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Noiseless Transfer of Nonclassical Light through Bistable Systems
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We consider dispersive optical bistability with nonclassical driving field from a sub-Poissonian
laser. The bistable system consists of an optical cavity filled with a resonant atomic medium. We
calculate analytically the photocurrent noise spectrum at the output of the bistable system and find
complete noise reduction close to the upper turning point of the bistability curve. This proves a
possibility of using nonclassical light in optical bistability without destructing its quantum statistics.
[S0031-9007(97)03565-5]

PACS numbers: 42.50.Ct, 42.50.Lc, 42.65.Pc

In recent years the phenomenon of optical bistabilityour case a single-mode sub-Poissonian laser. The second
has been in the scope of the quantum optics communitgdriven) cavity 1(b) contains a resonant optical medium.
primarily as a tool for generating the squeezed states df is known that under certain conditions such a system
light[1]. Nevertheless, the traditional area for applicationsinteracting with an external field can have more than
of optical bistability is in optical logic, optical computing, one steady state, manifesting optical bistability. The light
etc. At present, there are not many papers investigatingn the output of the second cavity is photodetected.
such phenomena from the point of view of quantumThere are two possible photodetection schemes shown in
noise which puts fundamental limits to the performanceFig. 1: (1) When only transmitted light is detected, and
of devices based on optical bistability. (2) when a superposition of reflected and transmitted light

In Ref. [2] it was shown that dispersive optical bista-is detected. For simplicity we consider the first scheme.
bility in a regime of an optical transistor can be used for The main difference (and complication) of our problem
noiseless amplification of a small input signal in coherenfrom the standard description of the optical bistability
state. In this Letter we go one step further and consideis that we do not assume the driving field to be in
driving of an optical bistable system with nonclassical,coherent state. Thus, we cannot describe it as a complex
namely, sub-Poissonian, light. We take the sub-Poissoniaamplitude in the interaction Hamiltonian of the atoms and
laser as an external driving source mostly because itthe external field. Moreover, it is well known that such
theory is well developed and the properties are well knowrdescription is not applicable for the nonclassical driving
[3]. When the light from such a laser is photodetectedfield. Therefore, we choose to write the master equation
the photocurrent noise at low frequencies can be reducedr the density matrixo(z) of the two cavity modes: the
below the shot-noise level and in an ideal case evemodea of the source and the modeof the driven cavity,
completely. The natural question arises: what happenexcited by the external signal. This master equation has a
with quantum noise of such nonclassical input signal in thestructure,
bistable optical system? In other words, can nonclassical p=(La+ Ly + La)p, 1)

light be used in optical logic, optical computing, and other i )
applications of optical bistability without destruction of Where the generators, and L, describe the independent

its regular quantum statistics? Such a possibility woulcl€velopment of the field modes inside the (a) and (b)
improve the signal-to-noise ratio of a prototype device
beyond the standard quantum limit.

Below we show that driving a bistable optical system
with sub-Poissonian laser light we can obtain the same
degree of the shot-noise reduction at the output of the
system as at its input very close to the upper turning point
of the bistability curve. Since this point is very sensitive
to a small amplitude modulation of the input signal, this
gives a possibility of noiseless control (amplification, for
example) of a small sub-Poissonian input signal.

We consider the scheme of quantum driving of a
bistable optical system shown in Fig. 1. Two running- (a) (b)

wave optical cavities are coupled in a unidirectionalF|G. 1. The scheme of driving bistable optical resonator (b)
cascade. The first cavity 1(a) is a driving source, inby a sub-Poissonian laser (a) with unidirectional coupling.
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resonators, and the generatbp, gives the coupling in the first (second) cavity, and, < n, is a small
between them. For the unidirectional cascaded schenftuctuation. After such a linearization the generaioy
shown in Fig. 1 this coupling generator was obtained byeads
Kolobov and Sokolov, Carmichael, and Gardiner [4], and 5 5
reads L, = ra{— €0 + naéq —2} +D,—. (6)
_ t t €, de; Ao,
Lupp = «k([pa’,b] + [b7,ap]). 2 _ _ _ _
Here a.at (b, b1) are the annihilation and creation op- Here I', is the width of the amplitude fluctuation®,

erators in the first (second) cavity obeying the standar&sa';g?ng;?se diffusion coefficient, arg} is a statistical
boson commutation relationg, a’] = [b,bt] = 1; kis P :

