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Suprathreshold stochastic resonance and noise-enhanced
Fisher information in arrays of threshold devices
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We analyze the parametric estimation that can be performed on a signal buried in noise based on the
parsimonious representation provided by a parallel array of threshold devices. The Fisher information con-
tained in the array output about the input parameter is used as the measure of performance in the estimation
task. For estimation on a suprathreshold input signal, we establish that enhancement of the Fisher information
can be obtained by addition of independent noises to the thresholds in the array. Similar improvement by noise
is also shown to be possible for the estimation error of the maximum likelihood estimator. These results extend
the applicability of the recently introduced nonlinear phenomenon of suprathreshold stochastic resonance.
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[. INTRODUCTION threshold devices as in Refsl1,12, but we use this array
for a markedly distinct information processing operation.
Stochastic resonancéSR) is a nonlinear phenomenon The array is used here for estimation of a signal parameter.
which was introduced some twenty years ago and which defo assess the performance of the array in the estimation task
scribes the possibility of improvement of the transmission of@nd to investigate the possibility of suprathreshold SR, we
the processing of a signal, thanks to the action of the noisely on, instead of the mutual information, the Fisher infor-
[1]. Since its introduction, SR has gradually been shown feaMation, which is specifically relevant to quantify the efficacy
sible under many different forms, with various types of sig-(?f estimation processes. Applications of the Fisher informa-
nals, nonlinear processes, and measures of performance {20 t0 guantify standardsubthresholl SR have been pro-
ceiving improvement from the noisd2-10. Most posgd in Refs[;[3—15. In those Sth'eS’ a smgle thre;hold
occurrences of SR involve a signal which is by itself toodewce along with a subthreshold input signal is considered.

. . - It is shown that noise can help the subthreshold input to
small or ill conditioned to elicit a strong response from & overcome a single threshold, this being reflected by the pos-

) - - gibility of a noise-enhanced input-output Fisher information.
the small signal in eliciting a more efficient response fromHere in the present paper, we examine the behavior of the
the nonlinear system, for instance by overcoming a thresholﬁmut’_Output Fisher informa'tion in the transmission of a su-
or a potential barrier. Very recently, another interesting formprathreshold input signal across the parallel array. We estab-
of SR has been introduced under the name of suprathreshojdy, that noise enhancement of the Fisher information can be
SR[11,12. In this case, SR is obtained in the response of gtained, demonstrating a distinct manifestation of a suprath-
parallel array of threshold devices. The input Signal by itselfreshokj SR phenomenon_ The associated poss|b|||ty of im-
is strong enough to overcome the threshold of a single deprovement by the noise is also exhibited in the performance
vice, and it needs no assistance from noise for this. With n@f the maximum likelihood estimator from the array output.
noise in the array, the input signal usually elicits the same
output response from any one of the devices. If different
noises are independently added on the devices of the array,
then each device will in general produce a distinct response.

When all these responses are collected over the array, it is A random signak(t) is dependent upon an unknown pa-
shown in Refs[11,12 that the global response can be morerametera, the value of which we seek to estimate. The mea-
efficient than the response of a single device with no noisesyrements on the signal(t) are obtained by means of
Furthermore, an optimal nonzero amount of noise can bgnreshold devices or one-bit quantizers. We consider, as in
found that maximizes the efficacy of t_he global response oRefs.[11,12), a parallel array of a numbet of such one-bit
the array. This suprathreshold SR, as introduced in[R&f,  quantizers. A noise(t), independent ok(t), can be added

is important since it Significantly extends the mechanismﬁo X(t) before quantization by quantizErQuantizeri, with
under which SR, as an improvement by noise, can occur. thresholdg;, delivers the output

Suprathreshold SR in Refgl1,12 is observed and mea-
sured by means of the input-output mutual information .
across the array. It is shown in Refd1,12], for the trans- YiO=HxO+m®)-0] 1=12...N, @)
mission of a suprathreshold input signal, that a maximum
mutual information is obtainable for a nonzero amount ofwhere H(u) is the Heaviside function, i.eKH(u)=1 if u
noise added to the thresholds. Here, in the present paper, we0 and is zero otherwise. We will consider here that lthe
propose further explorations of the phenomenon of suprathaoisesy;(t) are white, mutually independent, and identically
reshold SR. We consider the same type of parallel array oflistributed with cumulative distribution functiof,(u) and

II. NONLINEAR TRANSMISSION IN A PARALLEL
ARRAY
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FIG. 1. Fisher informatiody of Eg. (3), as a function of the rms amplituds, of the array noiseg;(t) chosen zero-mean Gaussian. The

input random signak(t) is Gaussian with meaa and standard deviatiogm,= 1. All thresholds in the array are set#e=0. PanelA, when
a=0 and paneB, whena=1.

probability density functiorf,(u)=dF,/du. The response whereCE is the binomial coefficient. We therefore obtain the
Y(t) of the array is obtained by summing the outputs of allprobability
the quantizers as

