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the substrate with regions of the enzyme relatively 
distant from the catalytic site, with the virtually si- 
multaneous formation or scission of several non- 
covalent bonds (multiple cooperative interaction). 
Evidence for this conclusion is available not only for 
pepsin and pepsin-like enzymes, but also for other 
proteinases, notably papain,38 elastase,43 and chy- 
m0trypsin.4~ Moreover, enzymes acting on oligosac- 
charides (lysozyme,45 a-amylase46) are known to 
have extended active sites. I t  is noteworthy that all 
these enzymes catalyze both hydrolytic reactions and 
transpeptidation or transglycosylation reactions4? 
and it appears likely that secondary enzyme-sub- 
strate interactions may play a significant role in the 
catalytic mechanisms that are involved. In particu- 
lar, transfer reactions such as AB + HX s AX + 
BH require an ordered release of the A and B por- 
tions of AB, and significant differences in the energy 
of the interactions of A and B portions in a series of 
substrates for a given enzyme may have considerable 
effect on the kinetics of that enzyme. In the special 
case of pepsin, transpeptidation experiments have 
suggested that substrates such as Ac-Phe-Tyr are 
cleaved with the apparent prior release of the Ac-Phe 
portion and that the kinetic equivalent of an "imino- 
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enzyme" (E-Tyr) can react with a ,suit,able carboxyl- 
ic acid to form RCO-Tyr. Several hypotheses have 
been ~ f f e r e d ~ , ~  to rationalize the transformation of 
the presumed tetrahedral intermediate I to  an 
imino-enzyme, with the release of the acyl portion of 
the substrate. The status of these hypotheses is un- 
certain, however, since neither Ac-Phe-Tyr-NM2 nor 
Ac-Phe-Phe-OEt gives transpeptidation products, 
raising doubt about the occurrence of a covalently 
bound E-Tyr intermediate.48 

Clearly, the further study of the mechanism of  
pepsin action requires closer study with substrates of 
the type A-Phe-Phe-OP4P and Phe-Gly-His- 
Phe(NO2)-Phe-B, where the A and B groups contain 
amino acid units that  enhance the catalytic efficien- 
cy of the enzyme. Moreover, an examination of  the 
action of pepsin on comparable ester substrates, 
where the sensitive Phe-?he unit has been replaced 
by Phe-Pla, is needed. It will be of interest t o  corn- 
pare the results with those for carboxypeptidase A, 
whose mechanism appears to resemble that of pepsin 
in several respects.49 
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Much progress has been made recently in the 
theory of liquids.1 The principal physical concept 
associated with this progress originated with the 
work of van der Waals long ago. It is the idea that, 
for a dense fluid, the repulsive forces (which are 
nearly hard-core interactions) dominate the liquid 
structure. This means that  the shape of molecules 
determines the intermolecular correlations. Attrac- 
tive forces, dipole-dipole interactions, and other 
slowly varying forces play a minor role. As a result, if 
a dense liquid is composed of spherical (or nearly 
spherical) molecules, the intermolecular structure 
should be very similar to that  of a fluid made up of 
hard spheres. 
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Most of the modern theories of liquids have fo- 
cussed attention on this concept, and calculations 
have shown that the idea is quantitatively accurate 
for many 1iquids.l-9 Further, it has been shown by 
Longuet-Higgins and VCTidom7 and by others1! that 
liquids freeze when the density becomes high enough 
that  steric effects (not attractive forces) lock the 
molecules into a structure for which particle diffu 

(1) For a recent review, see J. A. Barker and D. Henderson, Annu K ~ L  
Phys. Chem., 23,439 (1972). 

(2) D. Chandler and J. D. Weeks, Phys. Reu. Lett., 25, 149 (1970). 
( 3 )  J. D. Weeks, D. Chandler, and H .  C.  Andersen, J.  Chem. Phys. ,  54, 

5237 (1971); 55,5421 (1971). 

