
ARTICLE IN PRESS
0921-4526/$ - se

doi:10.1016/j.ph

�Correspondi
fax: +9140230

E-mail addre
Physica B 358 (2005) 191–200

www.elsevier.com/locate/physb
Effect of electron–phonon interaction on the electronic
properties of an axially symmetric polar semiconductor
quantum wire with transverse parabolic confinement

R. Phani Murali Krishna, Ashok Chatterjee�

School of Physics, University of Hyderabad, Hyderabad 500 046, India

Received 14 December 2004; accepted 7 January 2005
Abstract

A variational calculation based on the Lee–Low–Pines–Huybrechts method is performed to obtain the polaronic

binding energies corresponding to the ground state and the first excited state of an electron in a polar quantum wire

with parabolic confinement in the transverse direction. It is shown that the polaronic effects are considerably large and

size-dependent if the effective radius of the wire is reduced below a certain length scale. It is also shown that even the

longitudinal effective mass of the polaron is strongly enhanced by the transverse confinement in a quantum wire.
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1. Introduction

Recent years have witnessed a flurry of investi-
gations in the area of mesoscopic systems with the
spectacular progress in the microfabrication tech-
niques and material growth at the nanoscale.
These low-dimensional systems are highly inter-
esting because they exhibit very many novel
physical properties that are quite different from
e front matter r 2005 Elsevier B.V. All rights reserve
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those of their bulk counterparts and have tremen-
dous potential for application in microelectronic
semiconductor devices.
Among the several interesting nanomaterials

available today, the zero-dimensional quantum
dots (see Ref. [1] for references) and quasi-one-
dimensional structures such as quantum wires
have attracted particular attention [2]. In the
present work, we shall be interested in quantum
wire structures. In a quantum wire the electron’s
motion is free along the length of the wire
while its motion in the plane normal to the length
is confined. Therefore, the energy levels
d.
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corresponding to electron’s motion in the plane
normal to the length of the wire are highly
quantized and because of this quantization quan-
tum wires show pronounced quantum effects.
Associated with every sharp and discrete energy
level, however, there is a band of quasi-continuous
energy levels arising from the motion of the
electron along the length of the wire which may
be referred to as subbands. Since most of the
quantum wire structures available today are made
of polar semiconductors, one expects that the
electron–longitudinal-optical(LO)-phonon inter-
action will have pronounced effects on the
electronic states of a polar quantum wire and
furthermore these effects should be size
dependent. Quite a few investigations [3–11] have
already been made to study the polaronic effects in
quantum wires with different kinds of confinement
potential and using different methods. It
may be mentioned that a quasi-one-dimensional
behaviour can also be obtained by magnetic
confinement of a three-dimensional electron
through a large magnetic field in which the
electron is confined to move along the magnetic
field [12].
Degani and Hipólito [3] have calculated the