+o
N PV{Y(I):H}IJ CA[1—a()1"g)N "y (x)dx, (6)
(=2, i(0). 2 ’
wheref,(u) is the probability density function of the input
The estimation of the parameteris to be based on the signalx(t).
observation ofY(t) alone. Such conditions, with arrays of  For the sake of definiteness, concerning the parametric
one-bit quantizers, are specially relevant for existing and fudependence of(t) ona, we shall consider in the sequel the
ture multisensor networks having to cope with limited time broad class of processes whe(¢) is formed by the additive
and resources for data processing, storage, communicatiofixture x(t) = £(t) +s,(t). The signalé(t) is a random(na-
and for energy supply. tive) noise, white, independent of thg’s and of a, with
For the estimation o from Y(t), a key quantity{16] is ~ probability densityf (u). The signals,(t) is deterministic
the Fisher informatiordy contained inY(t) abouta. Fisher ~and contains the parameter For instancea can be the
informationJy, via the CrameRao inequality, sets a bound Value of a constarg,(t)=a, the amplitude or frequency of a
to the efficacy of any conceivable unbiased estimatom of periodics,(t), or any other parameter entering the specifi-
from Y(t): the variance of any such estimator is lower cation of the deterministis,(t). We then have for the den-
bounded by the reciprocal of the Fisher information. Forsity f,(u)=f[u—s,(t)] and for the derivative of Eq(6)
Y(t), which assumes integer values between 0 Nndhe  With respect toa,
Fisher informationly is

d
" ; 5 £Pr{Y(t)=n}
=2 v = s YO @ I5a(t) [+
- % J ~_ CAlL=a001"q00N " X = so(t)Jdx.

At time t, for a fixed given valuex of the input signal
x(t), we have the conditional probability {%(t)=0|x}, (7)
which is also Pix+ #;(t)< 6;}, amounting to

The Fisher information)y of Eq. (3) follows directly from

Prlyi(t)=0[|x}=F (6 —x)=q;(x). (4)  Egs.(6) and(7), possibly through numerical integration, in
broad conditions concerning the noisggt) and the input
In the same way, we have {§(t) =1|x}=1—q;(x). signalx(t).
We assume for the present, as done in RE2], that all For illustration of the possibility of a suprathreshold SR

the threshold®); share the same valug= ¢ for all i, and  measured byly, we consider the case whesg(t) is the
F,(6—x)=q(x). The conditional probability RN¥(t) constant signals,(t)=a and &(t) is a zero-mean noise.
=n|x} then follows, according to the binomial distribution, Therefore, the input signal i(t)=a+ &(t) and our estima-
as tion task amounts to estimating the mearf the random
signalx(t), whose standard deviation is denoteddyy[it is
PrY(t)=n[x}=CN[1-q(x)]"q(x)" ", (5 also the standard deviation ¢t)]. Figure 1 shows evolu-
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tions of the resulting Fisher informatialhy, of Eq. (3), as a firming the effect in other special cases and bringing addi-

function of the rms amplitude,, of the array noises);(t),  tional insight to the descriptiofl7,1§. In a similar perspec-

in some typical conditions. tive here, for the suprathreshold SR in the Fisher
It is remarkable that the evolutions of the Fisher informa-information, we address in the Appendix the case of uniform

tion in Fig. 1 are quite similar to those of the Shannon mu-noisesé(t) and #;(t), these conditions allowing us to push

tual information presented in Refgl1,17, although these further the analytical description.

two information measures agepriori quite distinct. In Fig.

1, the input signak(t) is always suprathreshold. A=1, IIl. DISTRIBUTION OF THRESHOLDS
with a single threshold, addition of the threshold noigét) .
always degrades the Fisher informatidn, much like in When the thresholds;, i=1 to N, no longer share the

Ref. [11] with the Shannon information. Fo4>1, with no ~ Same valuey, the conditional probability R¥ (t)=n|x} of
added noisesy;(t) on the thresholds, all the quantizers EQ:(5) has to be computed as

switch in unison and the array acts just like a single one-bit N

guantizer. It is when the threshold noisgét) are added that _ _ . Yiey. ()1 Yi

the quantizer outputg; start to behave differently for differ- PAY(D)=nlx} % i];[l [1=aCol a0, (@)
enti, giving access to a richer representation of the suprath- )
reshold inputx(t). This is conveyed in Fig. 1 by a Fisher where 2,y §tands for the sum over the stat'es available to
information Jy which increases when the level, of the Y(t) for which the number of; equal to 1 is exactly,
threshold noisesy;(t) grows, up to an optimal nonzer, among the 2 distinct states ava!lable ty(t). After th-I.S
where Jy is maximized. For increasingy, this maximum replacement of Eq(5) by Eq. (8) is done, the probability
Fisher information also increases. This maximundefends ~ PRY(t)=n} follows in the same way as

to reach 1:15')% which represents, in the conditions of Fig. 1 to

with a Gaussiax(t), the input Fisher information contained Pr{Y(t)zn}=J PHY(t)=n|x}f(x)dx 9

in the analog input signad(t) about the parameter Again, -
at N>1, the behavior of the Fisher informatidq in pres-
ence of the threshold noiseg(t) is quite reminiscent of the
behavior of the Shannon information in Reff$1,12. These
observations tend to prove that suprathreshold SR, as intro;

duced in Ref.[11], much like standardsubthreshold SR —Pr{Y(t)=n}
(although the mechanism is differgnis a general nonlinear

phenomenon which can occur and be quantified in many 5Sa(t)f+

and its derivative withe whenx(t) = &(t) +s4(t) andf,(u)
=ffu—s,(t)], as

“PrY(t)= nxHfix—s,(H1dx, (10

—0o0

different ways. It expresses that an array of nonlinear devices =—

in charge of the transmission of a suprathreshold signal will

o a0 provicing access 10 ofE4. 3
P Y, Establishing the exact distribution of the thresholijs

