
Optics Communications 282 (2009) 1220–1225
Contents lists available at ScienceDirect

Optics Communications

journal homepage: www.elsevier .com/locate/optcom
Tunable Fabry–Pérot filter based on one-dimensional photonic crystals
with liquid crystal components

J. Cos, J. Ferre-Borrull, J. Pallares, L.F. Marsal *

Nanoelectronic and Photonic Systems, Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Received 17 August 2008
Received in revised form 24 October 2008
Accepted 26 November 2008

Keywords:
Liquid crystal
Photonic crystal
Fabry–Pérot
Transfer matrix method
Anisotropic materials
0030-4018/$ - see front matter � 2008 Elsevier B.V. A
doi:10.1016/j.optcom.2008.11.074

* Corresponding author. Tel.: +34 97 755 9625; fax
E-mail address: lluis.marsal@urv.cat (L.F. Marsal).
A theoretical study of a tunable Fabry–Pérot multilayer structure composed of alternating layers of silicon
and liquid crystal is presented and analyzed. The structure possesses two resonant frequencies within the
stop band with tunable wavelengths and transmission properties. Tuning is achieved by allowing differ-
ent orientations of the liquid crystal optical axes within the cavity and within the mirrors, while keeping
the optical axes parallel to the layers. Applying the transfer matrix method for thin layers of anisotropic
materials we demonstrate that the resonant wavelengths depend on the difference between the liquid
crystal optical axis orientations. Besides, we are able to obtain a complete characterization of the struc-
ture in the form of its Jones matrix. From this, we propose an optical two-channel equalizer for applica-
tions around 1.55 lm that allows tuning the two resonant wavelengths and their relative amplitude
levels.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Photonic crystals (PCs) are periodic dielectric or metal-dielec-
tric synthetic structures designed to influence the propagation of
electromagnetic waves in the same way as the periodic potential
in semiconductor crystals influences the electron motion by defin-
ing allowed and forbidden energy bands. Since first proposed [1,2]
their potential scientific and technological applications have in-
spired great interest among researchers. Photonic crystals offer a
significant opportunity to create new optical devices and hold a
great potential for many significant applications, such as lasers
and solar cells [3], high quality resonators and filters [4], optical fi-
bers [5], etc.

In the last decade many efforts have been spent towards tuning
the properties of photonic crystals in order to design switchable or
dynamical devices. Several structures combining photonic crystals
with nonlinear optical (NLO) materials or liquid crystal (LC) mate-
rials have been proposed [6–9]. In the former case, a high-intensity
control signal with frequency outside the bandgap changes the
properties of the crystal [10]. In the case of LC’s, their refractive in-
dex can be varied either by changing the operating conditions (i.e.
temperature) or applying an external electric field [11].

Particularly, one-dimensional photonic crystals are known for
several decades [12,13] in the form of periodic multilayer coatings,
consisting of stacked pairs of alternate dielectric or metal-dielec-
tric layers with a large contrast of the dielectric constant along
ll rights reserved.

: +34 97 755 9605.
the propagation direction. Tuning the properties of such structures
can be achieved by the infiltration of several layers with LC, as has
been proposed by several authors. In particular, Alagappan et al.
[14] propose alternating anisotropic (E7 LC) and isotropic (silicon)
layers and study the bandgap for each polarization. Others authors
as Mandatori et al. [15] or Vandenbem et al. [16] propose photonic
crystals that alternate two anisotropic layers with alternate orien-
tation of the optical axes, and they discuss the polarization depen-
dence of the transmission. Ha et al. [17] present the electrical
control of the director angle of LC layers alternated with isotropic
layers. Finally, Liu et al. [18] proposed a Mach-Zehnder interferom-
eter in which the phase of light propagation at the two arms can be
varied by means of a section in each arm infiltrated with LC, whose
optical axes can be varied independently.