polaronic corrections to the energy and the
effective mass of an electron in a quantum wire
of GaAs surrounded by Ga1�xAlxAs using a
variational method which is based on the canoni-
cal transformation method of Lee, Low and Pines
(LLP) [13]. They have found that the polaron mass
is dramatically dependent on the wire size and also
larger than its values in corresponding two- and
three-dimensional structures. Yildirim and Ercele-
bi [4] have studied the polaronic effects on the
ground state electronic energy in a quasi-one-
dimensional structure with parabolic confinement
using the second-order Rayleigh–Schrödinger per-
turbation theory (RSPT). They have given a
unified overview of the polaronic binding energy
interpolating between all possible confinement
geometries. Quinghu et al. [5] have been able to
give following the method used by Mukhopadhyay
and Chatterjee [14] a simple expression for the
polaronic correction to the electronic energy in a
parabolic quantum wire within the framework of
the second-order RSPT. Buonocore et al. [6] have
studied the polaronic effects in a cylindrical
quantum wire using a generalization of the LLP
method and considering both the bulk and the
surface phonon modes. Xie [7] has considered a
free standing cylindrical quantum wire and
obtained the polaronic corrections due to electro-
n–LO-phonon interaction and also electron
–surface-optical(SO)-phonon interaction using
the second-order perturbation theory and taking
into account the contributions from higher energy
subbands. Li et al. [8] have studied using the LLP
variational method the electron-confined-phonon
interaction in a rectangular quantum wire under
an additional parabolic potential. All these in-
vestigations are, however, valid only for weak and
intermediate electron–phonon coupling strengths.
Yildirim and Ercelebi [9] have studied the ground
state binding energy and the effective mass of an
electron–LO-phonon system as a function of the
effective dimensionality within the framework of
the strong-coupling theory of Landau and Pekar
[15,16]. Zhou and Gu [10] have also used the
strong-coupling variational theory of Landau and
Pekar [15,16] with an additional variational para-
meter to calculate the polaron binding energies for
the ground state and the first excited state.
Obviously these investigations give results that
are valid for very large values of electron–phonon
coupling constant only. Chen et al. [11] have
studied the polaron problem in a parabolic
quantum wire using theFeynman–Hayken path-
integral formalism [17]. The results of this
investigation are certainly valid for the entire
range of the coupling parameter. In fact, for the
quantum dot case, the Feynman–Hayken path-
integral method was earlier used by Mukhopad-
hyay and Chatterjee [18] for the investigation of
the polaronic effects. However, as is well known,
the Feynman–Hayken approach can be success-
fully applied only to the ground state and therefore
this method also has a limited applicability.
Furthermore, it is also not so convenient to
calculate the effective mass in this framework.
Bound polaron problems have also been studied in
quantum wire by several investigators [19].
Hai et al. [20] have studied the effect of screening
of the electron–phonon interaction on the polaro-
nic properties in a quasi-one-dimensional
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polaron gas using Hatree–Fock and random
phase approximations. Shen [21] has investigated
the excitonic polaron problem in a quantum
wire.
We purport to investigate in the present work

the polaronic effects in a quantum wire for the
ground state and the first excited state for the
entire range of the electron–phonon coupling
constant and for arbitrary confinement length.
We shall use the Lee–Low–Pines–Huybrechts
(LLPH) variational method [18,22] which is a
variant of the LLP theory and is known to yield
good results for the entire range of the coupling
parameter [23]. We shall apply our results to some
of the realistic semiconductor quantum wires
available today. We shall consider the confining
potential to be parabolic which is consistent with
the far infra-red spectroscopic measurements on
quantum dots [24] and the generalized Kohn’s
theorem [25].
For the sake of mathematical simplicity we

neglect the size quantization of phonons and treat
the relevant phonon modes within the framework
of the Fröhlich model [16,26]. This approach
may not be rigorously valid if the confinement
length in the transverse direction is reduced to a
very small value, but may still serve as a good
enough approximation to capture some of the
most important and interesting features of
the electron–phonon interaction effects in quan-
tum wires.
2. The model hamiltonian

The hamiltonian for an electron interacting with
LO-phonons in an axially symmetric quantum
wire structure with a parabolic confinement in the
x–y plane and free motion in the z-direction can be
written by modifying the Fröhlich hamiltonian
[16] as

H ¼ �
_2

2m
~r
2

~r0 þ
1

2
mo2

hðx
02 þ y02Þ þ _o0

X
~q 0

b
y

~q0
b~q0

þ
X
~q0

ðx0q0e
�i~q0 	~r0b

y

~q þ h:c:Þ; ð1Þ
where the first term refers to the kinetic energy of
the electron, m being its effective mass and
~r0ðx0y0z0Þ its position vector. The second term
describes the parabolic confining potential for the
electron in the x0–y0 plane, oh giving the measure
of the strength of confinement. The third term is
the free phonon hamiltonian where b

y

~qðb~qÞ is the
creation (annihilation) operator for an LO-pho-
non of dispersionless frequency o0 and wave
vector ~q0 and the last term describes the electro-
n–phonon interaction with x0q0 as the electron–pho-
non interaction coefficient. We shall use the
Feynman units [27] in which the energy is scaled
by _o0; length by r0 where r0 ¼ q�1

0 ; q0 being an
inverse length defined by _2q20=m ¼ _o0; volume
by r30 and wave vectors by q0: Such scalings are
equivalent to putting _ ¼ m ¼ o0 ¼ 1: In these
units, hamiltonian (1) reads