Egnssirgsgglj?asl Sr?otrri]?rw(;?\\;/lcd?fsfég:t] \;a\llr;yesffluency which €alhich maximizes the Fisher informatiahky, of Eq. (3), is a

Figure 1 shows the Fisher informatiaky from a single complicated problem, especially whihs not too small. We

. shall avoid this problem here, since our purpose is more
measurement at the output of the arrayMNfdevices. The . o .
. i X . focused on establishing the feasibility of a noise-enhanced
Fisher information from M independent measurements

X .~ Fisher information with arrays of quantizers in various rea-
would beM‘JY' Itis then observable from the curves of F'g' sonable conditions. Although not proven optimal in relation
1 that N independent measurements from a single devic

. : . . ) %o the Fisher information, a reasonable choice for the thresh-
would in general contain more Fisher information than one

. ..~ olds 6; is the maximum-entropy distribution making all
measurement from an array bf devices. The benefit with ) ) Y
the array is the quasi-instantaneous character of a singfg€ output states equiprobable by 'mpos'f@ fi(u)du
measurement, whil&l measurements require much longer=1/(N+1), as in Ref.[19]. When f,(u) is zero-mean
time. The array will allow a much larger repetition rate for Gaussian with standard deviatiery, the thresholds follow
successive estimation tasks. The picture is similar with thes
Shannon information of Ref$11,17. _

The evolutions of Fig. 1 have been obtained through nu- b=o \/Eerf‘l(i—l)
merical evaluation of the integrals of Eq$) and (7). Nu- boox N+1 '
merical integration allowed us here to demonstrate the su-
prathreshold SR in the Fisher information for the practically ~For such a distribution of the thresholds, Fig. 2 illustrates
very important case of Gaussian noigét) and »;(t), much that a suprathreshold SR is still possible, in definite condi-
like the demonstration of the suprathreshold SR in the Shartions. Figure 2 considers the case of the estimation of the
non information was obtained in Refd1,17. Later on, for ~meana of a Gaussian random inpu(t) with standard de-
the suprathreshold SR in the Shannon information, compleviation o,=1. We choose a numb&=7 of thresholds ac-
mentary studies appeared that found special configuratiorgording to Eq. (11), especially yielding 6,=0 and 6,
allowing one to push further the analytical treatment, con-=1.15. Figure 2 shows various evolutions of the Fisher in-

Ja
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1 - - - - - ' information across an array of distributed thresholds. When a
o.9f suprathreshold signal to be estimated is not well positioned
o8l in relation to the array of thresholds, noise addition to the

S thresholds can bring improvement to the performance in es-
=07 timation.

E0.6 Other conditions exist, allowing a suprathreshold SR in an
..30_5 array of distributed thresholds. For instance, if the thresholds

are set according to Eql1) with o,=1, and subsequently
the array is used to transmit an inp(tt) with a different
standard deviationr, (above or below 1), then a suprath-
reshold SR can occur in conditions qualitatively similar to
those of Fig. 2. Varyind\ and the distribution of thresholds
0, (for instance, equispaced threshglddso preserve the

0 1 2 3 i_ 5 6 7 possibility of a suprathreshold SR.
noise rms amplitude o,

504}

FIG. 2. Fisher informatiody of Eq. (3), as a function of the rms IV. AVERAGE FISHER INFORMATION
amplitudeo,, of the array noiseg;(t) chosen zero-mean Gaussian. oo . . . .
Th(finput rs;,ndom signazil(t) is Gslellfjs)sian with meamand standard . A dlfflculty for draWIng full benefit of SR. for estimation .
deviatione, = 1. The thresholds, are set according to E¢L1), for 1S that in general the optimal level of the noise to be added is
i=1 toN=7. dependent upon the unknown value of the paramatee
seek to estimate. This is the same picture for the standard
(subthresholgd SR for estimation considered in Refd.3—
15], as well as for the suprathreshold SR shown here in Figs.
1 and 2. In practice it is reasonable to admit that some prior
knowledge is available concerning the possible values or
range for the parametarto be estimated. If this prior knowl-
edge is expressable by a prior probability dengifpu) for
Ghe possible values d, then an optimal noise level can be
Ydetermined to maximize the average, over this prior density,
of the Fisher informatiody of Eq. (3) seen as a function of

formationJy of Eq. (3), for different values of the meaa
The value ofa determines how the inpui(t) is seen by the
array of threshold®,; . For any value o& in Fig. 2, the input
x(t) is always suprathreshold. Farequal or close to zer@t
the scale set byr,=1), the inputx(t) is well centered in
relation to the array of thresholds. In such conditions th
array noisesr;(t) are always detrimental, as expressed b
the monotonic decay of the Fisher informatidnin Fig. 2,
aso, grows. By contrast, for largexrthe inputx(t) comes to ie
be, on average, not well centered in relation to the array of &
thresholds. In such conditions, the array noisg@) bring e
the possibility of some shift in the array of thresholés szf Jy(a)f,(a)da. (12

and this on average, tends to be beneficial to the transmission o

of the inputx(t). This is conveyed by a Fisher information

Jy in Fig. 2, which can be increased as the lewglof the  For estimation purpose, this will guarantee that for a large
array noises grows, witlly culminating at a maximum for number of values o&, drawn fromf,(u), the average per-
an optimal nonzero noise level. This is an instance of suformance will be optimized.

