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A Complex Rolle’s Theorem

J.-Cl. Evard and F. Jafari

1 INTRODUCTION. It is well known that many results of classical real analysis
are consequences of the Rolle and Mean Value Theorems. In the general case of
maps from a subset of a Banach space into another (see [4], [5] for example), the
Mean Value Theorem is an inequality which may be adequate in many applica-
tions but falls short of establishing a Rolle’s Theorem in the form of an equality as
this theorem exists in one real variable. Recently, other variations and interesting
applications of Rolle’s Theorem have also appeared (1], [2], [3], [12], [14]).

Concerning the complex case, Jean Dieudonné [6] in 1930 published a necessary
and sufficient condition for the existence of a zero of f'(z) in the interior of a
circle with diameter ab when f is holomorphic and f(a) = f(b) = 0. M. Marden
([10], [11]) furnishes results about the relative locations of the zeros of a complex
polynomial and the zeros of its derivative. I. J. Schoenberg [13] conjectures an
analogue of Rolle’s theorem for polynomials with real or complex coefficients.

It is well known that Rolle’s Theorem is not valid for holomorphic functions of
a complex variable as it is shown by the function f(z) = e® — 1 which takes the
value 0 at z = 2kri for every k € Z, but f'(z) = e* has no zeros in the complex
plane. It is also easy to see that Rolle’s Theorem is not valid for real harmonic
functions. For example, the zeros of the partial derivatives of u(x, y) = x> — y2 do
not separate the zeros of u. Therefore, there is no hope to establish a Rolle’s
Theorem about the real part or about the imaginary part of a holomorphic
function. To establish our Rolle’s Theorem, we will need to use a combination of
R(f) and I(f).

The aim of this paper is to present a generalization of Rolle’s Theorem to
holomorphic functions of a complex variable and to show how a Mean Value
Theorem for holomorphic functions follows from this theorem. To emphasize the
main ideas of our results we will give the simplest possible form of the theorems,
and will refer to extensive generalizations and applications of these results which
will be given elsewhere ([8], [9]). The basic nature and far reaching consequences
of these theorems suggest that they should become standard results for holomor-
phic functions of a complex variable.

We begin by stating and proving the Complex Rolle’s Theorem in Theorem 2.1.
In Theorem 2.2 we apply Theorem 2.1 to prove a Complex Mean Value Theorem.
In Corollary 2.3 we obtain a standard result in complex analysis as a Corollary of
our Complex Mean Value Theorem. We conclude by providing several examples
and remarks in 2.4. Throughout this paper, we will use the standard notation
z=x+1iy for z€ C, where x = R(z) and y = J(z). If a and b are distinct
points in C, we will denote by ]a, b[ the open line segment joining a and b:

la,b[ = {a +t(b—a):t€]0,1[}.
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2 RESULTS. The main idea of our complex version of Rolle’s Theorem below is
to consider the relation between the zeros of a holomorphic function f and the
zeros of R(f’), or between f and J(f’), knowing that no Rolle’s Theorem can be
established about R(f) only or about J(f) only.

Theorem 2.1. (Complex Rolle’s Theorem). Let f be a holomorphic function defined
on an open convex subset D; of C. Let a, b € D, be such that f(a) = f(b) = 0 and
a # b. Then there exists z,, z, €la, bl such that fﬁ(f (z) = 0 and 3I(f'(z,)) = 0.

Proof: Let a; = R(a), a, = J(a), b, = R(b), b, = I(b), u(z) = R(f(2)), v(z) =
S(f(2)) for every z € D;. Let

&(1) = (by —a))u(a + t(b —a)) + (b, — a,)v(a + (b — a))
for every ¢t €[0,1]. Then f(a) = f(b) =0 implies that u(a) = u(b) = v(a) =

v(b) = 0. Consequently, ¢(0) = 0 and ¢(1) = 0. Therefore, by Rolle’s Theorem,
there exists ¢, €10, 1[ such that ¢'(¢;) = 0. Let z;, = a + t,(b — a). Then

a
0=¢'(t;) =(b; - 1)[ (z1)(by —ay) + 5;(21)(172_“2)]

av v
+(by —a,) 5(21)(171 —a)) + 5(21)([72 —a) |-
By the Cauchy-Riemann equations it follows that

du 2 2
0= —(2)[(b; —a)* + (b, ~ a,)7].

