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Electron–acoustic phonon interaction in semiconductor nanostructures:
Role of deformation variation of electron effective mass
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We demonstrate that the phonon-induced variation of electron effective mass gives a substantial contribution
to the electron–acoustic-phonon interaction in semiconductor nanostructures. Calculations are carried out for
electrons in a quantum well~QW! and a quantum wire~QWR! of III-V heterostructure materials. This mecha-
nism gives rise to an interference effect in electron scattering with longitudinal acoustic phonons via the
deformation potential and allows the electrons to interact with transverse acoustic phonons. Due to these
peculiarities, the additional channel of scattering can either increase or decrease the total scattering rate. For a
given semiconductor, the modified scattering constant has been shown to depend on the dimensionality of the
electron gas, the size and the shape of the nanostructure, and on the temperature. The scattering constants for
intrasubband transitions in QW’s and QWR’s are different for the electron energy and momentum relaxation.
For narrow QW’s or flattened QWR’s, modification of the commonly used bulk deformation potential inter-
action at low temperatures originates mainly due to interaction with transverse acoustic phonons. For GaAs
QW of 50 Å width, the ratio of the total relaxation rate of the electron energy to that from the bulk deformation
potential coupling is about 0.65 for the temperature 4 K and 1.7 for 20 K.

DOI: 10.1103/PhysRevB.64.235322 PACS number~s!: 72.10.2d, 63.22.1m, 73.63.2b
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I. INTRODUCTION

The most important mechanism of interaction betwe
electrons and acoustic phonons in semiconductors is the
teraction via the deformation potential~DP!. In a crystal of
the cubic symmetry, the interaction energy of an elect
having a wave vectork close to a conduction-band minimum
k50 is determined by1 D(“•u) whereD is the deformation
potential constant andu is the acoustic displacement. Th
mechanism leads to the interaction of electrons only w
longitudinal acoustic~LA ! modes. In a cubic crystal with th
energy extremum located at the pointkÞ0 or in anisotropic
crystals, the DP interaction is specified by a second-rank
sor, and the electrons interact with transverse acoustic~TA!
phonons as well.2 The bulk DP interaction is widely applie
to electrons confined in nanostructures although in crys
having heteroboundaries the translation symmetry is brok
For such structures, the DP constant is treated as an ad
able material parameter differing from the bulk value.
particular, for AlxGa12xAs/GaAs heterostructures, by matc
ing the theory with the experimental data on electr
mobility,3,4 uDu.12 eV has been obtained while the com
monly accepted value for bulk GaAs is 7–8 eV.5,6 It is usu-
ally assumed that scattering of electrons in quantum w
~QW!, quantum wires~QWR!, and quantum dots with acous
tic phonons is described by the same DP constant that
not depend on the size of the nanostructure~e.g., see Ref. 7!
and that the coupling constant that determines the en
loss rate is equal to that for the electron mobility.8,9 The goal
of this paper is to reexamine the generally accepted appro
according to which the scattering of the confined electr
with acoustic phonons via nonpiezoelectric interactions
specified by a single scattering constant.
0163-1829/2001/64~23!/235322~8!/$20.00 64 2353
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In quantum structures, the bulk DP shifts the conductio
band edge and the spatial quantized energies~subbands or
discreet levels! at the same value. In structures with sm
interface spacing, this interaction has to be supplemente
taking into account a direct deformation perturbation of t
energy levels.10–12 The expression for a quantized energ
E;\2/(m* L2), indicates that an additional coupling orig
nates from phonon-induced changes of the effective size
electron localizationL and the electron effective massm* .
Our previous analysis12–14 shows that the main additiona
size-dependent interaction originates from the deformati
related variation of the effective mass~VEM mechanism!. In
contrast to bulk materials where VEM mechanism is neg
gible ~for energies near band edge!, for nanostructures this
interaction can play a noticeable role due to a finite value
the lowest electron energy. If the interface spacing is sm
enough, electron scattering can be affected strongly by
interaction. The results of calculations briefly reported
Ref. 13 show that the contribution of VEM mechanism to t
electron mobility in a narrow GaAs QW is comparable wi
and can even overcome that from the usual DP coupling.
quantum dots of small sizes, the additional scattering via
VEM mechanism prevents14 the reduction of the electron
relaxation rate with decreasing dot size as predicted by
conventional DP theory.7