prathreshold SR, under the form of a noise-enhanced Fisher Figure 3 illustrates the possibility, in various conditions,

0 05 . 1 15 _ 2 25 3 0 05 . 1 15 _ 2 25 3
noise rms amplitude o, noise rms amplitude o,
FIG. 3. Average Fisher informatioﬁ, of Eqg. (12), as a function of the rms amplitude, of the array noisesy;(t) chosen zero-mean

Gaussian. The input random sigidt) is Gaussian with meaaand standard deviatiom,= 1. The constana is uniformly distributed over
[0,1]. All thresholds in the array are set =0 (panelA) and #=0.5 (panelB).
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of a suprathreshold SR on the average Fisher informatjon The expression of Eq(14) is for the case of a common

of Eq. (12), in the case where all the threshol@sshare the thresholdg; for a distribution of thresholds; a comparable

same value. expression is accessible from ER). and(9). The maximum
Curves like those of Fig. 3 can be usedatqriori select likelihood estimatoréM,_ is then defined as

the optimal levelo,, of the array noisey;(t) that maximizes

Jy of Eq. (12) for definite conditions of operation concerning ay =argmaxL(Y;a). (15

fa(u), N, and the common threshold. Furthermore, the

present treatment also allows us to determine the optimal The performance of the maximum likelihood estimator is

value of the common thresholito maximizeJ_Y of Eq.(12) naturally assessed t_)y the rms estimation egodefined
at the optimal noise levdin many conditions the outcome through the expectation
will be the expectatiord=E(a)]. _

Another distinct strategy to bring the array to operate at E=VE[(a—ay,)?]. (16
the optimal level of the noises;(t) for estimation of a given
a is to adjust the noise level through an adaptive procedurdzor estimation ofa based onY=(Y, ...Yy), the Fisher
Adaptation strategies for subthreshold input have beemformation contained irY abouta is MJy. Any unbiased
briefly discussed in Ref13], and recently in more detail in estimator ofa from Y will have its rms error lower bounded
Ref. [20], especially in the context of neuronal signal trans-by the CrameRao bound 1YMJy derived from the Fisher
mission aided by noise. An adaptive procedure is also useiformationJy of Eq. (3). The maximum likelihood estima-
with sf[andard_subt_hresholljSR for estimation from a single ,, ay, of Eqg. (15), as the number of measuremeMsbe-
one-bit quantizer in Ref21]. In the context of suprathresh- qmes large, is asymptotically unbiased and effici@a,

old SR, the approach here would be to start with no array e jts rms error€ reaches(from abové the CramieRao
noises, atr,=0. Get an estimate @, which will not benefit o1 UMy,

from operation at the maximal Fisher information. Use cali-

bration curves Iike. thPSG, of Fig. 1 or 2, givéhand the  oqimation on a suprathreshold sigmét), implementing a
commond or the distribution of¢;, in order to deduce the merical evaluation of the maximum likelihood estimate

optimal noise level corr_esponpling _to the current estimateqlrom Egs.(13)—(15). This has been done for a fixed constant
value fora. Add array noises with this level, redo an eSt'ma'signaIs (t)=a=ay,e, in the following way. A vector real-
a - rue: .

tion of a, and iterate the process. After a few iterations, th'sization of the native noise&(ty), . . . é(ty)] is generated,

procedure will bring the array to operate in the vicinity of the with eaché(t;), j=1 to M, independently drawn from the
J £ l

optimal noise levelo, associated to the maximum Fisher . densityf(u). For each signal sample(t;)=ayue

informatiquY of Eq. (_3) for a givena. . + £(t;), theN realizationsz;(t;), i=1 toN, of the threshold
Adaptation strategies could also be envisaged for th oises are obtained, with eacf(t;) independently drawn
thresholds, but the possibility of threshold adjustment is no rom the known den,sity‘ (u): the] corresponding; (t), i
AN i\Ej /)

always easily available, for instance in neuronal contexts.zl to N, are deduced through E¢1). The value ofY(t;)

Also, this means falls outside the scope of SR, which spe-_ Y, is then deduced from Eq2). The M values ofY;, |

S\;Egzléy a:nltn;it‘i’j}etlifi)ézlc\)/\l/t:engr:eh%cggie ;czinass;ztr;he signal, and_ 1 to M, are collected to provide a given realization of the
P gating ' measurement vector=(Yq, ...,Yy). For this realization
Y, the likelihood defined by Eq$13) and(14) is evaluated