(1971). 
(4) H .  C.  Andersen, J. D. Weeks, and D. Chandler, Phys. Rev. A, 1, I597 

(5) L. Veriet and J.-J. Weis, Phys. Reu. A, 5,939 (1972). 
(6) J. A. Barker andD.  Henderson, Phys. Rec. A, 4,806 (1971). 
(7) H. C.  Longuet-Higgins and B. Widom, Phys., 8, 549 (1964); B. 

(8) J. A. Barker and D. Henderson, Accor~nts Chem. Res., 4, 303 (1971); 

(9) L. Verlet and J.J. Weis, Mol. Phys., 24, 1013 (1972). 
(10) J. P. Hansen and L. Verlet, Phys. Rev., 184, 151 (1969); D. E-Iencler- 

son and J. A.  Barker, Mol. Phys., 14, 587 (1968); .J.-d. Weis, preprint; R. K .  

Widom, Science, 157,375 (1967). 

J. A. Barker andD.  Henderson, J.  Chem. Phys., 47,4714 (1967). 

Crawford. J Chem Phys , 60,2169 (1974) 



Vol. 7,1974 Equilibrium Structure and Molecular Motion in Liquids 

sion is nearly impossible. For systems composed of 
spherical molecules, the liquid-solid phase transition 
is intimately related to the fluid-solid transition ob- 
served by computer simulations on hard-sphere sys- 
tems.11 Thus, a child playing with a box of marbles 
has witnessed the microscopic structure of dense liq- 
uids and the mechanism for freezing. 

The only important exceptions to this idea seem to 
be liquid water, a few highly polar liquids (in partic- 
ular, HC1 and HF), ionic solutions, and fused salts. 
The theory discussed in this article cannot, in any 
straightforward way, be used to describe these ex- 
ceptions. 

A qualitative explanation for why the repulsive in- 
termolecular forces dominate the structure of most 
dense fluids follows from a description of the envi- 
ronment of a particle in a liquid. For simplicity, con- 
sider an atomic liquid. The phase diagram is shown 
in Figure 1. High density corresponds to thermody- 
namic states a t  which p - l 1 3  5 ro, where p is the av- 
erage number of particles per unit volume, and ro is 
the location of the minimum in the intermolecular 
pair potential. A glance a t  the phase diagram shows 
that “high density” characterizes most of the liquid 
phase outside of the critical region. Note that  p - l / 3  

provides an estimate of the average separation be- 
tween nearest neighbors. Thus, in a dense liquid, 
nearest neighbors are crushed extremely close to one 
another. Any displacement of a particle will cause a 
large change in the energy associated with the inter- 
particle repulsive forces. The change in energy asso- 
ciated with the attractive forces will be relatively 
small because these interactions are not quickly 
varying functions of the interparticle separation. As 
a result, the repulsions dominate the high-density 
structure. (Notice that, if the attractions were quick- 
ly varying, they would play an  important role in the 
liquid structure. This is the reason for each of the 
exceptions listed above. For example, the hydrogen 
bond interactions in water are as  quickly varying as  
most of the repulsive forces in that  liquid.12) 

To demonstrate quantitatively the dominance of 
repulsive forces on the liquid structure, we first con- 
sider a specific system. It is shown that  the pair cor- 
relation function for the Lennard-Jones fluid (a 
model for atomic liquids) is indeed determined 
mainly by the repulsive portions of the intermolecu- 
lar interactions. The relevance of this work to under- 
standing the structure of molecular fluids is dis- 
cussed also. Then we consider molecular motion in 
liquids. In particular, the diffusion constant and the 
velocity autocorrelation function for atomic liquids 
are investigated. It is seen, once again, that  steric 
effects dominate the nature of particle motion in 
dense fluids. Finally, rotational motion in molecular 
liquids is discussed. 
Static Structure  of Liquids 

To make the discussion of the liquid structure 
quantitative, we consider in this section a simple but 
precise and revealing model system: the Lennard- 
Jones liquid. This is the classical fluid in which the 
interparticle potentials are the 6-12 pair interac- 

