY for a constants(t)[a, the Fisher information is now
obtained through the changeJY→@At sin(at)#2JY . We again
end up with a time-dependent Fisher information, which
known at every timet, with a time variation involving the
prefactor@At sin(at)#2. Again, at any timet, the Fisher infor-
mation keeps the same significance for assessing the pe

of
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mance in estimation. If the time origin is arbitrarily take
the prefactor@At sin(at)#2, and hence the Fisher informatio
can grow without bound. In such a case, the Crame´r-Rao
bound becomes a vanishingly small lower bound, sugges
that the variance of any unbiased estimator ofa is necessarily
above zero. This is a consistent, although not very inform
tive, deduction. With another time origin, chosen at the ti
of measurement, i.e.,t50, we make the prefacto
@At sin(at)#2, and hence the Fisher information, zero. In su
a case, the Crame´r-Rao bound becomes infinite, suggesti
that the variance of any unbiased estimator ofa is also infi-
nite. This is again a consistent statement, revealing that t
is no possibility of estimating the frequency of a period
signal from measurements taken at a single fixed time. M
than one time are necessary to pick up the measuremen
which times the Fisher information cannot be simultaneou
zero @unless those times are exactly located at the zero
sin(at)], this being associated to a noninfinite Crame´r-Rao
bound allowing a noninfinite variance of the estimators.

However, it is important to realize that those tempo
behaviors of the Fisher information with a time-varying s
nal sa(t) are caused by the very nature of the time-vary
input, and are not specifically related to the array of thre
old devices we use for estimation. For instance with a p
odic signal sa(t), the temporal behavior would be muc
similar to the Fisher information for estimation based
rectly on the input signalsa(t)1j(t). In such a case also
the Fisher information is affected in the same way by
prefactor @]sa(t)/]a#2, inherent to the definition of the
Fisher information involving a derivative in the paramete

The specificity of the results we present here are not c
tained in the temporal evolution of the Fisher informatio
but they are contained in its evolution with the level of t
noise. In the expression of the Fisher informationJY , both
the signalsa(t) and the prefactor]sa(t)/]a in Eqs.~7! and
~10! are independent of the array noisesh i(t) and of the

FIG. 5. Fisher informationJY of Eq. ~3!, as a function of the rms
amplitudesh of the array noisesh i(t) chosen zero-mean uniform
The input random signalx(t) is uniform with meana50.3 and
standard deviationsx51. The valueu50 is assigned to all thresh
olds in the array. (3) areJY computed from the analytical expres
sions of the Appendix. The solid lines areJY computed by numeri-
cal evaluation of the integrals of Eqs.~6! and ~7!.
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native noisej(t). Thus, for the influence of the noise prop
erties on the Fisher information of Eq.~3!, the specific form
of the parametric dependence ofsa(t) on a will play no role
since it does not vary with the noise. As a consequence,
type of signalsa(t) parametrized in any arbitrary way bya
will benefit from the same possibility of improvement b
noise as expressed by Figs. 1–3 on the Fisher information
this respect, the evolutions with the noise level obtained
Figs. 1–3 for a constant signalsa(t) are in some sense ge
neric and they bear significance for any type of parame
sa(t).

VII. DISCUSSION

We have demonstrated the feasibility of suprathresh
SR for parametric estimation performed from the output o
parallel array of threshold devices. The results reported h
aim essentially at proving the feasibility, in principle, of
suprathreshold SR in parametric estimation from an array
threshold devices. This is realized here in several repre
tative conditions. These conditions are not in themsel
critical for the observation of suprathreshold SR. Beyo
this, many aspects of this form of suprathreshold SR rem
open for future investigation, for example, further analy
of the influence of the type of the probability density
the threshold noises or the development of adaptive sche
to apply the right amount of threshold noise to defin
estimators.

The suprathreshold SR demonstrated here, similar to
in Refs.@11,12#, is especially operative when the threshol
in the array are constrained to be the same and canno
separately adjusted. Such conditions can be encountere
natural systems such as neurons organized in parallel ar
for sensory processing. A form of suprathreshold SR m
sured by the input-output mutual information has be
shown possible in arrays of sensory neurons@23#. It is likely
that the present form of suprathreshold SR measured by
Fisher information can also take place in neuronal array
charge of estimation tasks in sensory processing.