V. MAXIMUM LIKELIHOOD ESTIMATION as a function of the variabla=ay,,, which now has to be

For actual estimation, a reasonable strategy is to collectonsidered as a dummy variable, distinct frag,.. The
from the output of the array a set ® measurementy; likelihood function is thus calculated &Y, ag,m), @ func-
=Y(t;) atM distinct timest; , for j=1 toM, and to consider tion of agym at flerY given by the observatlon. This calcu-
the estimation ofa from the data setXy, ...Yy)=Y by lation of L(Y,aq4,m is performed over a discrete set of values

means of the maximum likelihoo®2] estimatoray,, . The for the variableay,,, which is taken to vary over a finite

likelihood L(Y:a) is defined as the probability Pr:a}, and  Nt€Val[amin 8maxd and sampled with a stepa. The value
since we ar(e de)aling with white noFi)ses, we )r/]g\fe } of agum achieving the maximum o (Y,aq,) is then taken

as the maximum likelihood estimagg, of Eq. (15). The
current difference &ML—aUUP)Z is accumulated for the nu-
L(Y;a)=PRY; a}:jﬂl PRY;:a}. (13 merical evaluation of the rms estimation erof Eq. (16),
as the whole process is iterated starting with another vector
For a given measuremen;, which takes on an integer éalization of the native noise. On the one hamg.
value between 0 ani, the probability PfY; ;a} is the prob- = a(og+0y,), with @=3 to 4, measures the possible range
ability of Eq. (6) seen as a function af at givenY;, i.e., of equivocation of the estimatg,_ with large probability. It
is then consistent to choose the interyal,,,amax Suffi-
e _ ciently large to contain the rangg, .= a(o:+cd,). On the
el Nprq_ Y. N-Y; _ - rue 3 7
PrY;:at f_x CYi[l aCOTHa0)™ Ut x=sa(t) Jdx. other hand,ay, is expected to have a rms errérlower
(19 bounded by IYMJy. It is then consistent to choose a step

We have performed a series of Monte Carlo trials for

M

031107-5



ROUSSEAU, DUAN, AND CHAPEAU-BLONDEAU PHYSICAL REVIEW E68, 031107 (2003

Moreover, it appears in the conditions of Fig. 4 that at small
M, the improvement by the array noises induced on the error
&, is even more pronounced than the improvement expressed
by the Fisher information through the CranRRao bound. In
other words, at smal, the suprathreshold SR is more pro-
nounced when assessed by the rms estimationn error than by
the Fisher information. Qualitatively, all the evolutions of
Fig. 4 point to the same idea, in one form or another: the
possibility of an improvement by addition of threshold
noises, of the performance of a parallel array of quantizers
used for estimation on a suprathreshold signal.

Again, the conditions of Fig. 4 are merely illustrative, and

9 ; ; ; ; ; : the possibility of improvement by addition of array noises of

0 05 1 15 2 25 3 35 4 the rms error€ is preserved in many other conditions of
noise rms amplitude oy, estimation on the suprathreshold signdlt). It is also
expected that the more elaborate scenarios for estimation, as
evoked in Secs. lll and IV, will also reflect qualitatively
imilar possibilities of suprathreshold SR on the rms estima-

estimation error

Mk

I
'

FIG. 4. Estimation withM measurements from an array Nf
=15 threshold devices. In abscissa is the rms amplitagef the
array noisesy;(t) chosen zero-mean Gaussian. The discrete sets o?

points are the rms estimation er®of Eq. (16) numerically evalu- tion error.

ated from 18 Monte Carlo trials of the maximum likelihood esti-

mator from Egs.(13)—(15) for eacho,. The solid lines are the V1. ESTIMATION ON TIME-VARYING SIGNALS
Crame-Rao bound 1yMJy from Eq.(3). The input random signal . ) . . .

x(t) is Gaussian with meaa=0.5 and standard deviatian,=1. For estimation on an input signal with the forr{t)
The common threshold i8=0. =s,(t)+ &(t), the above equations allowing one to derive

the Fisher informatiody , are valid for any type of paramet-
Aa sufficiently small compared to {MJy. These two ric sy(t), although we have used them only for a constant
choices, statistically, will guarantee an accurate evaluation ao$,(t)=a in the examples of Figs. 1-4. Compared to the case
error £ in the Monte Carlo procedure. These choices rely orof a constants,(t)=a, the Fisher information for a time-
prior informations that are usually available in conventionalvaryings,(t) only differs, at any time, by the multiplication
estimation problems, concerning the noise densities and they the prefactof ds,(t)/da]? of Eq. (7) or (10), the constant
feasible range for the values accessible to the paranaeter value ofa being replaced by the instantaneous value.6f)
=ay,e t0 be estimated. At least, these prior informations forat timet.
configuring[ anmin,8max] @ndAa are available under the form For instance, for estimation of the amplitudeof a peri-
of conservative estimates or bounds, which is appropriate fopdic input s,(t) =a cost) with known angular frequency
the numerical implementation of the maximum likelihood w, the derivative in Egs.(7) and (10) is ds,(t)/da
estimator. These considerations lead us, for the conditions 6 cost). Compared to the Fisher informatidg for a con-
Fig. 4, to choos& .= —anin=15 andAa=0.01. Figure 4 stants(t)=a, the Fisher information is obtained through the
presents evolutions of the rms errérevaluated with this changeJy— cog(wt)Jy. We end up with a time-dependent
Monte Carlo implementation of the maximum likelihood Fisher information, which is known at every tiniewith a
estimator. time variation involving the prefactor cst). At any timet,

