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1. INTRODUCTION

Collisions play a fundamental role in plasma pro-
cesses. They determine the shape and evolution of the
distribution function and, consequently, different types
of instabilities, plasma radiation, and plasma heating.
The importance of collisions is difficult to overesti-
mate. In this context, the question naturally arises of the
form of the collisional operator under different condi-
tions.

The operator of pair collisions in plasma in weak
electric and magnetic fields is well known [1–3]. This
is the Landau collisional operator, to which far particle
collisions resulting in small-angle scattering make the
main contribution. In this case, the particle trajectories
are nearly straight and the form of the collisional oper-
ator can easily be calculated with logarithmic accuracy.
The logarithmic factor (the so-called Coulomb loga-
rithm) takes into account limitations with respect to the
minimum impact parameter (corresponding to large
scattering angles or quantum effects) and the maximum
one (determined by collective effects or the adiabaticity
of particle motion in the wave field and corresponding
to small scattering angles). Evidently, when the loga-
rithmic factor is small, the condition under which parti-
cle trajectories are nearly straight is violated and a more
complicated problem of exact variations in the particle
momentum during scattering must be considered [4, 5].

Unfortunately, some difficulties also arise in consid-
ering electron–ion collisions in strong electromagnetic
(EM) fields [6, 7]. In this case, the logarithmic factor is
formally large and it would seem that collisions can be
regarded as small-angle. However, at sufficiently low
particle velocities, 
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, a situation arises
in which, due to the attracting character of electron–ion
interaction, the trajectories of scattered particles cannot

be considered straight. Consequently, the applicability
conditions of the Landau collisional operator are also
violated. Indeed, if the field is so strong that the ampli-
tude of electron oscillations 
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 is much larger than the
characteristic scattering length (the Rutherford radius
estimated from the oscillation velocity),
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the scattered electron performs multiple oscillations
near the ion. Each time it passes near the ion, it is scat-
tered by a small angle; however, during the time period
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, it appreciably approaches the
ion. As a result, each subsequent scattering event is
stronger than the previous one (a cumulative effect). In
this case, the electron–ion collision frequency turns out
to be much greater [6] than that evaluated in the approx-
imation of straight drift trajectories. This leads to the
generation of fast particles and coherent radiation.

In the present paper, basic expressions for the colli-
sional operator in plasma in the presence of alternating
EM fields are derived. Further, we plan to use them to
derive a collisional operator in strong fields (see
Eq. (1)). However, these expressions have their own
value. They confirm the applicability of the test particle
method to calculating pair collisions in arbitrary alter-
nating EM fields. Moreover, they allow one to refine the
Landau collisional operator in the presence of alternat-
ing fields and to more correctly determine its applica-
bility conditions.

Since the problem of deriving the collisional opera-
tor in the presence of alternating EM fields is rather
complicated, we start from the Liouville equation and
the Bogolyubov chain for 

 

s

 

-particle distribution func-
tions [3, 8] by generalizing it to the case of arbitrary
Hamiltonian scattering systems. As a result, we obtain
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a general collisional operator in the Boltzmann form
(see Sections 2, 3) but for scattering in a time-depen-
dent potential (field). When deriving this operator, we
use the Hamiltonian formalism, which allows us to sim-
plify calculations and generalize them to arbitrary
Hamiltonian systems. The formulas obtained confirm
the applicability of the test particle method to calculat-
ing collision characteristics in alternating EM fields. In
Section 4, these formulas are used, as an example, to
derive the collisional operator in weak fields, in fact
repeating the classical results [1–3]. Simultaneously,
the applicability conditions of this collisional operator
are determined and the part responsible for the trans-
port characteristics of scattering is separated out from
it. In the Conclusions, the possibility of further gener-
alization and application of the formulas derived in this
paper is discussed.