(11) W. G. Hoover and F. H Ree, J. Chem Phys , 49, 3609 (1968), and 

(12) R. A. Horne, E d ,  “Water and Aqueous Solutions,” Wiley-Inter- 
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Figure 1. Phase diagram (left) and intermolecular pair potential 
(right) for the Lennard-Jones fluid. For particular choices of the 
length and energy parameters, u and c ,  the Lennard-Jones system 
is a qualitatively accurate model for several liquids (see ref 9). 
Notice that the density a t  the critical point (cp) is roughly one- 
third the density a t  the triple point (tp) and the critical tempera- 
ture is about twice the triple temperature. This approximate 
scaling holds for nearly all nonhydrogen-bonding liquids that are 
composed of molecules that are relatively small (having 510 
atoms). Thus, the phase diagram shown here is a qualitative rep- 
resentation of the phase diagram for many one-component fluids. 
The “high density” region comprises thermodynamic states for 
which the particle density, p ,  is greater than about twice the crit- 
ical density, p c .  
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Figure 2. The unique separation of the Lennard-Jones potential, 
w(r), into a part uo(r) containing all the repulsive interactions in 
w(r)  (and no attractions) and a part u(r) containing all the at-  
tractive interactions in w(r) (and no repulsions). See ref 2 and 3. 

tions: w ( r )  = 4t[(u/r)12 - ( ~ / r ) ~ ] .  Here, r denotes the 
separation between a pair of particles, and E and 0 
are constants with units of energy and length, re- 
spectively. With the appropriate choices of t and u, 
the Lennard-Jones liquid is a qualitative model for 
liquid argon. However, the usefulness of the model 
for our purposes rests on the fact that  the properties 
of the system are known from the results of comput- 
er s i m ~ l a t i o n s . l ~ - ~ ~  These “exact” machine calcula- 
tions provide us with “experimental” data on a sys- 
tem for which the intermolecular interaction is 
unambiguously known. The interaction, w ( r ) ,  con- 
tains both repulsive and attractive forces. Let ug(r) 
and u(r) denote the repulsive and attractive por- 
tions, respectively. The decomposition of w(r) into 
these two parts is shown in Figure 2. 

(13) Thermodynamic properties obtained by molecular dynamics com- 
putations on the Lennard-Jones fluid are tabulated by L. Verlet, Phys. 
Reu., 159, 98 (1967). Monte Carlo calculations are reported by D. Levesque 
and L. Verlet, Phys. Rev., 182, 307 (1969), and by J.-P. Hansen and L. 
Verlet.9 

(14) Molecular dynamics calculations on the equilibrium structure of 
the Lennard-Jones fluid are reported by L. Verlet, Phys. Rev., 165, 201 
(1968). 

(15) Molecular dynamics studies of the dynamic properties of the Len- 
nard-Jones liquid are reported by A. Rahman, Phys. Rev., 136, A405 
(1964); D. Levesque and L. Verlet, Phys. Reu. A, 2; 2514 (1970); D. Leves- 
que, L. Verlet, and J. Kurkijarvi, Phys. Reu. A, 7,1690 (1973). 
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Figure 3. The radial distribution function for the Lennard-Jones 
liquid, g ( r ) ,  as determined from computer simulations14 com- 
pared with the radial distribution functions due to the repulsive 
forces, go(r ) ,  and the associated hard-sphere interactions, gd(r). 
The thermodynamic state is k B T / e  = 0.88 and pa3 = 0.85. 

The structure of atomic liquids, and of the Len- 
nard-Jones fluid in particular, is described quantita- 
tively by the radial distribution function, g ( r ) .  This 
is defined so that 4rpr2g(r) is the probability distribu- 
tion for finding a particle a distance r from the ori- 
gin, given that  another particle is a t  the origin. 
Computer simulations have been used to determine 
g ( r )  for the Lennard-Jones 1 i q ~ i d . l ~  

To see how the repulsive interaction, u d r ) ,  con- 
tributes to g ( r ) ,  one considers the hypothetical fluid 
for which the total pair interaction is uo(r) ,  so that 
there are no attractive intermolecular forces. The ra- 
dial distribution function for the system, go(r),  can 
be calculated and compared with the experimental 
Lennard-Jones g ( r ) .  Calculations of go(r) have been 
done both by an analytic t h e ~ r y z - ~  and by computer 
simulations on the repulsive force s y ~ t e m . ~ ? ~  The 
comparison between g(r )  and go(r) is shown in Fig- 
ure 3 for a thermodynamic state close to the triple 
point. The temperature is very low. Thus, the re- 
markably close agreement between g(r )  and g&) is 
not a trivial consequence of having u ( r )  small com- 
pared to ~ B T  ( k ~  stands for the Boltzmann constant 
and T is the temperature), Rather, the agreement is 
a manifestation of the high density. Particles are so 
close together that steric effects form the interparti- 
cle correlations. 

