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Polar-optical phonon-limited transport in degenerate GaN-based quantum wells
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A theory of polar-optical phonon-limited electron transport in GaN-based quantum wells is developed within
the Boltzmann equation approach. The linearized Boltzmann equation is solved for a degenerate two-
dimensional electron system using a ladder technique, enabling evaluations of the effective momentum relax-
ation time and the low-field electron mobility to be carried out. Variations of the effective momentum relax-
ation time with the well width, electron energy, lattice temperature, and electron density are explored in these
heterostructures. The corresponding mobility is then evaluated and its variations with the well width, lattice
temperature, and electron density displayed. Comparison is made, where appropriate, with the results emerging
from the application of a low-energy approximation.

DOI: 10.1103/PhysRevB.63.245313 PACS nuntder72.10-d, 72.20.Dp, 72.80.Ey

[. INTRODUCTION equation in the linear regime. We are mainly concerned with
the mobility in the degenerate two-dimensional electron gas
The current heightened interest in the optical and elecand will concentrate on the situation when there is only one
tronic properties of large band-gap semiconductors, particuelectronic subband occupied since it is in this case that the
larly the Il nitrides, is motivated by their potential for device quantum effects are largest. It is easy to see that the case
applications and for operation at short wavelengths with suswhen many subbands are occupied is close to the three-
tained performance at high temperatutedlthough at  dimensional situation. The one-subband case is illustrated
present GaN and related compounds are not sufficiently purechematically in Fig. 1 in which the Fermi energy has been
to justify completely ignoring the influences of other scatter-chosen to be smaller than the polar-opti20) phonon en-
ing processes, particularly effects associated with impuritiegrgy 4 », . This situation is realizeable for GaN-based het-
and dislocation mechanisms, the dominant scattering procegsostructures, even at high densities, on account of the large
in such matenals at room .temperature and above is St"ﬁwagnitude offiw o (for GaN we havehw o~92.8 meV).
polar-optical phonon scatterirfg. We also assume that the polar-optical phonons with which

i l.t ISI wellll Iénovtvhn thatt;n I.arge band—?ip t\q/uanrt]grpl ¥vel_||§t, tthethe electrons exchange energy are not affected by the hetero-
ypical Well depth can be In excess ol L eV, WNICH TaclitaleS ., v,re and so assume their bulk form. This is a reasonable

the buildup of confined electrons to high densities. The two- L . : . :
aeoproxmatlon since we are interested in total scattering rates

dimensional electron gases generated in this context ar d thus may invoke th roximat m rul licable in
highly degenerate and remain so even at lattice temperatures. us may invoke the approximate sum rule applicable
fhis case, provided that the quantum wells are not too

well in excess of room temperature. Clearly any treatment o 1314 Our aim is t luat i laxai
polar-optical phonon scattering effects and the associated&"OW: ur-aim Is to evaluate a momentum refaxation

electron transport under these conditions must take accoufi?® and hence determine the mobility under the above-
of the strongly degenerate feature of the electron gas. menuoned conditions and examine the variations of the re-
In this paper we consider electron transport in GaN/AINSUlts with the system parameters.
and other GaN-based quantum wells, incorporating the de-
generacy of the electron system. We concentrate on square
guantum wells, which we assume have well-defined widths.
This case should be distinguished from the situation in which
the growth process leads to a layer structure with strong in-
terface electric fields perpendicular to the layer planes. Thest Neooeeoe el o] Lo
fields are either strain-induced or, in the case of wurtzite
GaN, are, in addition, also attributable to spontaneous
polarization®>=> The strong fields lead to deeper effective
guantum wells at the interfaces and hence stronger carrie
confinement. As a result, two-dimensional electron densities : ¢
in excess of 18 cm2 build up and have indeed been ob- :
served in GaN heterostructures even in the absence of modt 0 K : L
lation doping®~!? Under such circumstances, however, the '
real shape of the quantum well is not square and it also FIG. 1. A schematic drawing of the one-subband model show-
depends on the electron density. ing the lowest quantum well subband. The relative positions of the
Here we seek to determine the solution of the BoltzmanrFermi energy and the optical phonon energy are also shown.
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= |G(qy)[?
7:(Q||)=f > : >-da,
—= Qj+0;