2. KINETIC EQUATION IN A CANONICALLY 
INVARIANT FORM

The most complete description of plasma consisting
of 
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 particles is provided by the 

 

N

 

-particle distribution
function 
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radius-vector and momentum of the 
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th particle. The
physical meaning of the function 
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 is as follows: the
quantity 
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 is the probability of the coordi-
nates and momenta of particles (
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) being
within the interval from 
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. As a normalization
condition for 
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 in a closed system, the equality
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 = 1 can be used. The function 
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 obeys

the Liouville equation

 

(2)

 

which reflects the fact that the particle distribution
probability in a given phase volume can change only if
a particle passes through the volume boundary. Here,
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 and the second summand is Poisson’s brack-
ets,

 

.

 

Assuming that only pair interactions between particles

take place,
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 the Hamiltonian  of the system of 
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particles can be represented in the form
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 is the Hamiltonian of a free particle and
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 is the potential of interaction between non-
relativistic particles.
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This is certainly valid for a classical plasma (see also [3], Sec-
tion 16).
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Equation (2) is too complicated because it deter-
mines the time evolution of the function of 6N variables
(where N ~ 1023 is the total number of plasma particles).
On the other hand, since the average interaction energy
is smaller than the kinetic energy of plasma particles,
the quantities characterizing individual particles should
play a greater role in plasma kinetics. To describe them,
s-particle distribution functions are introduced:

(4)

where V is the plasma volume. The equations for each
of these functions are called the Bogolyubov chains,
and the sources for them are higher order distribution
functions:

(5)

(6)

and so on. Note that, in these equations, EM fields are
determined by external sources in which plasma self-
fields are not included.

In the absence of correlations (interactions), we
have Dn = (ςi); therefore, in the functions D2,
D3, …, it is convenient to single out the terms responsi-
ble for correlations,

(7)

Hereafter, the subscripts indicate the dependence of the
functions on the coordinates (e.g., gab ≡ gab(ςa, ςb)).

Substituting definitions (7) into Eq. (5), we obtain
the kinetic equation for the distribution function fa,

(8)

Here, the Hamiltonian on the left-hand side contains
the self-consistent (acting) field in plasma,

The right-hand side of Eq. (8), Stab[fa], is called the
collisional operator for particles of species b. To calcu-
late it, it is necessary to know the pair correlation func-
tion gab. The equation for the function gab is derived

Ds Vs DN ςs 1+ … ςN ,dd∫=

∂tD1 �1 D1,[ ]+
ς2d
V

------- U12 D2,[ ],∫–=

∂tD2 �1 �2 U12+ + D2,[ ]+

=  
ς3d
V

------- U13 D3,[ ] U23 D3,[ ]+( )∫–

D1i 1=
n∏

D1 ςa( ) V
Na

------ f a, D2 ςa ςb,( ) V2

NaNb

------------- f a f b gab+( ),= =

D3 ςa ςb ςc, ,( ) V3

NaNbNc

--------------------=

× f a f b f c f agbc f bgac f cgab dabc+ + + +( ).

∂t f a Ha f a,[ ]+ Stab f a[ ] ςb Uab gab,[ ].d∫–≡=

Ha �a f bUab ςb.d∫
b
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from Eq. (6) by means of simple algebra with account
of definitions (7),

(9)

Here, the terms ([Uac, fagbc] + [Ubc, fbgac]), which

are responsible for the dynamic polarization of plasma
and plays an important role at distances from the scat-
tering particle greater than the Debye radius, r ≥ rD =

, are omitted. In Eq. (9), the term dabc,
describing three-particle correlations is also omitted,
because the probability of simultaneous collision of
three particles is assumed to be negligible.

Equation (9) is an equation of a hyperbolic type, and
its solution can easily be found taking into account the
smoothness of the distribution functions on the charac-
teristic collision scale-length ∂tfafb + [Ha + Hb, fafb] �
[Uab, fafb], as well as the absence of correlations before
the interaction,  = 0 (the condition proposed by

Bogolyubov [9]). As a result, we obtain

(10)

The expression fafb |tr should be understood as a depen-
dence on the running coordinates and momenta ς along
the trajectories of test particles, which, in turn, depend
on the initial coordinates and momenta ς0. By the test
particles we mean particles moving in a system with the
Hamiltonian HΣ = Ha + Hb + Uab.