More generally, suprathreshold SR now gradua
emerges as a mechanism of improvement by noise, with g
eral significance and applicability envisagable under ma
different forms, even going beyond the special instances
sessed through the Fisher or the Shannon information
discussed here. In broad terms, standard~subthreshold! SR
can be described as assistance brought by noise, to a s
signal, in eliciting a response from a single nonlinear syste
By contrast, suprathreshold SR can be described as dive
brought by noise for a richer response, to a suprathresh
signal, elicited by an array of nonlinear systems. These c
stitute two distinct forms of improvement by noise, with ric
potentialities still to be explored for nonlinear informatio
processing.
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APPENDIX

In this appendix, we consider the case of uniform noi
j(t) andh i(t), and equal thresholdsu i5u, ; i . These con-
ditions allow us to obtain an analytical expression for t
Fisher informationJY of Eq. ~3!, thanks to analytical integra
tion of the integrals of Eqs.~6! and~7!. This analytical treat-
ment of the Fisher information parallels that of Refs.@17# for
the Shannon information.

Let

Q~n,x!5Cn
N@12q~x!#nq~x!N2n. ~A1!

When the native noise j(t) is uniform over
@2A3sj ,A3sj#, the probability density f x(x)5 f j@x
2sa(t)# takes the constant value 1/(2A3sj) when x
P@2A3sj1sa(t),A3sj1sa(t)#, and is zero outside this
interval. Therefore, Eq.~6! transforms into

Pr$Y~ t !5n%5
1

2A3sj

E
2A3sj1sa(t)

A3sj1sa(t)
Q~n,x!dx. ~A2!

We also have
03110
s f j8@x2sa~ t !#5
1

2A3sj

$d@x1A3sj2sa~ t !#2d@x2A3sj

2sa~ t !#%, ~A3!

so Eq.~7! becomes

]

]a
Pr$Y~ t !5n%52

]sa~ t !

]a

1

2A3sj

$Q@n,2A3sj1sa~ t !#

2Q@n,A3sj1sa~ t !#%. ~A4!

We further assume that the threshold noisesh i(t) are uni-
form over @2A3sh ,A3sh#, with the cumulative distribu-
tion function

Fh~u!55
0 for u,2A3sh

1

2A3sh

~u1A3sh! for 2A3sh<u<A3sh

1 for u.A3sh .
~A5!

Sinceq(x)5Fh(u2x), Eq. ~A1! becomes, for any intege
nP@1,N21#,
Q~n,x!5H Cn
NS 2

u2x2A3sh

2A3sh
D nS u2x1A3sh

2A3sh
D N2n

for u2A3sh<x<u1A3sh

0 otherwise.

~A6!

Also

Q~0,x!55
1 for x,u2A3sh

S u2x1A3sh

2A3sh
D N

for u2A3sh<x<u1A3sh

0 for x.u1A3sh

~A7!

and

Q~N,x!55
0 for x,u2A3sh

S 2
u2x2A3sh

2A3sh
D N

for u2A3sh<x<u1A3sh

1 for x.u1A3sh .

~A8!
We introduce xinf5max@2A3sj1sa(t),u2A3sh# and
xsup5min@A3sj1sa(t),u1A3sh#. For any nP@1,N21#,
Eq. ~A2! yields Pr$Y(t)5n%5Cn

NI (n)sh /sj , with the inte-
gral

I ~n!5
1

2A3sh
E

xinf

xsupS 2
u2x2A3sh

2A3sh
D n

3S u2x1A3sh

2A3sh
D N2n

dx. ~A9!
Through the change of variable z5(u2x
1A3sh)/(2A3sh), we get

I ~n!5E
zinf

zsup
~12z!nzN2ndz, ~A10!

with

zinf5maxF0,
1

2 S 12
sj

sh
1

u2sa~ t !

A3sh
D G , ~A11!
7-8
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zsup5minF1,
1

2 S 11
sj

sh
1

u2sa~ t !

A3sh
D G . ~A12!

The integral of Eq.~A10! can generally be evaluated b
means of the primitive*(12z)nzN2ndz5N12F1(@N2n
11,2n#,@N2n12#,z)zN2n11/(N2n11), where mFp is
the generalized hypergeometric function or Barnes’s
tended hypergeometric function@24,25#. An alternative pos-
sibility to integrateI (n) of Eq. ~A10! is to use the binomia
expansion of (12z)n to obtain
v
a-
-

m

t o

a
a
s
r

03110
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E ~12z!nzN2ndz5 (
k50

n

~21!kCk
n zN2(n2k)11

N2~n2k!11
,

~A13!

which replacesI (n) by a finite sum, for anynP@0,N#. This
last integral of Eq.~A13! simplifies into zN11/(N11) for
n50 and into2(12z)N11/(N11) for n5N.