The evolutions of Fig. 4 show, as expected, thatMas the Fisher information keeps the same significance for as-
increases, the rms estimation eréoreaches the CramdRao  sessing the performance in estimation. If the measurements
bound 1AM Jy derived from the Fisher information of Eq. are taken at timeswhere the inpus,(t) =a cos(t) is zero,

(3). This behavior, asymptotic in principle, is in practice well the Fisher information at these times is also zero. This
realized as soon as moderate valuedlpbuch adM =16 in  means, in a quite consistent way, that there is no possibility
Fig. 4. This demonstrates that the possibilities of enhancesf estimating the amplituda of s,(t) if data are collected
ment by noise of the Fisher information, as expressed byhens,(t) is zero; and on the contrary, the efficacy in esti-
Figs. 1-3, will be precisely reflected in the performance ofmation(and the Fisher informatiorwill be high if data are
actual estimators like the maximum likelihood estimator,collected at times wheg,(t) assumes large values.

even when using moderate numb&tsof measurements for As another example, for estimation of the angular fre-
estimation. Furthermore, it is visible in Fig. 4 that for small quencya of a periodic inputs,(t)=A cos@t) with known
values ofM, such asM =2, even though the rms erréris  amplitude A, the derivative in Egs.(7) and (10) is

not quantitatively precisely described by the Fisher informa-ds,(t)/da= — At sin(at). Compared to the Fisher information
tion (especially at lows,), there still exists a similar possi- Jy for a constants(t)=a, the Fisher information is now
bility of improving the performancéthe rms error hejeby  obtained through the changg—[Atsin@t)]2J,. We again
means of an increase in the level, of the array noises end up with a time-dependent Fisher information, which is
7;(t). This is expressed in Fig. 4 by the rms estimation errolknown at every time, with a time variation involving the

& which starts to decrease when the noise lexgincreases, prefactor] At sin(@at) . Again, at any time, the Fisher infor-
with an optimal nonzero value ofr, that minimizesé. mation keeps the same significance for assessing the perfor-
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1.2 - - - - - native noiseé(t). Thus, for the influence of the noise prop-
141 : 1 erties on the Fisher information of E(B), the specific form
1t 1 of the parametric dependencesy{t) on a will play no role
509 N=7 : since it does not vary with the noise. As a consequence, any
Ho.8r : type of signals,(t) parametrized in any arbitrary way &y
Eo7t ] will benefit from the same possibility of improvement by
-ogo.e- 1 noise as expressed by Figs. 1-3 on the Fisher information. In
‘Cost N=3 ] this respect, the evolutions with the noise level obtained in
2oal ] Figs. 1-3 for a constant signgj(t) are in some sense ge-
LUE)O.S- N= ] neric and they bear significance for any type of parametric
0.2} s : Sa(t)-
0.1
00 0.5 1.5 2 25 3 VII. DISCUSSION

;
noise rms amplitude ¢,
We have demonstrated the feasibility of suprathreshold
FIG. 5. Fisher informatiody of Eq. (3), as a function of the rms SR for parametric estimation performed from the output of a
amplitudeo,, of the array noisesy;(t) chosen zero-mean uniform. parallel array of threshold devices. The results reported here
The input random signak(t) is uniform with meana=0.3 and  ajm essentially at proving the feasibility, in principle, of a
standard deviatiolor,=1. The value#=0 is assigned to all thresh- suprathreshold SR in parametric estimation from an array of
olds in the array. X) areJy computed from the analytical expres- threghold devices. This is realized here in several represen-
sions of the Appendix. The solid lines alg computed by numeri-  ta4ve conditions. These conditions are not in themselves
cal evaluation of the integrals of Eqs) and (7). critical for the observation of suprathreshold SR. Beyond
this, many aspects of this form of suprathreshold SR remain
open for future investigation, for example, further analysis
of the influence of the type of the probability density of

bound becom vanishinalv small lower bound tinthe threshold noises or the development of adaptive schemes
ou €comes a vanishingly small 'ower bound, suggesting, apply the right amount of threshold noise to definite

that the variance of any unbiased estimatoa &f necessarily estimators

fil\k/)gVSezcielJrgfic;l;\h"\s/\/lifhaa%%?r?:esrt?iméagtrrimizgEhrl)oste\r/]e;)t/ ;E;o,[i':]nz: The suprathreshold SR demonstrated here, similar to that
' ) : ain, in Refs.[11,12, is especially operative when the thresholds
of measurement, i.e.t=0, we make the prefactor

[Atsin(at)]?, and hence the Fisher information, zero. In suchin the array are constrained to be the same and cannot be
2 case the’ Cram®ao bound becomes infinit’e SLIg‘lgesﬁngseparately adjusted. Such conditions can bg encountered in
that thé variance of any unbiased estimatoadé ,also e natural systems such as neurons organized in parallel arrays

. o ) ) : for sensory processing. A form of suprathreshold SR mea-
nite. This is again a consistent statement, revealing that the