Substituting expression (10) into Eq. (8), we obtain
the collisional operator in the form

(11)

This expression is easy to transform into a classical

integral operator with the kernel wab(ςa, ),

(12)

Taking into account that the system is Hamiltonian, we
obtain a very simple expression for wab,

(13)

This expression has a simple physical meaning: the
change in the distribution function during a collision
event is determined only by the motion along test parti-
cle trajectories. Therefore, the distribution over
momenta is determined by the total change of the test
particle momenta along their trajectories. Thus, to cal-
culate the collisional operator, it is necessary and suffi-
cient to find the trajectories particle trajectories of scat-
tered particles, after which the distribution over their
momentum variations should be integrated over all pos-
sible initial coordinates.

∂tgab Ha Hb Uab+ + gab,[ ]+ Uab f a f b,[ ].–=

ςcd∫

T /8πe2ne

gab
t ∞–→
lim

gab f a f b tr– f a ς0a ςa ςb,( )( ) f b ς0b ςa ςb,( )( ).–≡=

Stab f a[ ] ςb Uab f a f b tr,[ ].d∫=

ςa
0

Stab f a[ ] f ςa0( )wab ςa ςa0,( ) ςa0.d∫=

wab f b ςb( ) d
td

----δ ς̃a ςa0 ςb0 t, ,( ) ςa–( ) ςb.d∫=

In fact, these formulas create a basis for the method
of calculating the characteristics of pair collisions by
using test particles. The essence of the method is to
mentally gather all the plasma ions of the same species
into one point (e.g., into the point with the coordinates
{0, 0, 0}. In this case, collisions of the entire ensemble
of electrons with plasma ions are reduced to successive
collisions of noninteracting (test) particles with one ion
located at the point {0, 0, 0}. In fact, space averaging
(over collisions with different ions) is substituted by
time averaging (over successive collisions with one
ion). In computer simulations, a sufficiently large num-
ber of test particles are used (107–108 for typical plasma
parameters). For each particle, random initial parame-
ters ς0 = {r0, p0} are chosen and its trajectory during a
collision event with an ion is calculated. Then, the
results of all collisions are summed up by analogy with
the Monte Carlo method. Thus, the above formulas give
grounds for the applicability of the test particle method
in an arbitrary scattering potential, including a time-
dependent one.

3. KERNEL OF THE COLLISIONAL OPERATOR

One can see that Eq. (13) has a canonically invariant
form, because it takes into account the shifts of parti-
cles in both momentum and coordinate spaces. Unfor-
tunately, in spite of a very simple form of Eq. (13), its
application presents great difficulties. In what follows,
in view of the smallness of collision scales, we will
ignore variations in the spatial coordinates of particles
(assuming ra0 = ra) and will focus on the dependence on
the momentum. Under the assumption that the particle
coordinates remain unchanged after scattering, colli-
sional operators (12) and (13) lose their canonic invari-
ance, because information on collisions is coarsened.
As a result, the collisional operator acquires a diffusion
character typical of a Boltzmann collisional operator.

Above, we considered the collisional operator for
arbitrarily colliding particles. Let us now consider the
important particular case of nonrelativistic electron–ion
collisions, because, in the general case, calculations are
very cumbersome. All the formulas for relativistic col-
lisions are derived in a similar way.2 

The Hamiltonian for two charged (test) nonrelativis-
tic particles is well-known,

2 At some points, we would have to make some remarks and
expand formulas to include particles with relativistic velocities.
The matter is that, in the relativistic case, the scattering potential
in the drift coordinates becomes dependent of the particle
momentum [10].