The additional mechanism brings about qualitatively i
proved features in the electron-acoustic phonon interactio
low-dimensional structures. First of all, the matrix eleme
of transition for electron scattering with LA phonons via th
DP and VEM interactions appear to be in phase. As a res
the transition probability depends on the sign of the DP c
stantD. In cubic crystals with the conduction-band minimu
at theG point, electrons interact with TA phonons as we
Due to the interaction with TA phonons and the interferen
©2001 The American Physical Society22-1
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effect, the additional mechanism can either augment or s
press the total scattering rate with respect to the rate prov
by solely DP coupling.13,14The transition probabilities calcu
lated within the framework of the deformation-potential fo
malism are proportional to the scattering constantD2. In this
paper we show that due to the additional VEM mechanis
the effective scattering constant for the same semicondu
depends on the size and the shape of nanostructure an
the temperature. Moreover, the constants responsible fo
electron energy and momentum relaxation appear to be
ferent.

We investigate the influence of the deformation-rela
variation of the electron effective mass on scattering
QW’s and QWR’s. We will be interested primarily in nano
structures with electrons completely confined to the inte
~the well or the wire!. In such structures, the influence of th
VEM mechanism can be significant and the electron-acou
phonon coupling is specified by only two materi
parameters—a bulk DP constant and the press
dependence coefficient of the electron effective mass. M
over, this allows us to separate the electron motion in
three spatial directions and, thus, to perform an analyt
investigation of the associate additional channel of scatte
in nanostructures of different shapes. Penetration of elect
into barriers can be regarded as an increase of the effe
sizes of nanostructure. It is clear that in this case the pa
contribution of the finite-size mechanism decreases. Besi
in order to describe the electron-phonon interaction in
finite-barrier structure, one needs also to know the previou
mentioned parameters for barrier materials. For such st
tures, we will estimate a role of VEM mechanism neglecti
a difference in parameters of materials forming nanostr
tures.

In this study, we concentrate on the role of the VE
mechanism in modifying the kinetic properties of confin
electrons. In Sec. II, we introduce the interaction Ham
tonian and estimate a pressure coefficient of the electron
fective mass for typical III-V materials. Then, in Sec. III an
Sec. IV we evaluate and analyze a contribution of the ad
tional interaction to the electron energy and momentum
laxation due to intrasubband scattering in QW’s and QWR
Principal conclusions of this work are given in Sec. V.

II. BASIC EQUATIONS

In bulk semiconductors, the interaction Hamiltonian as
ciated with a deformation variation of the electron effecti
mass is well known.2 For low-dimensional systems, the co
responding perturbation has been derived13,14 using the
kinetic-energy operator of the Ben Daniel-Duke form15

(2\2/2)“•@m21(r )“#. The energy of interaction betwee
electron and the lattice deformation originates from the
ear term of an expansion of the inverse effective ma
1/m(r ), over the components of the strain tensor. For cu
crystals, we get

H52
\2

2 (
a

¹aS x

m*
uaa¹aD , ~1!
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wherea5x, y, or z, uaa is the diagonal component of th
strain tensor, andx is a phenomenological paramete
The perturbation of Eq.~1! holds for all nanostructure types
For QW’s and QWR’s, we will disregard the VEM for th
directions along which the translation symmetry is p
served. For a weak deformation as in the conventional c
of acoustic phonons, the total interaction is defined by a
perposition of the deformation-potential interaction and
perturbation of Eq.~1!. The parameterx is expressed
through a pressure coefficient of the electron effective m
asx5(3K/m* )(dm* /dP).(3K/Eg)(dEg /dP), whereK is
the modulus of the hydrostatic compression. The last
proximation holds for narrow-gap semiconductors where
linear relationship betweenm* and the band-gap energyEg
is satisfied. For a low pressure, the electron effective m
increases with the pressure rise as in the case of the band
variation;16 i.e. x.0. Using the data for the elastic modu
and pressure coefficients ofEg given in Ref. 16, we findx
.17 for GaAs,x.28 for the In0.53Ga0.47As ternary com-
pound, andx.42 for InAs~for InAs, the pressure coefficien
of the spin-orbital splitting and the band gap are taken to
equal!. For GaAs, the measured pressure coefficien17