2 82

the coupling constant equal to ro Kol D _ K 1 1
Kk = (karl)?, (3) T+ T 4n,’ ba = I 27
where k, is the decay rate of the first cavity, = (7

clral?1; !, 7, being the amplitude transmission coefficientwhere! is the dimensionless laser intensity; the statistical
of the outcoupling mirror, and, the perimeter of the parameteg, determines the photon fluctuations inside the
cavity; analogously,x, and x, are the decay rates cavity as follows:

associated with transmission of the input and the output ’

mirrors of the second cavity; the total decay rate of the ((Ang)™) = (1 + &a)na . (8)

second cavity isc, = &, + K. _ We observe from (7) that, is bounded from below
Itis Wprth noting that the generatdt,, is not Sym-  as¢, = —1/2. For —1/2 < &, < 0 the photon statis-
metrlc'wnh respect to the operatonsandlg. . Physmally tics inside the cavity is sub-Poissonian, fgf = 0—
speaking, it describes the process of annihilation of a phopgissonian, and fog, = 0—super-Poissonian. When
ton in the source cavity and creation of a photon in thepe jight is photodetected at the output of the laser reso-

driven cavity (termb'a), but not the inverse process (N0 nator, the photocurrent noise spectrgéi)? has the fol-
termabt). Such an asymmetry would contradict the reci-lowing form:

procity principle for a closed system. However, we are
dealing with the open system constituted by two damped (5i)2 =1 + 2 Kal'a ©)
optical cavities coupled via nonideal mirrors. The asym- @ “T2 + @2’

metry in the generatoL,, is due to the unidirectional Here we have normalized the photocurrent noise spectrum

coupling of these cavities. to the shot-noise level and put the quantum efficiency of
We choose the Glaubé representation for the density ind p q Y
. i i the photodetector to unity. From (9) we observe that in
matrix p. This choice needs a word of comment. When - :
S . . the case of, = —1/2 and far above threshold operation,
the state of the field inside the first or the second cavity ) .
. L T > 1 (whenT, = «,), there is a complete reduction
has no classical analog (like in the case of a sub- . R X
. . . - . .. ._—of the shot noise at zero frequenay = 0 in the noise
Poissonian laser in the first cavity), not all the diffusion
- . . o . spectrum.
coefficients in the equation for the distribution function :
_ . ; ) We assume that the second cavity containsvo-level
Pla, B:1) are positive. Therefore, strictly speaking, we atoms with atomic transition frequen longitudinal
have to keep thea and B derivatives of P of all quenayo, ‘ong

orders. However, for evaluation of the photocurrent noisedecay rateyy, and transverse decay rajg. The lower

: . atomic level is considered to be a ground state to ensure
spectrum we need the correlation functionsaotind b . ]
: .~ . _the conservation of the number of atoms in the scheme.
modes not higher than second order. The derivative

of the order higher than two do not contribute to theseﬁve also assume that the decay of atomic polarization

. : is due only to spontaneous emission, so that= 2y, .
correlation functions. 'I_'hus, for our purpose we can USThe case of an additional nonradiative decay will be
the Fokker-Plank equation,

. considered elsewhere.
Pla,B;t) = (Ly + Ly + Lop)P(a,B51),  (4) We remind one as well of a set of parameters appear-

for the distribution functionP(a, B;¢). For calculations Ng in the theory of the optical bistability [1]. These
of the correlation functions and fluctuation spectra weare 6 = (wy — wa)/(x;/2)—the dimensionless detuning

shall write a set of equivalent Langevin equations. of two resonators, where,(w)) is the frequency of the
We introduce the polar coordinates on the complexsource (driven) cavityA = (wo — @;)/y —the dimen-
planesa andB as s_|onless atomic detuningiy =7 y||/(4g2)—_the satura-
_n , Y. _ tion photon number, wherg is the atom-field coupling

a = ug "exfie.l, B =uy exdies],  (5)  constantr = ¢2N/(k,y 1 )—the cooperativity parameter.

and linearize the radial componentsigs=n, + €,,q = When the rates of atomic decay are much larger
a,b, wheren,(n,) gives the mean value of the radial than that of the field,y;, y, > «;, the atoms can be
componenty, (up), equal to the mean number of photonseliminated adiabatically. In this case the generafgr
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was obtained by Drummond and Walls in [5]. Adding to fluctuation,
it the coupling generataf,, we arrive at \/T °C
2 “cosp =1+ ———,
Lap+ Ly = == (AB = xa) + ~= B*Dpgg Iy L+l + A7
B ap?
5 4 12 sing 2CA (15)
2 —Sng =0 — —————— .
+ @ Y |,8| Dgp+ + C.C., (10) I 1+ 1, + A?