HΣ
pa

2

2ma

---------
pb

2

2mb

---------
eaeb

ra rb–
------------------ E t( ) eara ebrb+( ).⋅+ + +=
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However, for practical application, it is more conve-

nient to write it in the drift coordinates  =  –

rosc, [a, b] and  =  – posc, [a, b],

(14)

Here, posc, [a, b] = E(t)dt is the oscillatory momen-

tum and rosc, [a, b] = /m[a, b]dt is the oscillation

radius. Such a representation is convenient because the
scattering potential Uab is spatially localized. However,
this transformation results in an explicit dependence of
the potential Uab on time. Note that, when one particle
(electron) is much lighter than another (ion), we can
ignore the oscillations rosc, b(t) of the heavy particle in
the interaction potential in view of the smallness of the
parameter ma/mb.

Hamiltonian (14) depends only on the relative dis-
tances r = ra – rb. Moreover, we will assume that varia-
tions in the ion velocities during electron–ion collisions
are small and ignore the change in the coordinate part
of the distribution functions fa and fb due to variations
in the particle positions. As a result, kernel (13) can be
represented in the form

(15)

where nb = d3pb is the density of b-species particles

at the point ra. Further on, we omit δ(ra – ra0) in
Eq. (15), assuming that all the collisions are local.

Since Ha and Uab are periodic functions of time with
the period T = 2π/ω0 (e.g., for collisions in the field of
a plane EM wave), the collision function and, accord-
ingly, the collisional operator must be periodic func-
tions of time. Therefore, it is of interest to find the mean
value and the amplitudes of harmonics of the collision
function. Let us first find the mean of the collision ker-
nel,

(16)

Hereafter, the indices a by the momenta are omitted.

Let us switch to Cartesian coordinates ξ, ρ1, and ρ2
(with the origin at the ion position) oriented in such a
way that the ξ axis is directed along the initial momen-
tum p0. Since the Hamiltonian is a periodic function of
time with the period T, the relation between particle

r a b,[ ]
drift r a b,[ ]

lab

p a b,[ ]
drift p a b,[ ]

lab

HΣ
pa

2

2ma

---------
pb

2

2mb

--------- Uab,+ +=

Uab

eaeb

ra rosc a, t( ) rb– rosc b, t( )–+
-------------------------------------------------------------------.=

e a b,[ ]∫
posc a b,[ ],∫

wab = nb ra( )δ ra ra0–( ) d
td

----δ p̃a r pa0,( ) pa–( )d3r,∫
f b∫

wab p p0,( )〈 〉
nb

T
----- w p p0,( ) t.d

t

t T+

∫=

momenta at different instants at ξ  –∞ can be writ-
ten as

(17)

Here, the initial velocity v0 is related to the initial
momentum by v0 = p0/m; i.e., the expression for the
function w in Eq. (16) can be rewritten as

Taking into account that the initial value of the momen-
tum, (–∞), is identically equal to p0, we obtain

(18)

Thus, the physical meaning of the collision kernel aver-
aged over the oscillation period is as follows: it is equal
to the particle velocity distribution function in the prob-
lem of scattering of a monoenergetic beam.

Using formula (12), we obtain the expression for the
collisional operator,

(19)

This expression generalizes the Boltzmann collisional
operator to the case of scattering in a potential depend-
ing periodically on time. The physical meaning of for-
mulas (18) and (19) is as follows: variations in the dis-
tribution function during collisions are determined only
by the motion along particle trajectories. Accordingly,
the momentum distribution is calculated using varia-
tions in the momenta of particles along their trajecto-
ries.

p t; ξ( ) p t T ; ξ– ζ–( ), ζ v0 T .= =

wab p p0,( )〈 〉
nb

T
----- δ p̃ t T+( ) p–( )(

ζ

ζ

∫
n

n 1+( )