dm* /dP50.007m* /kbar, corresponds tox.16. The in-
equality x@1, which holds for the previously considere
semiconductors, implies the condition that the additio
interaction10,11 attributed to the phonon-induced changes
the distance between interfaces is small, compared to
VEM interaction. For semiconductors where a shift
conduction-band edge provides the main contribution to
pressure dependence ofEg ~this is true for practically all
semiconductors6!, we get x.23D/Eg . This relationship
shows thatD,0 and provides an estimate ofx values,
which is in acceptable agreement with previously obtain
values when D.28.1, 27, and 25.7 for GaAs,
In0.53Ga0.47As, and InAs, respectively.

We will ignore the effect of acoustic mismatch at the i
terfaces and use the standard expansion of the displace
u over the bulk acoustic modes that are found in the isotro
continuum approximation. The differences in elastic co
stants for the III-V materials forming conventional heter
structures are small16 and approximation of the same acou
tic phonons in the nanostructure and in its matrix is w
established.15 Based on the same elastic constants, the c
tinuum approximation can be used without limitation on t
nanostructure size. The probability of a transition betwe
the initial i and the finalf electron states is calculated in th
first order of perturbation using the Fermi golden rule

Wi f
65

2p

\ (
j ,q

S \

2rVv j
D uMi f

j ,6u2FNS \v j

kBTD1
1

2
6

1

2G
3d~« f2« i6\sjq!. ~2!

Herer is the density of crystal,V is the normalization vol-
ume, andMi f

j ,6 is the matrix element of the transition;v j and
q are the phonon frequency and wave vector,j 5 l and j
5t1,2 label longitudinal and two transverse phonon mod
respectively, andN is the Planck distribution function. In
Eq. ~2! and throughout the remainder of this paper t
2-2
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ELECTRON-ACOUSTIC PHONON INTERACTION IN . . . PHYSICAL REVIEW B64 235322
upper sign corresponds to emission and the lower sign
absorption of the acoustic phonons. We use a linear isotr
relationv j5sjq where the sound velocities in a cubic crys
sj are taken to be equal to the appropriate aver
quantities.18 The unit vectors of the phonon polarizationej
are chosen in the following form:

el5q/q, et15~qxqz ,qyqz ,2qi
2!/qqi ,

et25~qy /qi ,2qx /qi,0!, ~3!

whereqi5(qx ,qy ,0) andqi5Aqx
21qy

2.

III. QUANTUM WELL

We consider rectangular QW of an infinite length in t
x,y directions. Electrons confined inz-direction have two-
dimensional wave vectork5(kx ,ky) and the energyE1z
1«(k), whereE1z is the lowest energy level of size quan
zation and«(k)5\2k2/(2m* ) is the kinetic energy of elec
tron. We take into account the deformation modulation of
electron effective mass inz direction. For the double-barrie
heterostructures under consideration, we also take into
count the ‘‘macroscopic deformation potential’’10 associated
with the deformation-related change of the interface spac
This interaction is expressed through a confinement pote
V(z) as12 2uzdV/dz. So, onlyl and t1 modes, which have
displacements withuzÞ0, contribute to the additiona
mechanisms of electron–acoustic-phonon interaction. Le
consider the intrasubband transitions between
electron statesk,k8 in an infinitely deep rectangular QW
bounded by planesz50 and z5Lz . We obtain M k,k8

j ,6

5M jF1 jdk8,k7qi
, where

Ml5 iql@D1~qzl /ql !
2Dz~qzl!#,

Mt52 i ~qztqi /qt!Dz~qzt!, ~4!

where qj5v/sj , Qz j5qz jLz/2, and E1z5p2\2/(2m* Lz
2).