Since the repulsive pair interaction, uo(r) ,  is very 
harsh, it seems reasonable that the properties of the 
repulsive force system should be closely related to 
those of an appropriately chosen hard-sphere system. 
Indeed, it has been shown4 that there is an optimum 
hard-sphere diameter d which defines the hard-sphere 
fluid that is most closely associated with the repulsive 
force system. The radial distribution function for this 
associated hard-sphere system, gd(r ) ,  is also shown in 
Figure 3. Notice that, except for a small range of r 
values, gd(r) and go(r) are identical. The correspon- 
dence between the hard-sphere fluid and fluids with 
realistic repulsive forces4 is exploited in the analytic 
theory for g ~ ( r ) . ~ , ~  For each thermodynamic state, 
the optimum d value is somewhat different. The 
qualitative behavior of the optimum d can be sum- 

marized as follows: (a) d < ro; (b) the diameter de- 
creases with increasing temperature (this is easily 
understood since the average kinetic energy increases 
with temperature, and as a result the average classi- 
cal turning point for uo(r) decreases with increasing 
temperature); and (c) the diameter decreases with 
increasing density (though this effect is much small- 
er than the temperature dependence of d ). 

The results presented above demonstrate that a t  
high densities the structure of the Lennard-Jones 
liquid is indeed dominated by the repulsive portion 
of the intermolecular potential. Further, the struc- 
ture is essentially the same as that in the optimum 
hard-sphere fluid. There is an obvious logical conse- 
quence of these facts when considering more compli- 
cated systems: the structure of a molecular liquid is 
determined by the shape of the molecules which 
comprise the fluid. Thus, for example, the arrange- 
ment of molecules in a liquid crystal composed of 
long molecules is correctly understood in terms of 
the packing of long hard particles. It is not under- 
stood by imagining that the structure is formed by 
dipole-dipole interactions. 

The ideas emphasized above concerning the equi- 
librium structure of liquids can also be used to study 
thermodynamic properties. This approach leads to a 
first-order “thermodynamic perturbation theory” l6 

for the Helmholtz free energy that is very a ~ c u r a t e . ~  
The theoretically inclined reader may be happy to 
know that a rigorous many-body theory, called the 
optimized cluster expansions, has been developed to 
describe the role of attractive forces in liquids.17 The 
theory provides a quantitative explanation for how 
the repulsive forces screen the effects of attractions 
at  high densities. Further, it gives an accurate theory 
for fluids a t  low and moderate densities.1s-20 Finally, 
the ideas discussed above have been used to make 
explicit calculations on realistic models for fluids 
composed of nonspherical molecules.21 

Molecular Motion in Simple Liquids, 
We have shown in the previous section that the 

structures of liquids composed of nearly spherical 
molecules is similar to that of a hard-sphere fluid. As 
a result, i t  is reasonable to suppose that the dynam- 
ics-molecular motion-occurring in many liquids is 
similar to  that  in a hard-sphere fluid. This idea was 
probably first exploited by Enskog.22 In more mod- 
ern times i t  has guided the work of many others.23 In 
this and the following section we review a theory of 
molecular motion in liquids which is based on the 
same idea.24-26 

(16) L Landau and E M Lifshitz, “Statistical Physlcs,’ Pergamon 

(17) H C AndersenandD Chandler ,J  Chem PhTs 57,1918 (1972) 
(18) H C Andersen, D Chandler, and J D Weeks, J Chem Phys 57, 

Press, London, 1988, Section 32 

2626 (1972). 
(19) S .  H. Sung and D. Chandler, Phys. Keu. A,  9, 1688 (1974). 
(20) S. H. Sung, D. Chandler, and B. .J. Alder, J .  Chem. Phg’s., in press. 
(21) S. H. Sung and D. Chandler, J ,  Chem. Phys., 56, 4989 (1972); 1,. 