∫
n ∞–=

∞

∑=

– δ p̃ t( ) p–( ) )dξd2ρ–

=  
nb

T
----- δ p̃ t n 1+( )T+( ) p–( )(

n ∞–=

∞

∑∫
Ξ

Ξ ζ+

∫Ξ ∞–→
lim

– δ p̃ t nT+( ) p–( ) )dξd2ρ–

=  
nb

T
----- δ p̃ +∞( ) p–( ) δ p̃ ∞–( ) p–( )–( )dξd2ρ–.∫

Ξ

Ξ ζ+

∫Ξ ∞–→
lim

p̃

wab p p0,( )〈 〉
nb

T
----- δ p̃ +∞( ) p–( )(∫

Ξ

Ξ ζ+

∫Ξ ∞–→
lim=

– δ p0 p–( ) )dξd2ρ–.

Stab f[ ]〈 〉
nb

T
----- f p0( )∫∫

Ξ

Ξ ζ+

∫Ξ ∞–→
lim=

× δ p̃ +∞( ) p–( ) δ p0 p–( )–( )d3 p0dξd2ρ.
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The expression for the amplitudes of harmonics of
the collision kernel is derived in a similar way,

(20)

Let us note another important and more or less obvi-
ous property of Eqs. (18)–(20). Operator (19) allows
one to exactly calculate the evolution of the time-aver-
aged distribution function in quasi-monochromatic
fields, while expression (20) allows one to find the
spectrum of its harmonics. Indeed, on the left-hand side

of kinetic equation (8), only the term fdt = f(t + T) –

f(t) is left after averaging over the period, while on the
right-hand side, only collisional operator (19) remains.
This allows one to develop numerical methods (such as
the particles-in-cell method) that accurately and
quickly calculate plasma evolution with a sufficiently
large time step equal to the period of the EM field.

Collisional operator (12) and expressions (18) and
(20) for the function ω allow one to easily determine
the collision characteristics (moments). Thus, for Joule
plasma heating, we have

(21)

where the effective collision frequency

(22)

is introduced as the ratio of the mean power deposited
in the plasma electron component to the oscillation
energy of electrons. Using formula (18), it is easy to
obtain the expression for the collision frequency,

(23)

which shows that, in order to calculate energy varia-
tions during collisions, it is sufficient to find variations
in the energy of test particles along their characteristics
within a layer of width ζ over ξ from t = –∞ to ∞.

Using the variable ϕ = ζξ/(2π) = p0Tξ/2πm, for-
mula (23) can be rewritten in a more convenient form

(24)

wk
ab ikω0 δ p̃ τ( ) p–( )

∞–

+∞

∫∫
Ξ

Ξ ζ+

∫Ξ ∞–→
lim=

× ei2πτk /T τ ξd2ρ.dd

∂t∫

dTe

dt
--------- d

dt
----- p2

2m
------- f p( )d3 p∫≡

=  
mv osc

2

2
-------------- νei p0( ) f p( )d3 p0,∫

νei p0( ) 2m

posc
2

--------
ni

2m
------- p2 wei p p0,( )〈 〉d3 p,∫=

νei p0( )
ni

Tposc
2

------------ p+
2 p0

2–( ) ξd2ρ0,d

Ξ

Ξ ζ+

∫∫Ξ ∞–→
lim=

νei p0( ) niv 0σeff,=

σeff p0( )
p+

2 p0
2–

posc
2

----------------- ϕd2ρ.d

0

2π

∫∫Ξ ∞–→
lim=

The effective cross section σeff characterizes the effec-
tive area from which the scattered particles change their

energy by /2m. It is this quantity that was used in
[6] to calculate Joule plasma heating.

In a similar way, we can find the electron beam cur-
rent induced by collisions,

(25)

Substituting into Eq. (25) expression (20) for the
function wei, we obtain the Fourier-spectrum of the cur-
rent jei ,

(26)

The sum in this expression is a sum of δ functions,

(27)

The physical meaning of the δ functions in this expres-
sion is that the response of the system (in particular,
plasma) perturbed periodically at the frequency ω0
should be periodic with frequencies multiple to ω0.