The electron form factorF1 j and the functionDz(qz) are
given by

F1 j5
2

Lz
E

0

Lz
dzeiqz jz sin2S pz

Lz
D5

p2 sinQz j

Qz j~p22Qz j
2 !

eiQz j,

~5!

Dz~qz!5E1zFx222~x21!
qz

2Lz
2

2p2 G . ~6!

The previously obtained matrix elements can be deri
using the interaction energy,(aDaauaa , where the nonzero
components of the DP tensor areDxx5Dyy5D and Dzz
5D1Dz(qz). The symmetry of this tensor reflects the ax
symmetry of the QW structure. Separating the bulk poten
one can rewrite this modified DP interaction asD(“•u)
1Dzuzz.

Kinetic properties of electrons in QW’s subjected to sc
tering with acoustic phonons via deformation and piezoe
tric potentials are described by Price’s theory;19 more de-
23532
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tailed calculations were carried out in Ref. 20. In order
illustrate the role of the additional scattering, we calcula
the electron energy and momentum relaxation rates,ne and
nm , respectively. We will assume that the electrons are
generate, i.e.,kBT!«F , where«F is the electron Fermi en
ergy, and the electron temperatureTe deviates slightly from
the lattice temperatureT. The ratene that relates the electron
power loss~per electron! Q with the differenceTe2T, as
Q52nekB(Te2T), is given by

ne5
m* 2

4p3n2r\~kBT!2

3(
j
E

0

p/2

duE
0

`

dv
v3uM j u2uF1 j u2

qz jsj
2 sinh2S \v

2kBTD , ~7!

where qz j5@v2/sj
22(2kF sinu)2#1/2,kF5(2m* «F)1/2/\,2u

is the angle between the electron’s initial and final momen
andn25kF

2/2p is the sheet density of electrons. The variab
v is expressed through the energy transfer of the electron
v5u«2«8u/\.

Let us first consider the Bloch-Gru¨neisen regime when the
scattering processes are substantially inelastic. This reg
corresponds to the temperaturesT that are less than or com
parable to the characteristic temperatureT052st\kF /kB .
For this regime, the inequalityqz jLz!1 is satisfied, and one
can setF1 j51 andDz(qz)5Dz(0). In the limiting case of
T!T0, the above expression forne reduces to

ne5
15z~5!A2m* De

2~kBT!4

p\4rsl
4«F

3/2
, ~8!

wherez(x) is the Riemann’sz function andDe is the renor-
malized DP constant, which is given by

De5DH 11d1F31S sl

st
D 4G d2

8 J 1/2

, d5~x22!
E1z

D
.

~9!

Equation ~8! with De determined byD5Jd and d
5Ju /Jd formally coincides with the rate of energy loss
calculated in Ref. 21 for Si metal-oxide-semiconductor fie
effect transistors using the deformation-potential interact
Jd(“•u)1Juuzz. Thus, in a semiconductor with th
conduction-band extremum atG point, the low-temperature
energy relaxation of electrons in a QW due to scattering
acoustic phonons is described by a tensor of deforma
potential that takes place for many-valley semiconductors
our case, a deformation potential related to shear de
mation emerges from the additional interaction:Ju
5(x22)E1z .

The average momentum relaxation rate of electrons i
QW, nm , can be obtained straightforwardly from Eq.~7! by
multiplying the integrand by 2kBTkF

2 sin2u/(m*v2). This rate
determines the acoustic-phonon-limited electron mobility
e/(m* nm) (e is charge of the electron!. In the limit asT
2-3
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PIPA, VAGIDOV, MITIN, AND STROSCIO PHYSICAL REVIEW B64 235322
→0, this rate obeys the dependenceT5, valid for
deformation-potential scattering,19 and is specified by the
coupling constant

Dm5DH 11
d

2
1F11S sl

st
D 6Gd2

8 J 1/2

, ~10!