Lowden and D. Chandler, J.  Chem. Phys., 59,6587 (1973). 
(22) See Chapter 16 of S. Chapman and T. G. Cowling, “Mathematical 

Theory of Kon-Uniform Gases,” 3rd ed, Cambridge University Press, Cam- 
bridge“, England, 1970. 

(23) The list of publications along these lines is huge. Some representa- 
tive references are: S. A. Rice and P .  Gray, “Statistical Mechanics of Sim- 
ple Liquids,” Interscience, New York, N.  Y., 1965: P .  Protopapas, H. C. 
Andersen, and N. A. D. Parlee, J, Chem. Phys., 59, 15 (1973); R. G.Gor- 
don, R. L. Armstrong, and E. Tward, J. Chem. Phys., 48, 2655 (1968). Also 
see the work of Verlet and  coworker^.^^ 
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Molecular motions in equilibrium fluids are conve- 
niently characterized by time correlation functions of 
the form (AB(t)).27-29 Here, A( t )  and B ( t )  denote dy- 
namical variables which depend on time, t ,  through 
the time dependence of the coordinates and momen- 
t a  of the molecules in the system; A = A ( 0 ) ;  and the 
pointed brackets denote the equilibrium ensemble 
average over initial conditions (i. e., the coordinates 
and momenta a t  t = 0). Interest in these correlation 
functions has grown due to the recognition that time 
correlation functions are actually measured quan- 
tities when one performs various spectroscopic exper- 
imen t s . 27-29 

The simplest of these time correlation functions is 
the velocity autocorrelation function which is defined 
as 

CJt) = (v.v(t)>/(d> (1) 

where v denotes the center of mass velocity of a 
“tagged” molecule in the liquid. The self-diffusion 
constant, D,  is related to the zero frequency part of 
the velocity autocorrelation function by the familiar 
equation 

-a 

D = (k,T/m)J 0 C,(t)dt  (2 1 

where m stands for the mass of the molecule. In 
principle, C,(t) can be measured by neutron scatter- 
ing experiments performed on a However, 
this has never been done, and our only experimental 
knowledge concerning C v ( t )  stems from computer 
~imu1at ions. l~ , 3 O  

The computer simulations have established the 
following facts. 

(1) At high densities ( p  > 2 p c ) ,  the diffusion con- 
stant for the Lennard-Jones fluid, D L J ,  and the dif- 
fusion constant of the associated hard-sphere fluid, 
Dd (d stands for the optimum hard sphere diameter 
discussed earlier), are nearly the same 

DLJ D d  ( 3 )  
where the error in eq 3 is 5 10%. 

( 2 )  The velocity autocorrelation function for the 
hard-sphere fluid [Cv( t ) ]d  is given to qualitative ac- 
curacy by the Enskog formula 

where T E  = [(8/3)(aR,T/m)1/zp~~gd(d)].-1’ is the 
Enskog relaxation time. Equation 4 is exact a t  small 
times. It incurs errors for times greater than TE, but 
the magnitude of the absolute error in eq 4 is always 
less than 0.03. Thus, for hard spheres, the velocity 
autocorrelation function looks very much like an ex- 
ponential. 

(3) The velocity autocorrelation function for the 
Lennard-Jones fluid, [ C ” ( ~ ) ] L J ,  does not look any- 
thing like an  exponential. In fact, a t  densities near 

(24) K. Kim and D. Chandler, J. Chem. Phys., 59,5215 (1973). 
(25) D. Chandler, J.  Chem. Phys., 60,3500 (1974). 
(26) D. Chandler, J .  Chem. Phys., 60,3508 (1974). 
(27) R. Zwanzig, Annu. Reu. Phys. Chem., 16,67 (1965). 
(28) R. G. Gordon, Aduan. Magn. Resonance, 3, l(1968). 
(29) P. C. Martin, “Measurements and Correlation Functions,” Gordon 

and Breach, New York, N. Y., 1968. 
(30) Molecular dynamics studies of the velocity autocorrelation function 

for the hard sphere fluid are reported by B. J. Alder and T. E. Wainwright, 
Phys. Reu. Lett., 18,988 (1967). 