II. ELECTRON-PHONON INTERACTION
IN QUANTUM WELLS

The system in question is a 2D electron gas confined in a

GaN/AIN quantum well. We consider a square quantum well 8 2 3qyd

of width L and, for our purpose, it suffices to assume that the T 2. 221 ad + 8

quantum well is infinitely deep, in which case the energy qL4m=+apd] | 9

spectrum of the electrons with in-plane wave vedtprin At | e 99_1

subband n is given by en(k)=n%e;+ e, where n +—— 5 2)] (5)
=1,2, ... g,=mh?2m*L?, and ekH=ﬁ2kﬁ/2m* with m* gjd*\ 47 +qjd

the effective mass. The probability of transition from an @ is the unit step function and the limits of togintegrations

electron state of in-plane wave vector within the lowest

subbandh=1 to statekﬁ within the same subband by emis-
sion (+) or absorption {-) of a PO phonon of wave vector

d=(q;.q,) is given by

W  mwo(l 1 N+1+1
kKA Vogg \en eg 272
1G(g,)]?
W k”,kH’tqua(ekﬁ_EkuiﬁwLO)v D

are defined by

. B _2m* Lo 1/2
q;=i|(|+[k2+ 7 ] ,
(6)

2m* wLo 1/2

qzt = k||+ kﬁi
[ll. SOLUTION OF THE BOLTZMANN EQUATION

A. The ladder technique
Our aim is to evaluate the PO phonon-limited low-field

whereN is the phonon distribution function at temperatlire mobility of the 2D electron system subject to an electric field

and is defined bN=[expfiw o/kgT)— 1] 1; eis the elec-

E parallel to the quantum well planes. Previous treatments

tronic chargeg s ande.. are, respectively, the static and high have dealt with mobility calculations in a number of ways,
frequency dielectric constants of the quantum well materiahotably the variational method;*® the iteration method’

(GaN), while V is the large volume. The form fact@&(q,)
appropriate for a square quantum well of widthis expli-
citly given by*®

w? sin(q,L/2)
(QL12) [ 72— (q,L12)?2]

G(ay)= )

The total intrasubband scattering rate for an enesgy

follows from Eq.(1) by summation ovekH’ andq and can be
written as the sum of contributions from absorption)(and
emission (+) processes as follows:

1
FzD(GkH):—l,Z(LHJr)a z

kaH ezwLo V m*

8m*\2heo( 1 1)7?
€0 &g

)

wherel . are given by the integrals

11 . .
.= N+§i§ 0(6kH—§ﬁwL01§ﬁwLo)

2F(qp)

[4_(kw'-o+ﬂ)2r/2, (4)
Qe K

a
X | Cdq
a1

where 7(q) is given by

the matrix method! the Monte Carlo methotf 2* and
methods dealing with standard and drifted distribution
functions®>2° In this paper we employ an exact method in
which we solve the linearized Boltzmann equation following
a ladder technique similar to that used by Delfe$he lad-
der technique is described at length by Fletcher and
Butchef® and has recently been used by Ridféyrhe dis-
tribution function of this electron system is taken to have the
following form:

dfo(e€)

f(kp="fole)+ e

)‘I’(k) -E, (7)

where fo(e) is the equilibrium Fermi-Dirac distribution
function (low-electric-field approximation

1
eX[.'(e— GF)/kBT"" 1

fo(€)= ®
and we have dropped the subsciptin € for ease of nota-
tion. The vector functionP is defined by solving the linear-
lized Boltzmann equation

h af
_(:w_)E"‘”a_eO:% 20 (W s af (KDL= (K]
I

*

~ Wik af (kpLL—=f (k13 9

where, on the right-hand side of this equaticwk”' .

stands for the scattering probability due to interaction with
the polar-optical phonons and is defined in E. The sum-
mand indicates that we have taken account of both processes
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of transition into the stat& and out of it, weighted by the It is seen from Eq.(12) that if we can obtain a good
probabilities of the electron states being empty or full.estimate ofr(e) in the first energy interval € e<fiw o,
Clearly in conditions of statistical equilibrium, the electron then it is a simple matter to generatge) for any e. How-
flux in the transitiork;— k| must balance the reverse flux in €ver, any estimates af(e) in the first interval must be ex-

the transitionk{ —k; and so we have tremely accurate, otherwise even small deviations quickly
become significant. The ladder technique adopted here in-
Wi o ofo(KD[1—fo(kD1=Wy, « ofo(k)[1—fo(k()]. volves writing Eq.(12) as an infinite set of equations, one for
RER oL A U o (10) each of the energy intervals as follows:
_ > 32
The main problem in solving the Boltzmann equati@h A(€o) 71+ B(€0) To=2€5",
is that it is not possible here to exploit the usual relaxation o
time approximation. This is due to the strong inelastic nature A(e) o+ B(€e1) 7+ Cle) To=2Z€1 7,
of the electron—PO-phonon interaction. As a result of this
Eq. (9) should be treated as an algebraic difference equation ce (18
in which the unknown energy function depends on three dif-
ferent arguments, e+%w o, ande—fw o. A(€m) Tms 1+ B(€m) Tm+ C€m) Tm1=Z €22,