Note that, for an isotropic distribution function
f(|p |),3 in view of the symmetry at ξ  –∞, we have

(28)

i.e., only odd harmonics of the frequency ω0 remain in
the sum.

In a similar way, we can find expressions for other
quantities, such as the transport cross section, charac-
terizing the area from which the particles scatter at an
angle on the order of π/2,

(29)

and the cross section for incoherent radiation, having
the dimensionality of area per energy,

(30)

3 Since the external field does not affect electron–electron colli-
sions and the electron–electron collision frequency νee is higher
than the electron–ion one, any anisotropy in the distribution func-
tion should get smeared over the time 1/νee; i.e., in analyzing
electron–ion collisions, the distribution function should be con-
sidered isotropic if νei � νee, which usually holds.

posc
2

d jei

dt
--------- e

d
dt
----- pδ p p0–( )d3 p∫≡

=  eni pwei p p0 t, ,( )d3 p.∫

jω jeie
iωt td∫=

=  eni pω

Ξ

Ξ δ+

∫∫Ξ ∞–→
lim iωn

2π
ω0
------⎝ ⎠

⎛ ⎞exp
n ∞–=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

dξd2ρ.⋅

jω e pω ξd2ρ δ ω nω0–( ).
n ∞–=

∞

∑d

Ξ

Ξ δ+

∫∫Ξ ∞–→
lim=

p t; ξ p0,( ) p t T /2; ξ–+ p0–,( )=

σtr p0( ) 1
p+p0

p+ p0
-----------–⎝ ⎠

⎛ ⎞ ϕd2ρ,d

0

2π

∫∫Ξ ∞–→
lim=

χinc p0( ) 4

3c3
-------- pω

2 ϕd2ρ.d

0

2π

∫∫Ξ ∞–→
lim=
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Note that, in the cross section for incoherent radiation
(in contrast to collision current (27)), the powers of
radiating sources are summed without allowance for
their possible correlation. This is a commonly adopted
method for evaluating the intensity of incoherent radia-
tion [11].

4. PERTURBATION METHOD

Unfortunately, it is rather difficult to find an exact
analytic solution to the equations of motion of a test
particle. However, in some cases, perturbation theory
can be developed for the case in which the actual trajec-
tory only slightly deviates from a straight line. Such
approximation is called “straight-line approach” [1, 2,
12–15].4 In fact, the approach consists in ignoring the
term

(31)

in Eq. (9) for the correlation function. As a result, the
equation transformed into

. (32)

Note that inequality (31) implies that particle trajecto-
ries remain straight during collisions. This is quite jus-
tified for high-energy electrons, v � vosc, which collide
with an ion only once and never return to it or for a
repulsive interaction potential, when each subsequent
collision is weaker than the previous one. However, for
slower electrons, v ≤ vosc, the situation is not so clear,
because the electron can return to the same ion after one
oscillation period and undergo a stronger collision. In
particular, in [6, 7, 16], it was shown that taking into
account the return of electrons to the ion drastically
changes the pattern of scattering.

Thus, let us concentrate on high-energy particles,
v � vosc. In this case, the solution can be easily written
if we take into account that Poisson’s brackets [Ha, pa]
are equal to zero (i.e., that the drift momentum is con-
stant along the particle trajectory),

Substituting this expression into Eq. (12), we obtain the
collisional operator expressed in quadratures,

(33)

Note that the square dependence on the Coulomb
potential (or on the ion charge) appears here only due to
condition (31), but is not a consequence (criterion) of
the pair collision approach. Moreover, a more rigorous
solution of Eq. (9) could yield any power-law depen-

4 In the Russian literature, the term “small-angle approximation” is
usually used, which, in my opinion, is not quite correct.