which differs from De . So, in order to describe electro
scattering in a QW in the framework of deformatio
potential theory, one should not use only one but two adju
able constants—one for the energy losses and another fo
electron mobility. The ratio of the scattering constants to
bulk value, (De /D)2 and (Dm /D)2, as the functions of QW
width Lz are shown in Fig. 1 for GaAs and InAs-based h
erostructures~dependences for InAs are shown only for wi
QW’s where the electron states satisfy the two-band mod!.
We can see that the renormalization of the DP constan
more pronounced in semiconductors with small electron
fective masses. The electron momentum relaxation is m
affected by the additional scattering than the energy re
ation:Dm

2 exceedsD2 and increases with the decreasing v
ues ofLz , while the constantDe

2 varies nonmonotonically
and, over a wide range ofLz , deviates slightly fromD2. It is
worth emphasizing an important role of TA phonons in ele
tron scattering at low temperatures. Curves TA show that
enhancement of the electron relaxation is caused mainly
scattering at TA phonons. On the contrary, due to the in
ference effect between the DP and VEM mechanisms,
additional scattering on LA phonons leads to the suppres
of the total rate. This peculiarity is illustrated by the sectio
of the curves 18,28 for which De

2,D2 and by the curves LA.
Note, that an interaction strength smaller than the theore
calculation of the DP interaction has been observed for e
tron energy losses in Si heterostructure.21

FIG. 1. Ratio of effective coupling constants,De
2 andDm

2 , that
determine the electron energy and momentum relaxation ra
respectively, to the bulk valueD2 versus the width of quantum
well. Solid lines correspond toDm

2 /D2, dotted lines toDe
2/D2;

~1!,(18) GaAs (D528 eV, x517); ~2!, (28) TA, LA-InAs
(D525.8 eV,x542). The curves TA and LA illustrate contribu
tions of transverse and longitudinal phonons.
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Equations~9! and ~10! obtained in the limitT→0, be-
come invalid as the temperature increases. With increasinT,
phonons withqz.qi begin to dominate in the scattering. S
far asMt;qi , the contribution of TA phonons decreases.
the same time, due to the change of the sign ofDz(qzl) in Ml
the additional scattering at LA phonons starts to increase
total rate. This complicated situation (T is of the order or
greater thanT0) must be investigated numerically. The tem
perature dependences of the normalized relaxation rates
culated for various semiconductor materials~Ref. 22! are
shown in Figs. 2 and 3. The ratiosne /ne

(DP) and nm /nm
(DP)

can be considered as the normalized effective scattering
stants, which depend on the temperature. ForT→0, they
approach to the previously discussed values, (De /D)2 and
(Dm /D)2, respectively. We see that the interaction via VE
mechanism slows down the electron energy relaxation at
temperatures and accelerates it at high temperatures. O
contrary, the relaxation of electron momentum becom
faster at lowT and slower at highT. Comparing curves 2 and

s,

FIG. 2. Normalized electron energy relaxation rates as a fu
tion of the temperature for the GaAs~1–3!, InAs ~4! quantum wells,
and for the finite-barrier In0.53Ga0.47As quantum well~5!. The width
of quantum well:~1! 40 Å ; ~2!, ~5! 50 Å; ~3! 80 Å; ~4! 150 Å. The
electron density:n25231011 cm22.

FIG. 3. Normalized momentum relaxation rates of electrons
quantum wells. The notations are the same as in Fig. 2. The c
LA corresponds to the data presented by curve 2 with the scatte
on TA phonons disregarded.
2-4
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ELECTRON-ACOUSTIC PHONON INTERACTION IN . . . PHYSICAL REVIEW B64 235322
LA in Fig. 3, one can see that augmentation of the relaxa
rate in the low-T range originates from the scattering wi
TA phonons.