A particular case of one-dimensional multilayer structures are
the Fabry–Pérot (FP) interferometers, that can be seen as a one-
dimensional photonic crystal with a defect that acts as a resonant
cavity. Tuning the resonant properties of such structures by the
introduction of LC in the defect layer has been reported in the lit-
erature. Hirabayashi et al. [19] study the application of a tunable FP
structure with LC defect for wavelength-division multiplexing
(WDM). Ozaki et al. [20] propose this structure to the design and
fabrication of tunable lasers. They pay special attention to the esti-
mation of response time for the defect mode switching. In all these
works the LC optical axis is varied from an alignment parallel to the
layers to a perpendicular alignment.

Studies on the actual practical implementation of the electric
field control of the LC optical axis director have also been pub-
lished: Zografopoulos et al. [21] study the orientation of the LC

mailto:lluis.marsal@urv.cat
http://www.sciencedirect.com/science/journal/00304018
http://www.elsevier.com/locate/optcom


J. Cos et al. / Optics Communications 282 (2009) 1220–1225 1221
directors in a one-dimensional photonic crystal slab applying volt-
age by means of a ITO layer above the slab; Tolmachev et al. [22]
fabricate tunable photonic one-dimensional structures based on
alternate layers of LC and silicon.

In this paper we link the previously stated facts: (i) FP tunable
structures are of particular interest because of their possible
applications, and (ii) independent variation of the LC optical axis
at different points of the photonic structure provides the struc-
ture with additional features, to propose a tunable FP structure
where the LC optical axis can be varied independently at the mir-
rors and at the cavity. In contrast to previous studies tunability is
achieved while maintaining the LC optical axes parallel to the
layers.

The rest of this paper is organized as follows: Section 2 is an
overview of the numerical method employed to obtain the trans-
mission Jones matrix of the structure. In Section 3 we analyze
the transmission properties of the structure as a function of the
LC optical axes orientation at the mirrors and at the cavity. In par-
ticular, we will show that allowing different optical axis orienta-
tions at the FP mirrors and at the cavity allows the tuning of the
resonant frequencies and of the transmittance at each resonant
wavelength. Finally, in Section 4 we propose a tunable two-chan-
nel optical equalizer based on the tunable FP structure and two
polarizers and we analyze and discuss its performance for different
relative orientations between the LC optical axes at the mirrors and
at the cavity and the polarizers.
2. Jones matrix of a multilayer structure with anisotropic
components

We propose a Fabry–Pérot multilayer structure composed of
two one-dimensional photonic crystals, acting as mirrors, sur-
rounding a resonant cavity, where the materials composing the
layers and the cavity can be anisotropic. Fig. 1 shows a schematic
view of the structure. The modeling of a multilayer structure with
anisotropic components is well studied in several references
[23,24]. Here we only aim at giving an overview of the method
we have used: the 4 � 4 transfer matrix method introduced by
Yeh [24]. This method is based on two kinds of 4 � 4 matrixes,
the dynamical matrix D (related with the interfaces) and the prop-
agation matrix P (related with the propagation along the layers). In
order to simplify equations, we consider normal incidence in
this paper. We define the z-axis as normal to the layers. With this,
the electric fields are represented as 4-vectors where the compo-
nents correspond to the complex amplitude of the waves propagat-
Fig. 1. Schematic view of the Fabry–Pérot structure composed of two mirrors with
N + 1 quarter-wave (optical thickness) layers of silicon and N quarter-wave layers of
Liquid Crystal separated by a half-wave layer of liquid crystal as cavity. The /M and
/C indicate the angle of the LC optical axis with the y axis, taking into account that
the LC optical axis is parallel to the layers. The prima superscript for the cavity
indicates that the angles /M and /C can be different. The optical thicknesses are
calculated taking the refraction index of the LC in the isotropic state.
ing in the positive and negative direction of the z-axis and
polarized along the two main polarization directions, which will
be labeled with the x and y direction.