Uab gab,[ ] � Uab f a f b,[ ]

∂tgab Ha Hb+ gab,[ ]+ Uab f a f b,[ ]–=

gab f b Uab f a,[ ] tr td∫– f b

∂ f a

∂p
-------- ∂Uab

∂r
------------

r r→ vt+

t.d∫= =

St f a[ ] nb d3r Uab

∂ f a

∂p
-------- ∂Uab

∂r
------------

r r→ vt+

td∫, .∫=

dence on the ion charge, because the trajectories of test
particles depend on it transcendentally.

In the nonrelativistic case, when the interaction
potential does not depend on momenta (see Eq. (14)),
the integral in Eq. (33) can be taken analytically.
Indeed, it is easy to see that the collisional operator in
this case has the form

(34)

where the tensor Bij is described by the expression

(35)

Applying the Fourier transform to the Coulomb poten-

tial, 1/r = 4π , we obtain

(36)

In the laboratory frame, this corresponds to the colli-
sional operator derived by Silin [1],

(37)

Collisional operator (37) can be simplified to within
logarithmic accuracy. Note that, for large k (which con-
tribute significantly to the effective collision fre-
quency), the total particle velocity at the instant of scat-
tering in expression (37) can be ignored in view of the
large value of the parameter kv/ω ≡ kra � 1. As a result,
we obtain

(38)

where bv = e2Z/mv2 is the radius at which a particle is
scattered at an angle on the order of π/2 and V(t) = v +
vosc(t) is the total particle velocity at the instant of col-
lision. In the range of small k (krosc � kra ≤ 1), we can
ignore the term krosc(t) in expression (36). This approx-
imation implies that the effect of the external field on
far collisions is negligible. As a result, for the tensor Bij,
we have

(39)

Stab f a[ ] ∂
∂ p j

--------Bij
∂f p( )

∂ pi

--------------,=

Bij
∂Uab

∂r j

------------
r r vt+→

t
∂Uab

∂ri

------------d3r.d∫∫=

eikr

k2
-------- d3k

2π( )3
-------------∫

Bij t( ) 2Z2e4

π
-------------- d3k

k4
--------kik je

ikrosc t( )–
e

ikvt ' ikrosc t '( )–
t '.d∫∫=

Bij t( ) 2Z2e4

π
-------------- d3k td

k4
-------------kik je

ik v vosc t( )+( )t
.∫∫=

Bij t( ) 2Z2e4 d3k

k4
--------kik jδ k v vosc+( )( )∫=

=  2πZ2e4δijV
2 ViV j–

V3
-----------------------------

ra

bv
-----,ln

Bij 2Z2e4 d3k

k4
--------kik jδ kv( )∫=

=  2πZ2e4δijv
2

v iv j–

v
3

-----------------------------
rD

ra

-----.ln
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Finally, for the collisional operator in the domain of
applicability of the straight-line approach, we obtain

(40)

The first summand is responsible, first of all, for the
change in the plasma energy during the interaction with
the external EM field. The second summand does not
lead to the change in the plasma energy and, as a rule,
is not taken into account. It is responsible only for the
transport characteristics of scattering (by analogy with
the Landau collisional operator for electron–electron
collisions).

Expression (40) for the tensor Bij has a fairly general
form. In some specific cases, it can be simplified and
reduced to the well-known expressions or allows one to
draw a conclusion regarding the particle dynamics in
these regimes. Let us consider them.

First, when the external field is switched off
(vosc  0), the total velocity becomes equal to the
particle drift velocity V(t)  v. Consequently, the

tensor Bij transforms into the Landau tensor  (see
Eq. (39)), which enters into the Landau collisional
operator,

(41)

Note that the conventional form of the collisional oper-
ator in the presence of an EM field [1] does not allow
such a transition.

For a nontransparent plasma, ω < ωp ⇔ ra > rD, the
tensor Bij has the form of the Landau tensor, in which
the drift velocity is replaced with the total particle
velocity,

(42)

This tensor is traditionally used to determine the per-
mittivity of a nontransparent plasma [3].