Therefore,
, u
ER(f (21)) = a(zl) =0.

By applying this first part of the theorem to the function g = —if we obtain that
there exists a z, €la, b[ such that

av du
=R(g'(z,)) = 5(22) == (‘9‘;(22) = 3(f'(22))- u

An important application of Theorem 2.1 is the generalization of the real Mean
Value Theorem.

Theorem 2.2. (Complex Mean Value Theorem). Let f be a holomorphic function
defined on an open convex subset D; of C. Let a and b be two distinct points in D;.
Then there exist z,, z, €la, bl such that
f(b) —f(a)
b—a

b —
(s - -1

and i”s(f’(zz))=?s( Py
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Proof: Let

b) —
g(Z)=f(Z)—f(a)—£(—Z_—£(al(z—a) 1)

for every z € D,. Clearly, g(a) = g(b) = 0. Therefore, by Theorem 2.1, there exist
zy, z, €la, bl such that R(g'(z,)) = 0 and I(g'(z,)) = 0. But by (1)

b —
g(2) =f(z) - 1D

for every z € D;. Therefore,

b —_
0="R(g'(z) =R(f'(2))) - §R(i%a—))’

and

f(b) = f(a)
CRO) .

—a

0= iNs(g'(zz)) = iVs(fl(zz)) - S(

Let us show that our Complex Mean Value Theorem (2.2) is strong enough to
imply the following basic result in complex analysis.

Corollary 2.3. Let f be a holomorphic function defined on an open connected subset
Dy of C such that f'(z) = 0 for every z € D;. Then f is constant.

Proof: By Lemma 2.1 in [7], or by the Analytic Continuation Theorem of complex
analysis, it is sufficient to show f is locally constant. Let z, be arbitrary in D, and
let U, be a convex neighborhood of z, contained in D;. Let z be a point of

UZO, z # z,. By Theorem 2.2, there exist z,, z, €]z, z[ such that
f(z) = 1(z0) ,
L R IR CA R
z -z,
and
z) —f(z
NECIE (C5) FEOPRINOIN
z— 2z,
Therefore, f(z) = f(z,). Thus f is constant in U, . [ |

We conclude this note by providing several examples. These examples shed light
on the Complex Rolle’s Theorem and illustrate the assertion that the zeros of the
real and imaginary parts of the derivative of a holomorphic function separate the
zeros of that holomorphic function.

Examples and Remarks 2.4. (i) Let f(z) =e*—1 and note that f(z) =0
for z = 2kwi for every integer k. Since f'(z) =e*=e*cosy + ie*siny,
RN =0if y=Qk + Dm/2, and I(f'(z)) =0 if y = ka. Therefore the
zeros of the real and imaginary parts of f' are straight lines both separating the
zeros of f.

(i) If f(z) =(z —a)z —b),a # b, then f(z) =0 when z =a or z = b. Since
fl(z)=2z—a—-b, R(f'(2)=0if x=R@+b)/2, I(fF(z)=0if y=a
+ b)/2. So again the zeros of the real and imaginary parts of f’ are lines both
separating the zeros of f.
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(iii) Note that in general the zero set of R(f'(z)) and I(f'(z)) need not be
straight lines as it may be seen by considering f(z) = z> + z% + z + 1; the zero set
of R(f’) is a hyperbola in this case.

We provide many extensions and applications of these theorems in a separate
paper [9].
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Logic is the hygiene the mathematician
practices to keep his ideas healthy and
strong.

—H. Weyl
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