The dynamic and propagation matrixes are defined for each
layer of the structure. Their explicit expression is:
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where the j is the layer index, the ex and ey are the unit vectors in
the x and y directions, and pr and qr are vectors defined as:
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with r = 1,2,3,4. In Eqs. (3) and (4), eab (with a,b = x,y,z) are the
components of the dielectric tensor for the considered layer, x
is the angular frequency of the light, c is the light speed in vac-
uum, Nr are normalization constants such that pr�pr = 1 and the
cr are the propagation constants, which can be obtained from
the equation:

w
c

� �2exx � c2 w
c

� �2exy
w
c

� �2exz

w
c

� �2eyx
w
c

� �2eyy � c2 w
c

� �2eyz

w
c

� �2ezx
w
c

� �2ezy
w
c

� �2ezz

��������

��������
¼ 0: ð5Þ

With these definitions, the T matrix corresponding to the total
transfer matrix of a structure composed of N layers is:

T ¼ D�1ðairÞ
Yi¼N

1

ðDðiÞ � PðiÞ � D�1ðiÞÞ � DðairÞ: ð6Þ

Due to the use of anisotropic materials, there can be coupling be-
tween the different polarizations both in reflection and in transmis-
sion. Therefore we will use the Jones matrix formalism [24,25] since
it permits to model this coupling. In this formalism, our structure is
represented by a Jones matrix:

J ¼
txx txy

tyx tyy

� �
; ð7Þ

where tab is the Jones transmission coefficient for incoming light
polarized in the direction b and outcoming light polarized in the
direction a. These coefficients are related to the T matrix of the
Eq. (6) through the expressions [24]:

txx ¼
Tð3;3Þ

Tð1;1ÞTð3;3Þ � Tð1;3ÞTð3;1Þ ; ð8aÞ

txy ¼
�Tð3;1Þ

Tð1;1ÞTð3;3Þ � Tð1;3ÞTð3;1Þ ; ð8bÞ

tyx ¼
�Tð1;3Þ

Tð1;1ÞTð3;3Þ � Tð1;3ÞTð3;1Þ ; ð8cÞ

tyy ¼
Tð1;1Þ

Tð1;1ÞTð3;3Þ � Tð1;3ÞTð3;1Þ : ð8dÞ



Fig. 2. Transmittance spectra for the structure [HL]3H–L0–H[LH]3 (a) Isotropic state
(nisoLC = 1.585, nSi = 3.4). The structure is designed to have a resonance for
k = 1.55 lm in this state. (b) |txx|2 and (c) |tyy|2 for the anisotropic state (/M = 15�,
/C = 45�, noLC = 1.522, neLC = 1.704, nSi = 3.4). The resonance present in the isotropic
state splits in two, k1 = 1.516 lm and k2 = 1.625 lm.
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3. Tunable Fabry–Pérot filter with independent liquid crystal
optical axis orientation at the mirrors and at the cavity

The structure we propose is a multilayer Fabry–Pérot structure
composed of two mirrors surrounding a cavity (see Fig. 1). The mir-
rors are composed of a periodic stacking of bilayers, with the high
index layer made of silicon and the low index layer of liquid crys-
tal, while the cavity is made of LC. The tunability of the filter is
achieved allowing the orientations of the LC optical axes at the
mirrors and at the cavity to be different. An additional silicon layer
must be added to the mirrors to surround the LC cavity and thus to
provide mechanical stability to the structure. This additional sili-
con layer also increases the reflectance maximum value [26]. We
have chosen silicon as isotropic material because of its high refrac-
tive index at wavelengths with interest in optical communications
and because it is compatible with most of the existing fabrication
technologies. It is well known that silicon is actually not an isotro-
pic material, however we have considered it as isotropic because
the anisotropy is anyway small and to keep the study of the struc-
ture simpler. As anisotropic material we have considered the E7 LC,
since its director angle can be varied with an applied electric field.