Certainly at highT, in contrast to the above case ofT
→0 illustrated by Fig. 1, the influence of the addition
channel of scattering is more pronounced for the elect
energy relaxation. Moreover, with increasingT, the rate
ne(T) does not tend to saturation asne

(DP)(T) does.19 This
peculiarity originates from the nonlocal nature of the int
action given by Eq.~1!. For high T when the inequalities
qz@qi ,Lz

21 are satisfied, the functionv3uMl u2uF1l u2/qzl in
Eq. ~7! increases asv2sin2(vLz/2sl) with increasingv while
for DP scattering it decreases as sin2(vLz/2sl)/v

2. This rep-
resents the unusual situation where the reduction of the e
tron momentum space dimensionality~described by the elec
tron form factorF1l) does not restrain the electron scatteri
at short-wavelength phonons. The contribution of su
phonons is restricted only by the phonon-distribution fun
tion. On the contrary, the influence of VEM mechanism
the momentum relaxation weakens with increasingT. For
this relaxation process, the electron collisions with sho
wavelength phonons occur under the phonon equiparti
distribution (\v!kBT) and the contribution of such
phonons is restricted by the electron form factor. It results
the usual high-temperature asymptotenm(T).nm

(DP)(T);T.
The set of curves 1–3 in Figs. 2 and 3 show that for Ga
QW’s the corrections related to the VEM mechanism beco
important when the width does not exceed 80 Å .

IV. QUANTUM WIRE

We consider electrons occupying the lowest subband
rectangular QWR of infinite length inz direction having a
y-directed widthLy and anx-directed widthLx ~let it be Lx
<Ly). Assuming that the potential walls are impenetrable
electrons, we can present the effective-mass electron w
functions in the multiplicative form as

c5
2

ALxLyLz

sinS px

Lx
D sinS py

Ly
Deikz, ~11!

whereLz is the normalization length along the axis of th
wire. The electron energy isE1x1E1y1«(k), where E1a

5p2\2/(2m* La
2), a5x,y, and «(k)5\2k2/(2m* ). The

scattering rate and the transport properties of electrons
QWR, which interact with acoustic phonons through the
formation potential, were calculated in Refs. 23 and
Here, we focus on the role of the additional mechanisms
Eq. ~1! in intrasubband scattering of electrons in QWR
The probability of electron transitions from the initial statek
to the final statek8 with the assistance ofj th acoustic-
phonon mode is given by Eq.~2! where now Mk,k8

j ,6

5M jF2 jdk8,k7qz
. Here, F2 j5F1 j (Qx)F1 j (Qy) where Qa

5qaLa/2. From the energy and momentum conservation
follows23,24 that for the accepted range of the lowest elect
energies («,m* sl

2), the longitudinal component of the pho
non wave vectorqz is much smaller than the transverse co
23532
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2. For GaAs it holds for «(k)
.0.01 meV. Neglecting theqz component in the phonon
dispersion laws, we get

Ml5 iq'~D1Dx cos2f1Dy sin2f!,

Mt15 iqzt~Dx cos2f1Dy sin2f!,

Mt25 iq'~Dx2Dy!cosf sinf, ~12!

where f is an azimuth angle in the polar system (qx
5q' cosf,qy5q' sinf) and

Da~qa!5xE1aS 12
qa

2La
2

2p2 D , a5x,y. ~13!

The matrix elements of Eq.~12! correspond to the follow-
ing components of the modified DP tensor:Dxx5D
1Dx ,Dyy5D1Dy ,Dzz5D. In the general case, all thes
three components are different.

Some important peculiarities of the electron-acous
phonon interaction associated with the VEM mechanism
be revealed from the analysis of the dependence of scatte
rate on the electron kinetic energy«. For the rates of phonon
emission,n (1)5(k8Wkk8

1 , and absorption,n (2)5(k8Wkk8
2 ,

upon the integration overqz we get

n (6)~«!5
1

4p2r\
S m*

2 D 1/2

3(
j
E

0

2p

df

3E
0

qj
6dq'uM j u2uF2 j u2

sjA«7\sjq'

~N11/261/2!, ~14!

where j 5 l ,t2. ~The contribution oft1 branch of the trans-
verse mode is negligible due to the inequalityqz!q' .) For
the emission rate, the upper limit of integration equ
«/(\sj ), this limitation is imposed by the requirement th
the expression under the square roots must be positive.
the absorption rate, the integration overq' can be formally
extended up tò .