the triple point, [G(~)]LJ  has a negative peak with a 
magnitude of the order of 0.2. At such high densities, 
the hard-sphere correlation function is also negative 
for a period of time. But the magnitude of the nega- 
tive peak in [Cv(t)]d is about 0.02, an  order of mag- 
nitude less than that  in the Lennard-Jones correla- 
tion function. 

The first fact listed above seems to be in agree- 
ment with the point of view emphasized in the pre- 
ceding sections (though now we are discussing dy- 
namics and not the static structure of liquids), but 
the second and third facts indicate that the velocity 
autocorrelation function for hard spheres is very dif- 
ferent than that  for a realistic liquid. One might 
think that  the difference is a manifestation of the 
attractive forces which are present in the Lennard- 
Jones fluid and are obviously absent in the hard- 
sphere system. If this were correct, then the attrac- 
tions would play a significant role in the dynamics 
occurring in liquids. However, we will see below that 
the differences are actually due to the duration time 
of repulsive force collisions. To an excellent approxi- 
mation, the attractive interactions may be neglected 
when discussing the dynamic structure as well as the 
static structure of liquids. 

To analyze the differences between the velocity 
autocorrelation functions for the Lennard-Jones and 
hard-sphere fluids, i t  is convenient to introduce the 
memory function which is defined in terms of the re- 
ciprocal of the Laplace transform of the correlation 
function31 

where s is the Laplace transform variable, h?v(s) is 
the Laplace transform of the memory function 
Mv( t ) ,  and C,(s) is the Laplace transform of C,(t) .  

The Enskog theory _for [Cv( t ) ]d ,  namely eq 4, is 
equivalent to writing [Mv(S)]d = m - l ,  which implies 

[MV(t)ld 273 - ‘6( t )  (6) 

From the binary collision expansion32 it can be 
shown that eq 6 is obtained by including in the 
memory function a binary collision between a single 
pair of particles that  are initially nearest neighbors. 
In this case, [ M v ( t ) ] d  is a 6 function because hard- 
sphere binary collisions are impulsive-they occur 
with a duration time of zero. All other dynamical 
events which in principle contribute to the memory 
function are neglected. This, i t  can be shown, means 
that the Enskog theory for [Cv(t)]d approximates the 
dynamic processes contributing to the correlation 
function by sequences of uncorrelated nearest neigh- 
bor binary collisions. Since the Enskog theory is fair- 
ly accurate, this approximation to the dynamics 
must be qualitatively correct. 

Let us assume the same approximation is reliable 
when considering particle motion in the hypothetical 
fluid for which the pair interaction is uo(r)  (Le. ,  the 
repulsive part of the Lennard-Jones potential). This 
seems reasonable since u&) is a harsh repulsion. 
However, uo(r) is smooth and, as  a result, binary col- 

(31) H. Mori, Progr. Theoret. Phys., 33, 423 (1965); B. J. Berne in 
“Physical Chemistry: An Advanced Treatise,” Vol VIIIB, D. Henderson, 
Ed., Academic Press, New York, N. Y., 1971. Also see P. C. Martin.29 

(32) R. Zwanzig, Phys Reu., 129,486 (1963). 
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Figure 4. The velocity autocorrelation function for the Lennard- 
Jones liquid a t  two representative states. The solid line repre- 
sents the repulsive force correlation functioning, [Cv(t)]o,  calcu- 
lated with the methods described in the text. The dashed line is 
the Enskog hard-sphere correlation function. The circles denote 
the molecular dynamics results for the Lennard-Jones correlation 
f u n ~ t i 0 n . l ~  The units of time are to  defined by Verlet and cowork- 
ers.15 For argbn, t o  = 3 X sec. 