We have chosen the dimensions of the FP structure so that,
when the LC is in its isotropic state, the mirrors are composed of
quarter-wave layers of silicon and LC, while the cavity is a half-
wave layer of LC, for a wavelength of 1.55 lm. Thus, the design
can be expressed as [HL]3H–2L0–H[LH]3 (see Fig. 1), where H stands
for a quarter-wave layer of the high refractive index material, and L
for a quarter-wave layer of the low refractive index material (the
LC). The prima superscript for the cavity indicates that the LC opti-
cal axis direction of the cavity can be different to that of the mir-
rors. We have considered nsi = 3.4 as refractive index of silicon
and no = 1.522 and ne = 1.704 as ordinary and extraordinary in-
dexes of E7 LC. The optical axis of the LC in all the layers is kept
parallel to the xy plane.

In contrast with previous works with tunable FP filters, we pro-
pose to tune the filter properties by rotating the LC optical axis in
the xy plane. With this configuration we have two degrees of free-
dom: the angle of the optical axis of the LC within the mirrors, /M,
and the angle of the optical axis of the LC within the cavity, /C. It
must be mentioned that both /M and /C are measured with respect
to the y axis. Fig. 2 shows the transmission spectra of the structure
for the isotropic state of the LC (Fig. 2a) and for the anisotropic
state with angles /M = 15� and /C = 45� (Fig. 2b and c). In the iso-
tropic state the transmittance is polarization-independent, while
for the anisotropic state the transmittance spectra |txx|2 and |tyy|2

(from the structure Jones matrix) are shown. These figures show
that the single resonance present in the isotropic state (at wave-
length k = 1.55 lm) splits in two resonances, k1 = 1.516 lm and
k2 = 1.625 lm. As it can be observed, the transmittance at each of
the resonant wavelengths depends on the polarization. Further-
more, it is worth noting that, in Fig. 2b and c the transmittance
at the bandgap edges is not 100%, in contrast with the isotropic
case. This is due to the fact that in the anisotropic case, besides
the txx and tyy components, the cross-polarization components tyx

and txy are nonzero, even for normal incidence.
The two degrees of freedom mentioned above confer properties

to the structure that would not be possible if all the LC optical axes
were parallel. In such case, there would be two resonances, due to
the interaction of the two main polarizations with the ordinary and
extraordinary refractive indices. However, there would not be the
possibility of tuning simultaneously these two resonances by
changing the optical axis angle in the xy plane, since these refrac-
tive indices are constant. With the independent variation of the LC
optical axes at the mirrors and at the cavities this can be overcome.
This tunability is possible because of the existence of the two LC
optical axes directions. One of the LC optical axes fixes the main
polarization directions, while the second LC optical axis (with an-
gle variable with respect to the first) is the one that actually influ-
ences the interaction of the incident light with the ordinary and
extraordinary indexes.

The first property that we analyze is the tuning of the resonant
wavelengths with the angles /M and /C. Since for normal incidence
the election of the x and y axes (the main polarization directions) is
free, this reduces the two degrees of freedom in the LC optical axes



Fig. 3. Resonant wavelengths of the structure, k1 (solid line) and k2 (dotted line),
versus the difference /C–/M.
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to a single one consisting of the difference /M–/C. Fig. 3 shows the
dependence of the two resonant wavelengths with this difference.
As it can be seen, varying /M–/C from 0� to 90� the first resonance
(k1) can be tuned from 1.510 lm to 1.538 lm while the second (k2)
can be tuned simultaneously from 1.630 lm to 1.604 lm. Materi-
als with higher anisotropy than E7 LC would enlarge this tuning
range [27].