For scattering of electrons with small energies«
!2p\st /Lx,y), one can simplify Eq.~14! settingF2 j51 and
neglecting theq-dependent terms inDx andDy . In this case,
the rates of Eq.~14! are proportional to the effective consta
D̃2, which equalsD2(11d) for QWR’s with a square cross
section andDe

2 of Eq. ~9! for the flattened QWR’s (Lx

!Ly), where now d5xE1x /D. Assuming also that\v
!kBT, we find the low-energy asymptote of the phon
emission rate

n (1)~«!5
2D̃2kBT

3prsl
4\4 S m*

2 D 1/2

«3/2 ~15!

that for D̃5D coincides with the rate23 obtained for the DP
interaction. We see that in contrast to the DP interaction,
2-5
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phonon emission rate depends on the thickness and the s
of a QWR. For flattened QWR’s, as follows from the ana
sis ofDe for electrons in a QW, the emission of TA phono
appears to be important and the overall rate of phonon e
sion can be smaller than the rate of LA-phonon emission
solely DP coupling. When the widthLx is less than some
critical value, the emission of TA phonons dominates o
LA-phonon emission. As seen from Eq.~12!, in QWR’s that
have a square-shaped cross section, TA phonons are no
volved in scattering on low-energy electrons.

The electron scattering rate@the sum of the phonon emis
sion and absorption rates calculated from Eq.~14!# as a func-
tion of electron energy is shown in Fig. 4 for the three d
ferent cross sections of the QWR. For comparison we h
also plotted the scattering rates corresponding to the DP
teraction. All pairs of curves that correspond to QWR of t
same width, e.g., curves 1 and 18, demonstrate that the VEM
mechanism decreases the scattering rate in the low-en
range, shifts the maximum of the spectrum, and increases
rate for electrons with high energies. The first peculiar
appears to be due to the interference effect. The shift of
maximum and increase of the scattering rate at high ener
reflect the nonlocal nature of the interaction of Eq.~1!: the
dependence of the matrix elements on phonon wave ve
presented by Eqs.~12! and~13!, prevents the rapid reductio
of the scattering rate.

The change of the transition probability modifies both t
energy and the momentum relaxation of electrons. To ill
trate the role of the VEM mechanism in transport propert
of a QWR, we will analyze as in the case of a QW, t
average electron energy and momentum relaxation ra
These values are derived from the corresponding bala
equations under conditions of a small deviation from eq
librium. As well as for a QW, we use the Fermi distributio
function with the electron temperatureTe . This assumption
supposes that the electron-electron scattering rate greatl
ceeds the electron-phonon relaxation rate. Although such
tribution function can be a crude approximation, this mo
makes possible to consider the main qualitative peculiari

FIG. 4. Total scattering rate~solid lines! and the rate due to DP
interaction ~dotted lines! versus electron energy for the electro
transitions in the lowest subband of GaAs-based quantum w
with the different cross sections:~1!,(18) 50350 Å 2; ~2!,(28) 50
3100 Å 2; ~3!,(38) 503150 Å 2. T520 K.
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brought about by VEM mechanism into the electron-phon
scattering via DP interaction.~The energy losses of electron
in a QWR due to DP interaction were analyzed, using
electron-temperature approximation, in Ref. 7!. Transport
properties of electrons are described within a linear respo
to applied electric field. For degenerate electrons, under s
assumptions we obtain

H ne

nm
J 5

1

n1LzkBT (
j ,k,k8

Wkk8
j f 0~«!@12 f 0~«8!#

3H ~«2«8!2/kBT

\2~k2k8!2/m* ,
~16!

where f 0(«) is the equilibrium Fermi distribution function
n152kF /p is the electron concentration in a QWR. In E
~16!, we replace the summation overk,k8 with the integra-
tion over« andv5u«2«8u/\ and take into account the dis
continuity of the probabilityWk,k8

j at «5«8, according to Eq.
~2!. Since, for degenerate electrons, the energy transfer\v is
small compared to the Fermi energy and\kF /m* @sj , we
find thatq' j.v/sj@qz . Performing the integration over«,
we obtain the following final expressions:

H ne

nm
J 5

m*

4p3n1r\kBT

3(
j
E

0

2p

dfE
0

`

dv
vuM j u2uF2 j u2

sj
2 sinh2S \v

2kBTD
3H 2m* v2/~p2n1

2kBT!