: s O L teiStired by the input-output mutual information has been
is no possibility of estimating the frequency of a periodic shown possible in arrays of sensory neurf2gj. It is likely

signal ”O”F measurements taken ata single fixed time. Morﬁw t the present form of suprathreshold SR measured by the
than one time are necessary o pick up the measurements, § her information can also take place in neuronal arrays in

which times the Fisher information cannot be simultaneously%harge of estimation tasks in sensory processing

zero[unless those times are exactly located at the zeros o More generally, suprathreshold SR now gradually
sin@)], this .being as;opiated to a noninfinite Qrarﬁ@o emerges as a mecﬁanism of improvement by noise, with gen-
bOLli'nd alloww']tg.a nonm?mts tvarlanlt_:e o{hthtetﬁstlma;tors. IeraI significance and applicability envisagable under many
owever, It 1S Imporiant 1o realize that those temporal e rant forms, even going beyond the special instances as-
behaviors of the Fisher information with a tlme-yarylng S19° sessed through the Fisher or the Shannon information we
pal Sa(1) are caused by_ 'ghe very nature of the tIme'V""ry'ngdiscussed here. In broad terms, stand@ubthreshold SR
Input, a_nd are not Spec'f'c‘i‘"y r_elated to the array _Of thresh-can be described as assistance brought by noise, to a small
013 dey|ces| we usehfor estlmat||otr)1. r']:m. mstanclz V‘t’)'th a pE;:"signal, in eliciting a response from a single nonlinear system.
odic signa Sa(t).’ the temporal behavior wou € much By contrast, suprathreshold SR can be described as diversity
similar to the Fisher information for estimation based d"brought by noise for a richer response, to a suprathreshold
rﬁctly_or? th.eflnput _S|gn§$a(;f)+§((;t).. Inhsuch a case r;lso,h signal, elicited by an array of nonlinear systems. These con-
the Fisher information is affected in the same way by theggyie two distinct forms of improvement by noise, with rich

2 . . oy
prefactor [ Js,(t)/da]", inherent to the definition of the ,iantiajities still to be explored for nonlinear information
Fisher information involving a derivative in the parameter. processing

The specificity of the results we present here are not con-
tained in the temporal evolution of the Fisher information,
but they are contained in its evolution with the level of the
noise. In the expression of the Fisher informatibn both
the signals,(t) and the prefactops,(t)/da in Egs.(7) and F. Duan acknowledges the funding froba Region des
(10) are independent of the array noisegt) and of the Pays de la Loire France.

mance in estimation. If the time origin is arbitrarily taken,
the prefactof At sin(at)]?, and hence the Fisher information,
can grow without bound. In such a case, the CrnaR&o
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1

In this appendix, we consider the case of uniform noises "¢l ~Sa(D]= 23 {81x+ VBoe=s4(1)] = X~ \Borg

&(t) and »;(t), and equal thresholdg =6, Vi. These con-

ditions allow us to obtain an analytical expression for the

Fisher informationly of Eq. (3), thanks to analytical integra-
tion of the integrals of Eqg6) and(7). This analytical treat-
ment of the Fisher information parallels that of Réfs/] for
the Shannon information.

Let

Q(n,x)=C[1-q(x)]"q()" ", (A1)
When the native noise &(t) is uniform over
[—\30,,V30,], the probability density f,(x)="fJ[x
—s,(t)] takes the constant value 1/@05) when x

e[— V3o +54(t),\30:+54(t)], and is zero outside this
interval. Therefore, Eq6) transforms into

Q(n,x)dx.

1 V3o s+ s4(t)
f © (A2)

PHY(t)=n}= s )
~Bogts,

We also have

30’§
_Sa(t)]}.

so Eq.(7) becomes

da I a 230,

—Q[n, V3o +s,(1)]}.

We further assume that the threshold noiggs) are uni-
form over[—30,,30,], with the cumulative distribu-
tion function

(A3)

{QIn,— 30 +s,(1)]

(Ad)

0 for u<-—+30,
1
F,(u)= 2\/§(T77(u+ V30,) for —\3¢,<u<\30,
1 for u>\3a,.

(A5)

Sinceq(x)=F,(6—x), Eq. (A1) becomes, for any integer
ne[1N-1],

|
0—x—30,\"[ 6—=x+3a, \" "
C,’}'(— \/—U") ( \/_U”) for 6—30,<x<6+30,
Q(n,x)= ZJgon 2J§0n (AB)
0 otherwise.
Also
1 for x<6-+30,
N
0—Xx++30
Q(0x)= (T\/—”) for 6—\30,<x=6+\30, (A7)
Ty
0 for x>6+\/§(r,7
and
0 for x<6-+30,
N
0—X—+30
Q(N,X)Z (—T‘\/-—n) for 9_\/§UH$X$0+\/§O'7] (A8)
7
1 for X>6+\/§Uﬂ'

We introduce X;,s=max — 30 +s,(t),6—30,] and
Xsu= MIN[\30+ S4(t), 6+ \/§0'K‘]]. For anyne[1N—1],
Eq. (A2) yields P{Y(t)=n}=C.l(n)o, /o, with the inte-
gral

I(n)= ———

fxsup( 0-x— ﬁa,,) "