The initial steps towards obtaining the solution involve
substituting for the perturbed distribution functidigk)
from Eg.(7) on the right-hand-side of Eq9), and retaining
terms up to the first order ik. We then identify the vector where e,=€¢’ +nfhw o with 0<e'<fw o and 7,= 7(€,).
function ® as the term proportional th. We write We get successive equations by assigning integed and

setting 7_,=0. The series of equations indicate thgtis
e determined by in-scattering events from the site iw o
D(ky) = FT(G)kIIv 1D and out-scattering frona’, whereasr,, is determined by in-
scattering events from the state’s+ (m=1)% w, o and out-
where r(¢€) is aneffectivemomentum relaxation time to be scattering frome’ + mfw . Thus, in principle,r, depends
determined. The next steps involve substituting for the tranon 7,,7,, ...,7y, ..., and so onthrough all the in-
sition probabilitka” g from Eq.(1), converting the sum-  scattering terms. The procedure involves truncating the set of

mation into an integration and finally eliminating the electric €9uations at theith equation, and we are left to solve

field. We obtain a difference equation which can be written€duations for f+1) unknowns. The additional condition
in the following form: which is needed to obtain a solution is provided by applica-

tion of a boundary condition. Clearly we must havge)
ZeP=A(e)1(e+hw o) +B(e)m(€)+Cle)r(e—fiw o), =0 for e<0. As for the upper limit, we note that Grigor'ev

(120  etal’ and also Fletcher and Butcfitmake use of the fact
] . _ that for e>#Aw o we may writer(ex 7w o)~ 7(€). Hence
where the function#\,B,C are defined as follows: the upper limit may be written as
f0(6+ﬁ(A)Lo) Z 3/2
Ale)=—(N+1)————1Ia_, (13 €
fo(e) T(e)HA(G)'f‘B(G)‘FC(G)’ €— 0, (19
folethw o) fole—hw o) This is the condition adopted in this paper. The solution of
B(e)=|(N+1) fole) B- fole) B+ | the set of equations, together with E4@.9), can be found

using matrix inversion techniques. For a givea trial value

(14 of n is first used in the computations and then gradually
fole—fw o) increased to achieve a sufficiently accurate value-(ef,).
Cle)=— T i) A (15  The procedure is then repeated for differento produce
0 values ofr(€) covering the entire energy range. The error in
in which the integrald ,. andlg. are given by the final effective relaxation time(e) is small for smalle,
but is liable to increase asincreases. Fortunately this error
a ]—'(qH)(ZeItho—ﬁquIZm*) should not affect the accuracy of any transport coefficients
lar= f ~dqp 1 thus derived, as the contribution of high-energy electrons to
1 [4—(khoo/qexa)/k)] the transport coefficients is small because of their small num-
X 0(e—3hwoF 3hoLo), (16)  ber
+ B. The low-energy approximation
lg:= qu dqy [4— (ki 26/]:(q|i Iky)2] 2 This is a particular appro?(?m::i)on that is suitable for con-
o I eorqie=at ditions in whichkg T<7%w o ander<#w o, which are con-
XO0(e—3hw oFshoo). (170  sistent with electrons having energy no higher thé&mw?g .
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FIG. 2. Variation withe of the momentum
relaxation timer(e) (solid curve, evaluated for a
fixed well width L=3 nm and fixed electron
density and temperature using the exact ladder
method described in Sec. Il A. Also shown span-
ning the first two energy intervals are the corre-

sponding results emerging from the low-energy
approximation(dashed curveof Sec. Il B [the

curves coincidg@ and (b)]. The values of the
electron densities in these figures are as follows:
@, ng=10* cm~2; (b), nu=5.0x10? cm?;

(©), ng=10" cm 2, and (d), ny=>5.0x10
cm 2. The temperature was fixed at 300 K
throughout. The relevant GaN parameters are
fiw 5=92.8 meV; m*=0.2Im,; €,=9.5 and
€,=5.37.
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Under such conditions, we need only consider out of the set w, . The first step arises due to the sudden onset of emis-