lisions associated with it occur for a finite period of 
time. Thus, the Enskog theory must be generalized 
to account for the finite duration time of collisions. 
We do this approximately by assuming that the 
memory function for the repulsive force system can 
be written as a 6-like function with a finite width. 
When the duration times goes to zero (imagine 
changing uo(r) continuously to the hard-sphere po- 
tential), the width must vanish so that [Mv(t)]o be- 
comes the hardkphere 6 function. Hence, a reason- 
able form for [MV(t )]o  is 

(7) 

To determine the constants A and B, two condi- 
tions must be imposed. First, we require that  the ap- 
proximate formula for [Mv(t)]o gives the exact value 
At t = 0. This producesz9 

A = ( ~ / 3 n 2 )  Sgo(Y)V'UO(Y)dr (8)  
Next, we require that 

(9) 

which means that we are equating the zero frequency 
responses (and thus the diffusion constants) of the 
hard-sphere and repulsive force fluids. A mathemati- 
cal justification for eq 9 can be derived.25 Physically, 
however, the condition is very reasonable. It simply 
means that, when we coarse-grain in time (the zero 
frequency limit), the hard-sphere and repulsive force 
systems are indistinguishable. Within the accuracy 
of eq 6 and 7, eq 9 is 

(10) 
In the limit that uo(r) becomes the hard-sphere 

potential, A diverges since the integral in eq 8 be- 
comes infinite, and B diverges in a way which keeps 
A/BIi2 finite. Thus, in that limit, eq 7 reduces to the 
Enskog formula, eq 6. 

Equations 7, 8, and 10 provide a simple theory for 
the velocity autocorrelation function of a repulsive 
force system.24 It is a phenomenological generaliza- 
tion of Enskog theory. The generalization is analo- 

(A/2)(n/B)1'2 = T~ -1 

gous to the rigorous method used in ref 2-4 to relate 
the static correlation functions go(r) and gd(r).  Since 
the basis of the theory is the Enskog formula, the re- 
sults obtained from the theory should be qualitative- 
ly accurate (Le., we do not expect absolute errors in 
[Cv(t)]o that are larger than 0.03). In Figure 4, the 
repulsive force correlation function, [Cv( t ) ]o ,  ob- 
tained from eq 7, 8 and 9 is compared with the Len- 
nard-Jones correlation function and the Enskog 
hard-sphere function a t  two representative high den- 
sity states. It is seen that  the dramatic differences 
between the hard-sphere and Lennard-Jones correla- 
tion functions are due to the finite duration time of 
repulsive force collisions. The attractive forces need 
not be considered. 

Rotational Motion of Molecules in Liquids 
In the previous section we introduced two basic 

ideas. The first is that the motion of molecules in 
dense fluids is determined mainly by the repulsive 
parts of the intermolecular potentials. As a result, 
for liquids composed of spherical particles, the dy- 
namic structure is intimately related to that of a 
hard-sphere system. The second idea is that  the dy- 
namics of hard spheres can be described qualitative- 
ly in terms of successive uncorrelated binary colli- 
sions. 

These concepts have been used recently to develop 
a theory of rotational motion of molecules in liq- 
uids.26 We describe below some of the principal re- 
sults of that  theory. 

Within the context of the uncorrelated binary col- 
lision approximation, the single particle rotational 
motion of linear or spherical top molecules is associ- 
ated with one rotational "relaxation time" T ,  which 
is defined by26 

Tu-' = (1" - 1)[ ( J g T , , J ) / ( J 2 > I r e p  (11) 
In this equation, J denotes the angular momentum 
of molecule 1; there are a total of N molecules in the 
system; and Tzl denotes the zero frequency part of 
the binary collision operator associated with the re- 
pulsive parts of the intermolecular potential. The 
subscript "rep" indicates that the ensemble average, 
(. . .), is the average appropriate to the repulsive force 
system; the attractive interactions are neglected. 
When the molecular shape is fairly spherical, T,-I 

can be expressed in terms of the Enskog relaxation 
timez6 

(12) -1 
7 ,  (T,P) = a7, -*(T,P)  

Here, we have emphasized the explicit temperature 
and density dependence. The parameter a is related 
to the efficiency with which a binary collision can 
change the angular momentum of a, molecule. It ap- 
pears to be a relatively weak function of tempera- 
ture.33 

The angular momentum relaxation time, TJ, is de- 
fined as the zero frequency part of the angular mo- 
mentum autocorrelation function; i. e. 