Fig. 4 shows the transmittance properties of the FP structure.
The three graphs in Fig. 4 correspond to: (a) |txx|2, (b) |txy|2 = |tyx|2

and (c) |tyy|2, calculated for the resonant wavelengths k1 and k2.
The calculations correspond to /M = 0 (mirror LC optical axis paral-
lel to the y axis). The phase of txx, txy, tyx and tyy for k1 is 0 for all /C,
while for k2 the phase of txx and tyy is 0 and the phase of txy and tyx is
p, also for all /C. These values (the amplitudes of the transmission
coefficient and their phases) describe completely the transmit-
tance properties of the FP structure at the resonant wavelengths,
in the form of its characteristic Jones matrix, JFP(/C;/M = 0). The
transmittance for any combination of angles /M and /C can be de-
duced from these values with the Jones matrix formalism. This is
accomplished using the adequate rotation matrixes. Thus, the
Jones matrix of the FP system for any two angles /C and /M can
be written as:

JFPð/C;/MÞ ¼ R�1ð/MÞJFPð/C; /M ¼ 0ÞRð/MÞ; ð9Þ

with R(/M) the rotation matrix:

Rð/MÞ ¼
cos /M � sin /M

sin /M cos /M

� �
: ð10Þ
Fig. 4. Square modulus of the Jones matrix components of the FP structure at the
resonant wavelengths k1 (solid lines) and k2 (dotted lines), versus the LC optical axis
orientation at the cavity (/M = 0�; /C = [0�–180�]). (a) |txx|2, (b) |txy|2 = |tyx|2 and (c)
|tyy|2.
4. Tunable two-channel optical equalizer based on a Fabry–
Pérot structure infiltrated by liquid crystal

In order to obtain a working device, it is necessary to comple-
ment the FP structure presented in the previous section with other
optical components that provide it with the desired functionality.
By using a polarizer at the input of the device and an analyzer at
the output, parallel to the input polarizer, we obtain a two-channel
tunable equalizer. This is, a device that can change the resonant
wavelengths and the relative transmittance between them as a
function of the angles /M and /C. With the linear polarizers at
the input and at the output of the FP structure oriented with the
x direction, the transmittance of the device is proportional to the
x–x component of the Jones matrix JFP(/C,/M), t0xx(/C,/M). This
component is related to the components of the JFP,0(/C,/M = 0)
through the expression:
t0xxð/C;/MÞ ¼ txx cos2 /M þ txy cos /M sin /M þ tyx cos /M

� sin /M þ tyy cos2 /M: ð11Þ

Fig. 5 shows the total transmittance of such a device when the LC
optical axes are rotated between /M = 0� and /M = 180�, but with
a fixed difference between their director angles. The three plots cor-
respond to differences /C–/M = 0� (a), /C–/M = 30� (b) and
/C–/M = 45� (c). For /C–/M = 0� the resonances are at
k1 = 1.510 lm and k2 = 1.630 lm. The transmittance curves for the
two resonant wavelengths are equal but shifted 90�. With this,
the first resonance maximum (T = 100%) and the second resonance



Fig. 5. Transmittance at the resonant wavelengths k1 (solid line) and k2 (dotted
line), of the optical two-channel equalizer for three angle differences. (a) /M = /C,
k1 = 1.510 lm and k2 = 1.630 lm. There is complete equalization: the maxima of
one resonance correspond with the minima of the other (90� relative shift between
the transmittance curves) (b) /C–/M = 30�, k1 = 1.516 lm and k2 = 1.625 lm. The
shift between the two transmittance curves is smaller than 90�. The equalization is
not complete. The shaded region corresponds to the range of /M with the better
efficiency. (c) /C–/M = 45�, k1 = 1.522 lm and k2 = 1.619 lm. This case corresponds
to the smallest relative shift between the transmittance curves.
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minimum (T = 0%) appear for /M = 0� and /M = 180, while the first
resonance minimum and the second resonance maximum appear
for /M = 90. This means that in this configuration and for this
pair of resonant wavelengths, there is complete equalization: one
channel is completely suppressed while the other is completely
transmitted. Another interesting feature in this configuration is that
for /M = 45� and /M = 135� the transmittance for the two resonant
wavelengths intersect and this intersection level is the same for
the two /M.