H ¼ �
1

2
r2
~r þ

1

2
o2r2 þ

X
~q0

b
y

~q0
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where ~r 
 ð~p; zÞ 
 ðx; y; zÞ is the dimensionless
position coordinate of the electron in the Feynman
units i.e. ~rðx; y; zÞ ¼~r0ðx0; y0; z0Þ=r0; r2 ¼ ðx2 þ y2Þ;
~q ¼ ~q0=q0; o ¼ oh=o0 and x is given by

jxqj
2 ¼

2
ffiffiffi
2

p
p

Vq2

 !
a; (3)

where V is the dimensionless volume of the whole
system (in Feynman units) and a is the dimension-
less electron–phonon coupling constant. We first
note that the total crystal momentum operator
~̂P ¼ �i~r þ

P
~q~qby

qbq does not commute with
hamiltonian (2), though its z-component Pz ¼

�iq=qz þ
P

~q qz~qby
qbq does i.e. ½P̂z;H� ¼ 0: There-

fore P̂z is a conserved quantity. This is, however,
not very surprising in view of the inherent axial
symmetry present in the geometry of the system
for the entire z-direction. Thus, in this case it will
make sense to define an effective mass for the
polaron along the z-direction, unlike in the usual
quantum dot structures. This effective mass may
be referred to as the longitudinal effective mass of
the polaron.
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3. Formulation

We shall use the LLPH method to study the
polaron problem described by hamiltonian (2). We
first transform the hamiltonian H with a unitary
operator U1 ¼ eS1 with the generator S1 given by

S1 ¼ i
X
~q

ðar~qr:~rþ azqzzÞby
qbq; (4)

where ar and az are two variational parameters
and ~q 
 ð~qr; qzÞ: Then after the second LLP
transformation

U2 ¼ exp
X
~q

ðf ~qb
y

~q � f n

~qb~qÞ

" #
; (5)

hamiltonian (2) becomes
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where ~̂p is the electron momentum operator and f ~q
is to be obtained variationally. When ar and az are
equal to 1, this procedure reduces to the LLP
method, which should provide a good description
in the extended state limit, while for ar and az

equal to zero, this approach is equivalent to the
Landau–Pekar method, which is valid in the
adiabatic limit and will be a useful approach in
the localized state limit. Thus treating ar and az as
variational parameters in the range (0; 1), one can
have a theory encompassing the entire parameter
space. The variational energy is now written as

E ¼ hFjh0j ~Hj0ijFi; (7)

where Fð~rÞ is the electronic function to be chosen
variationally and j0i ¼

Q
~qj0~qi is the unperturbed

zero-phonon state satisfying b~qj0qi ¼ 0 for all ~q:
4. The ground state

For the ground state (GS) calculation we choose
F as

F0 ¼
m0

ffiffiffiffiffi
m00

p
p3=4

e�ð1=2Þm2
0
r2e�ð1=2Þm0

0
2z2e�ip0z (8)

so that the energy expression (7) is then denoted as
EGS: For the GS, we shall define ar ¼ a0; az ¼ a0

0

and f ~q ¼ f
ð0Þ
~q : To obtain the variational energy we

should minimize E subject to the constraint that P̂z

is a constant of motion. This can be accomplished
by minimizing the functional

JGS ¼ EGS � u0hF0jh0j
~~̂

Pzj0ijF0i; (9)

where u0 is a Lagrange multiplier which can be
identified as the polaron velocity along the z-
direction and

~~̂
Pz ¼ U�1

2 U�1
1 P̂zU1U2: (10)

In what follows, we shall assume f ð0Þ
q to be

symmetric in ~qr: Minimizing JGS with respect to
p0; f ð0Þ

q and f n

q

ð0Þ
and substituting their values in (7)

and expanding the energy in powers of u0 and
retaining terms up to quadratic in u0 we get the
expression for the polaron GS energy and the
polaron effective mass corresponding to the
motion along the z-direction as
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where m0 and m00 have to be obtained by minimiz-
ing EGS with respect to them.
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4.1. Limiting results