T~ = Jaw[ (J e J(t)>/(J'>]dt (13)  

(33) However, the associated hard-sphere diameter needed to calculate 
TE is a weak but important function of temperature This temperature de- 
pendence must be included when calculating T~ from eq 1 2  because TL. is a 
very sinsitive function of the hard-sphere diameter See ref 26 
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The binary collision theory derives the approximate 
result that  

T J  7, (14) 
Equations 14 and 12 provide a simple theory for the 
density and temperature dependence of 75 which can 
be checked by nmr experiments performed on high- 
density fluids. Preliminary comparison with experi- 
ment indicates that  the theory is fairly a c c ~ r a t e . ~ ~ ? ~ ~  
The physical picture associated with eq 14 is reason- 
able. From the definition of 7 ~ ,  we expect that  75 

should be proportional to the inverse of the average 
collision frequency since each collision should help a 
molecule “forget” about its initial angular momen- 
tum. It can be shown that the collision frequency is 
proportional to 7 E - I .  Thus, we expect TJ 01 7 E ,  which iS 
what eq 14 says. 

The orientational correlation functions measured 
by ir experiments28 (eq 15) and by Raman scatter- 

C , ( t )  = (U *u(t))  = (P~[u ‘ ~ ( t ) ] )  (15) 

ing28 (eq 16) can also be described with the binary 

CAt) = (PJU u(t)I> (16) 
collision theory. In these equations, u(t)  denotes the 
unit vector parallel to an axis of molecule 1 a t  time 
t, and A(x)  is the Ith Legendre polynomial of x. The 
results of the theory are expressed most simply in 
terms of the Laplace transforms of C i ( t ) ;  they are 
N N N 

c , ( S )  M C,‘’d’(S + T U - ’ ) / [ l  - T U - ‘ c l ( i d ) ( S  4- 

7,-1)] (17) 
(34) J. DeZwaan, R. J. Finney, and J. Jonas, J Chem Phys., 60, 3223 

(1974). 

where Cliid)(s) denotes the Laplace transform of C l ( t )  
for a system of ideal gas (free) molecules. Equations 
17 and 14 constitute Gordon’s J diffusion model ap- 
proximation for C l ( t )  .35 Experimental tests indicate 
that the approximation is qualitatively accu- 
rate.26J4,36 We note that the microscopic theory 
used to derive eq 17 does not require one to adopt 
the unphysical assumptions that are often attributed 
to Gordon’s results. The interested reader should see 
ref 26. 

In summary, we have emphasized the following 
concept: a t  the high densities which characterize 
most of the liquid phase, the dynamic and static 
structures of liquids are dominated by steric (exclud- 
ed volume) effects. This idea, together with the ap- 
proximation that the dynamics of hard spheres can 
be described in terms of uncorrelated binary colli- 
sions, gives rise to specific predictions about the den- 
sity and temperature dependence of several relaxa- 
tion times and correlation functions. These predic- 
tions should be qualitatively accurate for high densi- 
ty  liquids composed of fairly spherical molecules. 
Further, the predictions can be tested by nmr, ir, 
and Raman experiments. We hope that in the near 
future constant density and temperature experi- 
ments will be performed on dense fluids to investi- 
gate fully the strengths and limitations of the theory 
we have described. 
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All chemists and chemical engineers dealing in any 
way with a chemical reaction must eventually inves- 
tigate the properties of the reaction transition state. 
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Much can be and has been learned by conventional 
research on rates, activation energies, and solvent 
and substituent effects, all a t  atmospheric pressure. 
High-pressure kinetic studies, however, offer yet an- 
other probe, yielding information unobtainable by 
other means, yet invaluable in elucidating the struc- 
ture and properties of the reaction transition state. 

High-pressure kinetics in solution permits observa- 
tion of the volume of activation of a chemical reac- 
tion 

(1) A d  = -RT(a In k / a P ) ,  