In the opposite limiting case, ra < bv, the tensor Bij is
identically equal to Landau tensor (39) in the absence
of a field,

(43)

Note that the same form of the tensor Bij can also be
obtained from Eq. (36) when the oscillation radius is

Bij 2πZ2e4δijV
2 ViV j–

V3
-----------------------------

ra

bv
-----ln=

+ 2πZ2e4δijv
2

v iv j–

v
3

-----------------------------
rD

ra

-----.ln

Bij
0

Bij 2πZ2e4δijv
2

v iv j–

v
3

-----------------------------
ra

bv
-----ln

rD

ra

-----ln+

=  2πZ2e4δijv
2

v iv j–

v
3

-----------------------------
rD

bv
-----.ln

Bij 2πZ2e4δijV
2 ViV j–

V3
-----------------------------

rD

bv
-----.ln=

Bij 2πZ2e
4δijv

2
v iv j–

v
3

-----------------------------
rD

bv
-----.ln=

smaller than the Rutherford radius, rosc � bv, irrespec-
tive of the ratio between the drift and oscillation veloc-
ities. In both cases (ra, rosc � bv), only the part respon-
sible for the change in the particle momentum direction
(rather than for variations in the particle energy)
remains in the tensor Bij. In particular, this means that,
to within a logarithmic factor, the transport cross sec-
tion remains the Rutherford one in these ranges. That
the energy in expression (43) remains unchanged
means that it is necessary to take into account large-
angle scattering [4, 5] in order to determine the effec-
tive frequency responsible for the change in the plasma
energy in these ranges. However, it does not follow
from this that there is no energy exchange in these
ranges, as was stated, e.g., in [13].

Finally, in a transparent plasma, for

(44)

the tensor Bij contains both summands. The summand
responsible for energy variations (the first term in
Eq. (40)) has the form of a tensor proposed for the first
time by Silin [1] and traditionally used for such plas-
mas.

A further generalization of Silin’s collisional opera-
tor (40) to the range of low velocities should be per-
formed with allowance for the curvature of the charac-
teristics of the equation for the correlation function;
i.e., it should go beyond the applicability range of the
straight-line approach.

5. CONCLUSIONS

In the present paper, we have applied the apparatus
of Hamiltonian formalism to generalize the method for
deriving the collisional operator to the case of an arbi-
trary scattering potential, including a time-dependent
one. The latter case is of particular importance, because
it can be reduced to the problem of particle scattering
by the Coulomb potential in the presence of an arbi-
trarily large EM pump wave. In fact, passing from lab-
oratory coordinates to the drift ones, we can exclude the
effect of the external field on the free particle motion.
In this case, the scattering potential becomes time-
dependent.

Formulas (18)–(20) for the collisional operator have
a universal character. They confirm the applicability of
the test particle method underlying numerical simula-
tions of collisional processes in plasma in the presence
of an alternating EM field. In particular, the main char-
acteristics of collisions, such as effective collision fre-
quency (23), collision current (27), etc., have been cal-
culated by integrating the corresponding characteristics
of test particles over their initial conditions.

As an example, the collisional operator in the Lan-
dau form (in Silin’s form for alternating EM fields) has
been derived in the straight-line approach. Assuming
that an electron collides with an ion only once, which is
quite justified for the high-energy particles (vT > vosc),

v  � v osc, bv  � ra � rD



PLASMA PHYSICS REPORTS      Vol. 34      No. 12      2008

OPERATOR OF PAIR ELECTRON–ION COLLISIONS 1053

one can easily find the trajectory of test particles and
take the resulting integrals. The applicability conditions
for such an approach have been determined.

In the case of multiple electron–ion collisions (for
vT � vosc), it is necessary to use the complete (unre-
duced) expression for the collisional operator (see
Eqs. (18)–(20)). Since the corresponding calculations
are rather cumbersome, this will be done in a separate
paper.
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