1,
~17!

where j 5 l ,t2. It is easy to see from Eq.~17! that at low
temperatures, when the long-wavelength phonons domi
in electron scattering@F2 j'1 and Da(qa)'Da(0)], both
the energy and momentum relaxation rates are proportio
to the same effective scattering constant, in contrast with

FIG. 5. Normalized electron energy relaxation rates ver
the width of GaAs quantum wire with square cross sect
(Lx5Ly5L) for different temperaturesT: ~1! 1 K; ~2! 5 K; ~3! 10
K; ~4! 15 K.
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case of a QW. This constant coincides with theD̃ value that
determines the scattering rate of Eq.~15!. With increasingT,
when the scattering with short-wavelength phonons becom
important, the ‘‘energy’’ and ‘‘momentum’’ scattering con
stants appear to be substantially different. For QWR’s with
square cross section, the ratesne(T) andnm(T), normalized
at the corresponding rates due to DP coupling, are prese
in Figs. 5 and 6 for several temperatures as a function of
width of QWR. As seen, both relaxation rates experienc
dual influence as a result of electron scattering on phon
due to the VEM mechanism. As well as for electrons in
QW, the peculiarities appear due to the interference effec
scattering on LA phonons and due to the scattering on
phonons. Comparing Figs. 5 and 6, one can see that onl
low temperatures~curves 1! the ‘‘energy’’ and ‘‘momentum’’
scattering constants are close to each other. For higher t
peratures, these constants differ in magnitude, especiall
high T, and have a qualitatively different dependence on
transverse dimensions of the QWR; see curves 4. Figur
shows that for QWR’s with the same cross section, the sc
tering constant depends nonmonotonically on the tempe
ture and—for a given temperature—can either decrease
increase with the increasing of thickness of QWR. As seen
Fig. 6, for a narrow electron channel (L,40 Å) and low
temperatures, the additional scattering increases the mom
tum relaxation rate~curve 1!, while for the wider channels or

FIG. 6. Normalized electron momentum relaxation rates ver
the width of GaAs quantum wire with square cross section (Lx

5Ly5L) for different temperaturesT: ~1! 1 K; ~2! 5 K; ~3! 10 K;
~4! 15 K.
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higher temperatures it results in a decrease of the rate. N
that in contrast with the QW case, the effect of TA phono
at low temperatures is less pronounced. Indeed, for QW
having a square-shaped cross section, the rates given b
~17! are proportional asT→0 to a scattering constantD2(1
1d) that determines the scattering at LA phonons on
Thus, while electrons in a QW are scattered predomina
on TA phonons, electrons in a QWR with square cross s
tion do not interact with TA phonons at all.

V. CONCLUSIONS

We have studied the role of deformation-induced var
tions of electron effective mass and the associated contr
tion of acoustic-phonon scattering to relaxation processe
a low-dimensional electron gas. The electron scattering r
due to interaction of electrons with acoustic phonons via
conventional deformation potential and the VEM mechani
have been calculated for III-V semiconductor QW’s a
QWR’s. The nanostructure-size dependent additional me
nism under consideration brings about qualitatively i
proved features in the electron-acoustic phonon interact
It gives rise to an interference effect in electron scattering
LA phonons via the deformation potential and results in
interaction of electrons with TA phonons. We have found t
in narrow QW’s or thin flattened QWR’s, the emission of T
phonons can dominate over the emission of LA phonons
der the relaxation of electrons at low temperatures. The
terference leads to a dependence of the scattering rate
sign of the deformation potential constantD. These pecu-
liarities lead to an unusual situation where the additio
channel of scattering can either increase or decrease the
scattering rate. In other words, an effective scattering c
stant that describes the electron relaxation in nanostruct
~equalsD2 in the deformation-potential theory! appears to be
nonuniversal. For a given semiconductor, the modified s
tering constant depends on the dimensionality of the elec
gas, the size and the shape of the nanostructure, and o
temperature. We have also demonstrated that one has to
different coupling constants in order to describe the elect
energy losses and mobility.
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