As expected, we can get from (11) and (12) the
well-known analytical results in the limiting cases.
For instance, in the weak electron–phonon cou-
pling limit and for not so strong confinement we
can put a0 ¼ a0

0 ¼ 1: This is the so-called extended
state limit. However, even in this case, m0am00; in
general, because of the confinement effect. We
then get m00 ¼ 0 and the GS energy is given by

EGS ¼ o� a; (13)

which in the limit, o ! 0; gives the well-known
weak-coupling bulk result for the GS energy.
Similarly in the weak-coupling regime and for
weak confinement (o ! 0), the effective mass can
be obtained as

mn

z ¼ 1þ
a
6
; (14)

which is again the well-known bulk result.
In the case of strong electron–phonon coupling

and weak confinement we can set a0 ¼ a0
0 ¼ 0 and

m00 ¼ m0: The GS energy then reduces to

EGS ¼ �
a2

3p
þ
9po2

4a2
; (15)

which in the bulk-limit (o ! 0) reduces to the
well-known Landau–Pekar result for the GS
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1q
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3
; (19)
energy in the gaussian approximation. In the same
regime the effective mass expression (12) reduces
to the well-known Landau–Pekar effective mass of
a bulk polaron in the gaussian approximation.
To obtain the GS energy and the effective mass

for the entire range of a and for arbitrary
confinement, Eq. (11) is to be minimized numeri-
cally. Before we discuss our numerical results, we
shall first present in the following section our
calculation for the first excited state energy.
5. The first excited state

For the first excited state we take the electronic
function as

F1 ¼

ffiffiffi
2

p
m1m

0
1
3=2

p3=4
e�ð1=2Þm2

1
r2e�ð1=2Þm0

1
2z2ze�ip1z: (16)

The first excited state (ES) energy (EES) is then
given by Eq. (7) with F ¼ F1: For the first ES we
shall define ar ¼ a1; a0

z ¼ a0
1 and f q ¼ f ð1Þ

q : To get
the first ES energy we should minimize EES subject
to the constraint that ~Pz is a conserved quantity.
Thus we have to minimize

JES ¼ EES � u1hF1jh0j
~~̂

Pzj0ijF1i; (17)

where again u1 is the Lagrange multiplier
which as before can be identified as the polaron
velocity. Minimizing the functional J1 with
respect to p1 and f n

q and substituting their
optimum values in (7) and expanding it in
powers of u1; we can get the lowest ES energy
and the corresponding ES effective mass
which read
where m1; m
0
1; a1 and a0

1 are to be finally obtained by
minimizing EES with respect to them. For some
limiting cases, we can again have the usual
analytical results. For example, in the weak
electron–phonon coupling limit and for a not so
strong confinement, we can again have a1 ¼ a0

1 ¼

1: Then we get m01 ¼ 0; the energy EES and the
effective mass mn

ES reduce to the same results (13)
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and (14) as in the case of GS. In the case of strong
electron–phonon coupling and weak confinement,
we can take a1 ¼ a0

1 ¼ 0 and m1 ¼ m01: Eq. (18) then
reduces to

EES ¼ �
492a2

18; 000p
þ
1502po2

492a2
; (20)

which in the bulk limit o ! 0 gives the Land-
au–Pekar result for the first ES energy of a bulk
polaron in the gaussian approximation. In the
same regime the effective mass expression (19) also
reduces to the Landau–Pekar result for a bulk
polaron.
0.0 0.5 1.0 1.5 2.0 2.5
l

Fig. 1. The polaron binding energy (in Feynman units) of an

electron in the GS of an axially symmetric parabolic quantum

wire as a function of the effective confinement length l (in

Feynman units) in the transverse direction for a ¼ 0:1; 0:05 and
0.01. The solid lines refer to the results of our LLPH calculation

while the dashed lines correspond to the RSPT results of

Quinghu et al. [5].
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Fig. 2. The polaron binding energy (in Feynman units) of an

electron in the GS of an axially symmetric parabolic quantum

wire as a function of the effective confinement length l (in

Feynman units) in the transverse direction for a ¼ 9:0 and 10.0.
The solid lines refer to the results of our LLPH calculation, the

dashed lines correspond to the strong coupling results of Zhou

et al. [10] and the dash-dot curves represent the Feynman–-

Hayken results [11].
6. Numerical results

It is often convenient to define a dimensionless
confinement length l given by l ¼ l0=r0 ¼ 1=

ffiffiffiffi
o

p
;

where l0 ¼ ð_=mohÞ
1=2: This is the effective radius

of the wire. The GS polaronic correction DEGS can
then be defined as

DEGS ¼ EGS � o ¼ EGS �
1

l2
: (21)