For the case /C–/M = 30� the resonant wavelengths are now
k1 = 1.516 lm and k2 = 1.625 lm. The transmittances have shifted
to the left in a different amount, thus the relative shift between
the curves is smaller than in the previous case. This means that
in this configuration the transmittance maxima of one resonance
do not match with the minima of the other, and consequently
the equalization is not complete. However, there are still configu-
rations where one of the channels is completely blocked while the
other is still transmitted with transmittance 85.47% (first reso-
nance blocked, /M = 60�) and 90.39% (second resonance blocked,
/M = 160�). Differently to the previous case, the intersection of
the transmittance for the two resonant wavelengths is at different
levels: 38.33% for /M = 109� and 14.66% for /M = 19�. Conse-
quently, it is advisable to choose the adequate range of /M (be-
tween /M = 60� and /M = 160�, indicated by the shaded region in
the graph) to achieve a maximum efficiency of the device.

Finally, the case /C–/M = 45� corresponds to the smallest shift
between the transmittance spectra. The resonant wavelengths
are now k1 = 1.522 lm and k2 = 1.619 lm. We include this case be-
cause it is the worst case: when one of the channels is blocked the
transmittance of the other has the smallest transmittances, which
are 78.58% (first resonance blocked, /M = 40�) and 82.91% (second
resonance blocked, /M = 150�).
5. Conclusions

We have analyzed the transmittance properties of a tunable
Fabry–Pérot structure composed of silicon and anisotropic materi-
als, whose optical axes can be varied. The FP structure is composed
of a cavity of anisotropic material surrounded by two mirrors, com-
posed of successive layers of silicon and anisotropic materials. We
have chosen E7 liquid crystal as anisotropic material because its
optical axis can be electrically varied. In contrast with previous
works, we have designed the structure so that the LC optical axes
at the mirrors and at the cavity are always parallel to the layers
and their direction in the mirrors or in the cavity can be varied
independently.

Following the 4 � 4 transfer matrix method, suited to multilayer
structures with anisotropic materials, we are able to obtain the
Jones matrix of the structure, and thus completely determine its
transmission properties both in amplitude and in phase, and for
the two main polarizations. Our results show that a tuning capabil-
ity of 28 nm can be achieved as a function of the relative orientation
between the LC optical axes. This range can be improved by substi-
tuting the E7 LC with an LC with a higher anisotropy.

The FP structure has been designed to have one resonance in the
middle of the gap (at 1.55 lm) when the LC is in its isotropic state.
When the LC is in its anisotropic state this resonance splits in two
due to the interaction of the light with the ordinary and extraordi-
nary indexes. The tuning of the resonant wavelengths and the asso-
ciated transmittance is due to the existence of two independent LC
optical axes within the mirrors and within the cavity.

On the basis of these results, we propose an optical two-channel
equalizer that permits tuning the two resonances and their relative
amplitude levels. This application is obtained by placing the FP
structure in between two parallel linear polarizers. We have ana-
lyzed different relative orientations between the LC optical axes
of this equalizer to determine its performance. Thus, for parallel
optical axes we obtain complete equalization: one channel is com-
pletely suppressed (T = 0%) as the other is completely transmitted
(T = 100%). In this case, we get the largest resonance split
120 nm. For other relative orientations of the LC optical axes, it is
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apparent that the transmittances for each of the resonances shift
with respect to each other and consequently complete equalization
is not achieved. Nevertheless, complete blocking of one channel
with respect to the other can be obtained. We have shown than
the worst case corresponds to a difference in the optical axes ori-
entation of 45�, in which the transmittance of the unblocked chan-
nel is as a minimum of 78.58% (first resonance blocked) and 82.91%
(second resonance blocked). These figures show that the device can
be useful with a good performance in a wide range of resonant
frequencies.
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