(18) the first two equations witm=0,1, ignoring terms in-
volving 75,

A€o) 1+ B(€0) To=Ze€3 7, (20
A(€1) T+ B(€1) 7+ C(ey) To=2€2, (2D
which can be solved to yield
B(er)ed’—Aleo) €y
07 “B(e)B(e1) —Al€o)Cley)’
(22

__ Bleg)ei®~Clepeg”
"7 “B(eo)B(e1) —A(e0)Cley)

sion when the electron energy becomes equéld@,. The
subsequent steps arise at higher multiplesiaf o due to
their link to the variations in the first energy intervak@
<hw o at each absorption and emission of a phonon. It is
also seen that foep<#w, o, the momentum relaxation time
7 decreases with increasing density, with smaller and less
sharper steps. The trend is such that at higher density the
steps would disappear and would be replaced by a smooth
curve, exhibiting a maximum at the Fermi energy. Also
shown spanning the first two energy intervals in Figs) o
2(d) are the corresponding results emerging from the low-
energy approximation of Sec. Il B. Clearly this approxima-
tion provides good representations of the results for the rela-
tively small densities in Figs.(d) and 2b), but substantial
deviations from the exact results are seen at the higher den-
sities in Figs. 2c) and Zd). This feature would have to be
borne in mind when calculating the low-field mobility at
high electron densities.

Figures 3a) to 3(c) show the variations of the momentum

We call this the low-energy approximation, which is similar re|axation time for fixede =% w /2. Figure 3a) displays the

to that of Grigor'evet al** except that we include two inter- yariations ofr(% w,o/2) with the well width for a fixed elec-
vals ofiw ¢ rather than one. The validity of this approxi- tron density n,=5.0x10*2 cm1. At this low energy e
mation depends on the temperature and the degeneracy of they, ,, /> and at low density the approximate theory in Sec.
electron system and it would be instructive to examine it§)| B js seen to provide a good representation of the exact
accuracy relative to the exact ladder method when we COrfygsyits spanning the range of well widths shown in the figure.

sider the variation with the parameters.

C. Results for the momentum relaxation time

Figures 2a) to 2(d) show the variation withke of the mo-

mentum relaxation time(e), evaluated at room temperature
T=300 K for a fixed well widthL=3 nm and fixed elec-

Figure 3b) shows the variations of(% w o/2) with electron
density for a fixed well width.=3 nm. Once again foe
=hw /2 the low-energy approximation provides a good
representation of the results at low and moderately high den-
sities. At very high densities, however, the low-energy ap-
proximation diverges widely from the exact results. Finally

tron density using the exact ladder method described in Sed€ variations ofr(f . o/2) with temperature are displayed

[l A. The values of the electron densities in these figures ar

as follows: Fig. 2a), no=10" cm 2 (ez=—140 meV);
Fig. 2(b), ng=5.0x10"? cm 2 (e=54 meV); Fig. Zc),
no=10" cm 2 (e=114 meV); and Fig. @), ny=5.0

X 10" cm 2 (=569 meV). A common feature of these

dn Fig. 3(c) for a fixed electron densityny=5.0

X 102 ¢cm™2 and a fixed well width.=3 nm.

IV. EVALUATION OF THE MOBILITY

The mobility « in two dimensions is related to(e) as

results is thatr(e) exhibits steps at all integer multiples of follows:*®

245313-4
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FIG. 4. () Variation of the mobility with the GaN/AIN quantum
well width for three different values of the electron density

FIG. 3. Variations of the momentum relaxation time for a fixed =10 cm~2 (solid curve; ny=10"2 cm ? (dot-dashed curye

e=hw ol/2: (a) variations of (% w o/2) with the well width for a

fixed temperaturd =300 K and a fixed electron density=5.0

X 10 cm™?; (b) variations ofr(7w o/2) with electron density for

a fixed well widthL =3 nm and a fixed temperatufe=300 K;(c)

no=10"% cm 2 (dotted curve (b) Variation of the mobility with
the two-dimensional electron density in a GaN/AIN quantum well
of width L=3 nm. The different curves correspond to different
temperaturesT=150 K (solid curvg; T=300 K (dashed curve

variations of (% w o/2) with temperature for a fixed electron den- and T=450 K (dash-dot curvg (c) variation of the mobility in a

sity ng=5.0x10"? cm™2 and a fixed well widthL=3 nm. The

GaN/AIN quantum well of widthL=3 nm as a function of tem-

full curves represent the results using the exact ladder method gferature for three different values of electron density;
Sec. lll A and the dashed curves are those emerging from the low= 10" cm™? (solid curve; ny=102 cm 2 (dot-dashed curye

energy approximation of Sec. lll Bhe curves coincide ifc)]. The

parameters used are the same as those quoted in Fig. 2.