One can also define a quantity called the polaron
binding energy (BEGS) which is just the negative of
DEGS:
In Fig. 1 we plot BEGS as a function of l for

three values of a: As expected, the polaronic
binding in a quantum wire increases as the
confinement in the transverse direction increases.
The increase in the polaronic binding becomes
quite substantial if the effective radius is made very
small. We have also plotted the results of the
second-order RSPT for the sake of comparison.
The agreement is evidently quite good.
In Fig. 2 we have shown the binding energy as a

function of the effective wire radius in the strong
coupling regime. We have shown results for a ¼ 9
and 10. Again it is clear that the polaronic effects
become quite pronounced as the wire is made
thinner and thinner. For comparison, we have
plotted the Landau–Pekar results of Zhou and Gu
and the FH results of Chen et al. [11]. It is clear
that our LLPH results are better than the results of
Zhou and Gu but inferior to those of FH.
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Fig. 3. The polaron binding energy (in Feynman units) of an

electron in the GS of an axially symmetric parabolic quantum

wire as a function of the effective confinement length l (in

Feynman units) in the transverse direction for a ¼ 1:0; 3:0 and

5.0. The solid lines refer to the results of our LLPH calculation

while the dashed lines correspond to the Feynman–Haken

results of Chen et al. [11].
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Fig. 4. The polaron binding energy (in meV) for CdS, CdSe,

CdTe, GaAs and InSb as a function of confinement length l0(in

angstorms).

R.P.M. Krishna, A. Chatterjee / Physica B 358 (2005) 191–200 197
In Fig. 3, we have shown the results for the
intermediate coupling region. Again the binding
energy behaviour is along the expected line. For
comparison, we have also plotted the Feynman–
Haken results of Chen et al. [11]. Obviously for
large values of a and for strong confinement
Feynman–Haken results are more accurate than
our LLPH results, but the palpable advantage with
the LLPH theory is that it can be applied to the
ESs unlike the Feynman theory and, furthermore,
it is also a convenient method to obtain the
effective mass. The Landau–Pekar theory can also
be applied to the ESs but the LLPH method
provides better results than the Landau–Pekar
approach. In the weak-coupling region, the
second-order RSPT does give good results for
the GS energy, but again the LLPH procedure is
more convenient for the effective mass calculation.
Furthermore, the calculations of ES energies are
often plagued with singularity problems in the
second-order RSPT because of the possible
instability of the ESs with respect to the emission
of a phonon.
It would be interesting to have binding energy
values of real semiconductor quantum wires
available in the laboratory. In Fig. 4, we have
shown the plot of ground state BE as a function of
l0 for systems like GaAs, CdS, CdSe, CdTe and
InSb. It is clear that the polaronic effects become
significantly strong if the transverse confinement
lengths are reduced below a few nanometers.
In Fig. 5, we show the variation of the effective

mass of the polaron along the length of the wire as
a function of the confinement length in the
transverse direction for two values of the coupling
constant. As evident from the curves, the effective
mass becomes extremely large below a certain
radius of the wire. Thus, though the z-component
of the total crystal momentum is a conserved
quantity, it seems that it is possible to have some
kind of a localization of the polaron even along the
length of the wire. However as l increases, mn goes
over asymptotically to the bulk value.
One may notice that in the limit a ! 0; EES

reduces to just o: Therefore, the first ES polaronic
correction should also be defined in our model as