with the following drift and diffusion coefficients, Dgg,
andDBB*,

Kp . 1 —iA >
A 2(1 i0 +2C ) A
B C (1 —iA?+X?%)2
Dos == s TG x v arp 0 12
_ C X2+ X/2)
Pop = e T+ X + A2 (13)

Here we have used a shorthaxd= |B|?/no.
Following the literature on optical bistability, we intro-
duce two dimensionless intensities,
4 2
I, = Lz na
Kp
related to the source and the driven cavity, respectively.

np

b

no

Iy (14)

b
no

The stationary semiclassical solution of Eq. (4) is found

from AB — ka = 0, with A given by (11). The latter
gives two equations for the dimensionless intendity
and stationary phase differengedefined asp, — ¢, =

@ + ¢, where@ is the stationary mean value, is the |

Below we consider the limit of dispersive bistability,
when A > 1 [6]. The general case will be investigated
elsewhere. For dispersive bistability it is convenient to
employ the following scaled variables,

e
N

2C
1) 0 + A
Without losing generality we can assume that- 0 and
considerx andy as scaled intensities of the driven and
the source cavities. From (15) we obtain the following

relation between these scaled intensities [2],
y =x(1 + 2%, a7

The steady-state curvey) is bistable for6 = /3. Itis
shown in Fig. 2(a) for different values éf. The turning
pointsx- are found fromdy/dx = 0 as

1,, (16)

z=6—x.

Xs = %[25 + /62 — 3]. (18)

The system (15) gives also the stationary mean value of
the phasep. Linearizing the Fokker-Plank equation (4)
around the stationary solution (17) a@dwe obtain

Kp 0O n Kp 0
P {Tba—Q,(eb — n—iea + 2n;,zgo> - %@(Qp + 227'}76,1 + z(2x — Z)6b>
2 2 2
T, L e+ Tangt, 2 v p, Ly Ko O }P (19)
deq, de2 a2 2 7 dpdep
The rest is the standard technique used for calcullla(ai)z -1+ (kp/2)*

tion of the fluctuation spectra (see, for example, [7]). ¢ ki — iw?k- — iw|?
We write the Langevin equations for the fluctuations Tura \ (1 + 222 + 02/(ky/2)?
€.(1), €,(t), @u(r), and ¢, (2), perform their Fourier trans- X [2§a<r2 n w2> [+ 22
form, and obtain a linear algebraic system of equa- a s .
tions for the Fourier amplitudes,(w), etc. Then we ¥ dxz + 8(&) < } (21)
use the Wiener-Khinchine theorem which says that the ' kp) 1+ 221
noise power spectrum o, (¢), for example, is equal to with
lep(w)|?>. Finally, we employ the relation between the
photocurrent noise spectrufi)? at the output of the K+ = %[1 +4/z(2x — 2)]. (22)

second cavity antk, (w)|?,
i
(802 =1+ “2ley(w). (20)
np

Surprisingly, the final result for the noise spectriéi)?
looks relatively simple. We give it for the case of a
symmetrich cavity, k, = «j,, when there is no reflected
signal in Fig. 1. This is an optimal situation for noise

Choosingé, = —1/2 andI', = k,, which gives the
complete noise reduction a@ = 0 for the input signal
[see (9)], we write the photocurrent noise spectrum at zero
frequency for the output signal,

2 x2 + 4k2/K}

5.27 _ Z
(1) 1 + 722 (1 + z%2 — 2xz)?

1o . e

reduction in our observation scheme. The photocurrerferom (23) it is easy to see thé&i)>_, = 0 for z = 0,

noise spectrum reads

i.e., x = . This point lies on the upper branch of the
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FIG. 2.

w

dots: coherent

solid: sub-Poissonian

(a) Bistability curve: intracavity scaled intensiyws
input intensityy for different parameters$, § = 1.0,2.0,3.0;
(b) photocurrent noise spectrum at zero frequen@)>—o,

spectrum at zero frequendyi)> _o, is shown in Fig. 2(b)
as a function of the scaled input intensjty

For comparison in Fig. 2(b) we have drawn also the
noise spectrum(8i)>_, for a coherent input signal. In
this case there is about 50% of shot-noise reduction at
the output of the second cavity at the same point of the
bistability curve. This ability of a bistable optical cavity
to produce squeezing on its output is well known. 1t is,
however, not what we are looking for. In our case we
already have complete noise reduction in the input signal
and want to process this signaithout adding noiseThis
would allow us to improve the signal-to-noise ratio of
a prototype device based on the phenomenon of optical
bistability beyond the standard quantum limit.
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