no=10" cm 2 (dotted curve The parameters used are the same
as those quoted in Fig. 2.
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w0 at integer multiples ofi w . The first step arises due to the
= f (e)fo(e)[1—Tfo(e)]ede. (23 sudden onset of emission when the electron energy becomes
mhnokgT /o equal toiw . The subsequent steps arise at higher mul-

The results for the mobility are based on this equation andiPles ofw o due to their link to the variations in the first
require numerical integration with input from the methods®nergy interval &<e<# e o at each absorption and emission
described in Secs. Il A and 11 B for the evaluation gfe). ~ ©f @ phonon. Another feature is that feg<fw o the mo-

The variation of the mobility with the parameters are shownMENtUM relaxation time decreases with increasing density,

in Figs. 4a)—4(c). Figure 4a) displays its variation with the with smaller and less sharper steps as the density increases.

GaN/AIN quantum well width for different values of the The trend is such that at higher densities the steps would

electron density. The curves exhibit a general trend of in_qlsappear and would be replaced by a smooth curve exhibit-

) - o . : ._Ing a maximum at the Fermi energy.
creasing mobility with increasing quantum well width. This We have highlighted the low-energy approximation in
is consistent with a corresponding increase of the eIectrthi

. o . . . s context and showed that at low energies27 | g this
der_15|§y of states W'th Increasing well W_'dth' 'F‘ Figbjthe approximation provides a good representation of the exact
variation of the mobility with the two-dimensional electron

results spanning a fairly wide range of well widths and for
density is shown for a GaN/AIN quantum well of width P g y g

i : . low to moderate electron densities. At very high densities,
=3 nm. The different curves correspond to different tem'however, the low-energy approximation diverges widely

peratures and it is seen that the curves are practically flat fGt,m he exact results. Finally we have drawn attention to the

a wide range of density, but each curve exhibits a clear minig,istence of a minimum in the variations of the mobility with

mum at a characteristic density. It can be seen that this i§jectron density and suggested that for GaN quantum wells
consistent with the behavior of the momentum relaxationyis should. in principle, be experimentally measurable.
time in Fig. 3b). Fmally, in Fig. 4c) the mobility in a GaN/ The work carried out here needs to be extended to take
AIN quantum well of widthL =3 nm is presented as a func- 4count of different regimes of approximations. First, at high
tion of the temperature for different values of electron den-ygngities screening effects must be explicitly included in the
sity. There is a general trend of a decrease of the mobility,majism, as well as the coupled mode effects at densities
with increasing temperature, and this feature has its origifyr \hich the plasma frequency becomes comparable to the
mainly in the distribution functions, which lead to a decreasep phonon frequency. Second, the one-subband model is
of the momentum relaxation rate and hence the mobility Withexpected to be inadequate as s,oon as the Fermi energy be-
increasing temperature. The dependence of the mobility 0By mes comparable to the energy separation between the low-
electron density as shown in Figlb} exhibits a pronounced gt o quantum well subbands. The two-subband problem
minimum at a characteristic density. We have checked thglsing the ladder technique would be intractable, however, as
this feature coincides with the conditiofe~fw 0. This  \oyid be the one-subband problem involving two phonon-
corresponds to an increase in the emission rate and & dgjasmon coupled modes of different frequencies. Finally, the
crease in the momentum relaxation time as in Fi@).3For  gjjied problem of electron transport in a triangular quantum
GaN quantum wells the drop in mobility in this region of \ye|| needs to be addressed using the ladder technique, with
density should, in principle, be experimentally accessible. particular emphasis on the density dependence of the effec-
tive well width® These regimes will not be considered any

further here.
V. COMMENTS AND CONCLUSIONS

We have studied electron transport in square GaN/AIN
guantum wells in which the electron system is degenerate,
systematizing the procedure leading to the evaluation of the The authors wish to thank the U.K. Engineering and
momentum relaxation time, and this enabled calculations oPhysical Sciences Research Coun@&PSRG for support
the mobility to be carried out. A prominent feature of the through Grant No. GR/L56725, under which this work was
results for the momentum relaxation timée) are the steps carried out.
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