DEES ¼ EES � o ¼ EES �
1

l2
: (22)
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Fig. 6. The polaron binding energy (in Feynman units) of an

electron in the first ES of an axially symmetric parabolic

quantum wire as a function of the effective confinement length l

(in Feynman units) in the transverse direction for a ¼ 10:0: The
solid line refers to the results of our LLPH calculation while the

dashed line corresponds to the strong coupling results of Zhou

and Gu [10]. The inset shows the variation for intermediate

values of a:
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Fig. 7. The ES polaron binding energy (in meV) of an electron

in GaAs, CdS, CdSe, CdTe and InSb.
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units) in the GS subband of an axially symmetric parabolic

quantum wire as a function of the effective confinement length l

(in Feynman units) in the transverse direction for a ¼ 9:0 and

10:0: The inset shows the effective mass for the ES.
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The negative of DEES may be referred as the
polaron binding energy in its first ES in an axially
symmetric parabolic quantum wire.
In Fig. 6 we show the variation of the binding

energy of the polaron in the first ES (BEES) as a
function of the effective wire radius l for a ¼ 10:
Again we find that as l decreases, the polaronic
binding increases and below a certain confinement
length the polaronic binding becomes very large.
However, we find that the polaronic binding effect
is less pronounced in the ES than in the GS. For
the sake of comparison we have also shown in the
same figure the Landau–Pekar results of Zhou and
Gu [19]. We are not aware of any other calculation
for the ES energy of a polaron in a parabolic
quantum wire. As is clearly evident, our LLPH
results are better than the Landau–Pekar results of
Zhou and Gu which is quite understandable
because the LLPH method is an all-coupling
method while the Landau–Pekar method is alright
in the limit a ! 1:
In the inset we have shown the results for a ¼

1; 3; 5: The results are qualitatively similar. In the
inset of Fig. 5, we have shown the variation of the
longitudinal effective mass of a polaron in the ES
as a function of the confinement length for two
values of the coupling constant. The behaviour is
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qualitatively similar to that in the GS. Quantita-
tively however the effective mass is smaller in the
ES than in the GS. In Fig. 7 we have shown the ES
polaron binding energy results for the quantum
wires of GaAs, InSb, CdTe, CdSe and CdS
semiconductors. Again we find that significant
polaronic effects can be observed if the confine-
ment length is reduced below a few nanometers.
One may however notice that for the systems we
have considered the GS and the ES polaronic
corrections are essentially same. This is however
expected because for these materials the electro-
n–phonon coupling constant is very small.
7. Conclusions

In conclusion, we have studied the motion of an
electron in an axially symmetric polar semicon-
ductor quantum wire with symmetric parabolic
confinement in the transverse direction. We have
employed the LLPH variational method to obtain
the polaronic corrections to the ground state and
the first excited state energies of the electron for
the entire range of the electron–phonon coupling
constant and for arbitrary confinement length. For
the weak electron–phonon coupling we have
compared our results with those of second-order
RSPT. Agreement is found to be pretty good.
Comparison with the Feynman–Haken results for
the intermediate coupling regime shows that the
LLPH theory can be considered to be fairly
accurate in this region. For strong electron–pho-
non coupling we have compared our results with
those of Landau–Pekar theory and it is found that
the LLPH theory yields better results. The LLPH
method has however some distinct advantages as
compared to other methods. For example, the
effective mass calculation is quite convenient in
this method. Furthermore, the LLPH method can
be applied to the excited state quite easily, while
the Feynman path-integral method which in
general gives better results for the ground state
cannot be applied to the excited states at all. We
have shown that the polaronic corrections to the
ground and the first excited state energies of the
quantum wire electron increases with decreasing
effective wire radius l. This increase is quite slow if
the wire radius is large but becomes quite rapid
when the transverse confinement length l is
reduced below a certain value. We have observed
that the polaronic effects in the first excited state
are in general less pronounced than in the ground
state. We have also presented the polaronic
binding energies for realistic semiconductor quan-
tum wires such as GaAs, InSb, CdTe, CdSe and
CdS systems. We have shown that polaronic
effects in these systems can indeed be significant
if the confinement lengths are reduced below
certain values. Furthermore, we have shown that
the longitudinal effective mass of the polaron also
undergoes a substantial enhancement because of
the transverse confinement in the quantum wire.
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