As written above, knowledge ofI (n) provides access to
Pr$Y(t)5n%5Cn

NI (n)sh /sj , for any nP@1,N21#. In ad-
dition, we have from Eqs.~A2! and ~A7!,
Pr$Y~ t !50%55 I ~0!
sh

sj
1

1

2 S 12
sh

sj
1

u2sa~ t !

A3sj
D for sh,sj1

u2sa~ t !

A3

I ~0!
sh

sj
otherwise

~A14!

and from Eqs.~A2! and ~A8!,

Pr$Y~ t !5N%55 I ~N!
sh

sj
1

1

2 S 12
sh

sj
2

u2sa~ t !

A3sj
D for sh,sj2

u2sa~ t !

A3

I ~N!
sh

sj
otherwise.

~A15!
hat
of

nd
By collecting the equations of this appendix, we now ha
the possibility of a direct evaluation of the Fisher inform
tion JY of Eq. ~3! avoiding numerical approximations of in
tegrals, in the case of uniform noisesj(t) andh i(t), in gen-
eral conditions concerningsa(t) and N. An illustration is
provided in Fig. 5. Beyond the specificities of the unifor
noises@with the bounded support of the noisesh i(t) which,
assh grows, crosses critical levels related to the suppor
the native noisej(t), to the signal amplitudesa(t) and to the
thresholdu], the important observation we want to emph
size in Fig. 5 is that the suprathreshold SR is preserved qu
tatively in a quite similar form as with Gaussian noise
Noise enhancement of the Fisher information occurs fo
e

f

-
li-
.
a

suprathreshold signal, as soon asN.1. This demonstrates a
robustness, or universality, of the qualitative features t
define suprathreshold SR, with respect to the distribution
the noises.

Further simplifications of the analytical expressions forJY

can be obtained in more specific configurations. Whensh

,sj2@u2sa(t)#/A3, then Eq.~A11! yields zinf50; when
sh,sj1@u2sa(t)#/A3, then Eq. ~A12! yields zsup51.
With zinf50 andzsup51 in Eq. ~A10!, the generalized hy-
pergeometric function simplifies into the Beta function a
Eq. ~A10! gives I (n)5n!(N2n)!/(N11)! for any n
P@0,N#. This leads Eq.~A2! to
Pr$Y~ t !5n%55
S 1

N11
2

1

2Dsh

sj
1

1

2 S 11
u2sa~ t !

A3sj
D for n50

1

N11

sh

sj
for 0,n,N

S 1

N11
2

1

2Dsh

sj
1

1

2 S 12
u2sa~ t !

A3sj
D for n5N.

~A16!

Also, when the same two conditions are met, i.e., whensh,sj2uu2sa(t)u/A3, then Eq.~A4! gives
7-9



]

]a
Pr$Y~ t !5n%5

2
]sa~ t !

]a

1

2A3sj

for n50

0 for 0,n,N

]s ~ t ! 1

~A17!

ld

the input

ROUSSEAU, DUAN, AND CHAPEAU-BLONDEAU PHYSICAL REVIEW E68, 031107 ~2003!
5 a

]a 2A3sj

for n5N.

This leads to an explicit expression for the Fisher informationJY of Eq. ~3!, valid for sh,sj2uu2sa(t)u/A3, as

JY5F]sa~ t !

]a G2S 1

2A3sj
D 2F 1

S 1

N11
2

1

2Dsh

sj
1

1

2 S 11
u2sa~ t !

A3sj
D 1

1

S 1

N11
2

1

2Dsh

sj
1

1

2 S 12
u2sa~ t !

A3sj
D G . ~A18!

This expression ofJY in Eq. ~A18!, over its domain of validity, for anyN.1, is a strictly increasing function ofsh when
sh starts to grow above zero in the presence ofsj.0; by contrast, it is a constant function ofsh whenN51. This is a direct
proof of the suprathreshold SR effect in the array: when threshold noise is added in the array (N.1), the Fisher information
JY starts to grow, while this growth is not present with a single device (N51).

In addition, the above equations forJY with uniform noisesj(t) and h i(t) show that the optimal level of the thresho
noises which maximizes the Fisher information issh5sj2uu2sa(t)u/A3, as seen in Fig. 5. This holds whensj.uu
2sa(t)u/A3; otherwise, we are outside the regime of suprathreshold SR which is of interest to us here, because then
signalx(t)5sa(t)1j(t) has become subthreshold when the threshold noisesh i(t) are absent.
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