2\/§0'7, Xinf 2\/50'77
N—n
60—X++/3
x J) dx. (A9)
2\/§O'77

Through the change of variable z=(6—x

+130,)/(230,), we get

I(n)= f - NGz, (A10)
Zinf
with
—ma{01(1—2+0_5a(t))] (A11)
Zint= ) 0_77 \/50_” ’
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n MN=(n—k)+1

(A12) f (1-2)"2"""dz= 2 (-1 Ol 71

(A13)

1
15

+—=+
> 1

0-71 \/§U77

The integral of Eq(A10) can generally be evaluated by o .
means of the primitivef(1—2)"zN""dz=y,,F([N—n which replaces(n) by a finite sum, for anype[O,N]. This
+1,-n],[N—-n+2],2)2" " Y(N-n+1), where ,F, is last integral of Eq.(AL3) simplifies intoz"**/(N+1) for
the generalized hypergeometric function or Barnes's exn=0 and into—(1-2)N*1/(N+1) for n=N.

Zgyp=Min

or 60— sa(t))

tended hypergeometric functig@4,25. An alternative pos- As written above, knowledge df(n) provides access to
sibility to integratel (n) of Eq. (A10) is to use the binomial Pr{Y(t)zn}zC,’fl(n)an/og, foranyne[1N—-1]. In ad-
expansion of (+2z)" to obtain dition, we have from Eq9A2) and (A7),

1 0—s,(t 0—sy(t
I(O)?+§(1—?+ \/ga( )) for o, <o+ \/g( )
PHY(t)=0}= ¢ ¢ e (A14)
1(0) I otherwise
¢
and from Eqgs(A2) and(A8),
1 0—s,(t 0—s,(t
I(N)—”+§ 1—?— \/§a( )) for o,<o— \/g( )
PHY(t)=N}= ¢ ¢ ¢ (A15)
|(N)ﬁ otherwise.
O¢

By collecting the equations of this appendix, we now havesuprathreshold signal, as soonNis 1. This demonstrates a
the possibility of a direct evaluation of the Fisher informa- robustness, or universality, of the qualitative features that
tion Jy of Eq. (3) avoiding numerical approximations of in- define suprathreshold SR, with respect to the distribution of
tegrals, in the case of uniform noisé@) and »;(t), in gen-  the noises.
eral conditions concerning,(t) and N. An illustration is Further simplifications of the analytical expressions¥r
provided in Fig. 5. Beyond the specificities of the uniform can pe obtained in more specific configurations. When

noises[with the boundeq support of the noisggqt) which, <a§—[0—sa(t)]/\/§, then Eq.(A1) yields z,;=0: when
aso, grows, crosses critical levels related to the support of = - +[0-s,(t)]/3, then Eq.(A12) yields zy.=1
the native nois&(t), to the signal amplituds,(t) and to the . a A ' sup

. h With z,x=0 andzg,~=1 in Eq. (A10), the generalized hy-
thresholdé], the important observation we want to empha- . P )
size in Fig. 5 is that the suprathreshold SR is preserved qual _ergeometrlcl function simplifies into the Beta function and
tatively in a quite similar form as with Gaussian noises. q[.(),l(\lA]%ql)'higl\I/:asd;(Ir:_%(:Anz!)(![\cl; m!/(N+1)! for any n

Noise enhancement of the Fisher information occurs for &

p
1 1 1 6—s,(t
e i (S (M) for n=0
N+1 2o, 2 o,
PIY | L 9» for 0<n<N Al
RY(t)=n}= N+1 o, (A16)
1 1 1 60—s,(t
(m—z)&'f‘i(l— al )> for n=N.
\ O-f \/§O'§

Also, when the same two conditions are met, i.e., whgr o, —| 6—s,(t)|/\/3, then Eq.(A4) gives
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p
ds4(t 1
_%SalY) for n=0
Ja 2\/§U§
J
gpr{y(t)zn}z{ 0 for 0<n<N (A17)
ds4(t 1
ﬁ —_ for n=N.
! 2\/§0§
This leads to an explicit expression for the Fisher informatlprof Eq. (3), valid for o, <o, —| H—Sa(t)|/\/§, as
ss, (012 1 \? 1 1
= + . (A18)
da |\ 230, 1 Loy L[ 6-5() 1 Loy 1 6-5()
N+1 2o, 2 \/§U§ N+1 2/o, 2 \/§U§
This expression ody in Eq. (A18), over its domain of validity, for anN>1, is a strictly increasing function ef,, when

o, starts to grow above zero in the presencergf0; by contrast, it is a constant function @f, whenN=1. This is a direct
proof of the suprathreshold SR effect in the array: when threshold noise is added in theNarray, (the Fisher information
Jy starts to grow, while this growth is not present with a single devide 1).

In addition, the above equations fd¢ with uniform noisesé(t) and #;(t) show that the optimal level of the threshold
noises which maximizes the Fisher informationd§=a§—|0—sa(t)|/\/§, as seen in Fig. 5. This holds whern>|6
—sa(t)|/\/§; otherwise, we are outside the regime of suprathreshold SR which is of interest to us here, because then the input
signalx(t) =s4(t) + £(t) has become subthreshold when the threshold nojge$ are absent.
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