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Polar-optical phonon-limited transport in degenerate GaN-based quantum wells
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A theory of polar-optical phonon-limited electron transport in GaN-based quantum wells is developed within
the Boltzmann equation approach. The linearized Boltzmann equation is solved for a degenerate two-
dimensional electron system using a ladder technique, enabling evaluations of the effective momentum relax-
ation time and the low-field electron mobility to be carried out. Variations of the effective momentum relax-
ation time with the well width, electron energy, lattice temperature, and electron density are explored in these
heterostructures. The corresponding mobility is then evaluated and its variations with the well width, lattice
temperature, and electron density displayed. Comparison is made, where appropriate, with the results emerging
from the application of a low-energy approximation.
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I. INTRODUCTION

The current heightened interest in the optical and e
tronic properties of large band-gap semiconductors, part
larly the III nitrides, is motivated by their potential for devic
applications and for operation at short wavelengths with s
tained performance at high temperatures.1 Although at
present GaN and related compounds are not sufficiently p
to justify completely ignoring the influences of other scatt
ing processes, particularly effects associated with impuri
and dislocation mechanisms, the dominant scattering pro
in such materials at room temperature and above is
polar-optical phonon scattering.2

It is well known that in large band-gap quantum wells, t
typical well depth can be in excess of 1 eV, which facilitat
the buildup of confined electrons to high densities. The tw
dimensional electron gases generated in this context
highly degenerate and remain so even at lattice tempera
well in excess of room temperature. Clearly any treatmen
polar-optical phonon scattering effects and the associ
electron transport under these conditions must take acc
of the strongly degenerate feature of the electron gas.

In this paper we consider electron transport in GaN/A
and other GaN-based quantum wells, incorporating the
generacy of the electron system. We concentrate on sq
quantum wells, which we assume have well-defined wid
This case should be distinguished from the situation in wh
the growth process leads to a layer structure with strong
terface electric fields perpendicular to the layer planes. Th
fields are either strain-induced or, in the case of wurtz
GaN, are, in addition, also attributable to spontane
polarization.3–5 The strong fields lead to deeper effecti
quantum wells at the interfaces and hence stronger ca
confinement. As a result, two-dimensional electron densi
in excess of 1013 cm22 build up and have indeed been o
served in GaN heterostructures even in the absence of m
lation doping.6–12 Under such circumstances, however, t
real shape of the quantum well is not square and it a
depends on the electron density.

Here we seek to determine the solution of the Boltzma
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equation in the linear regime. We are mainly concerned w
the mobility in the degenerate two-dimensional electron
and will concentrate on the situation when there is only o
electronic subband occupied since it is in this case that
quantum effects are largest. It is easy to see that the
when many subbands are occupied is close to the th
dimensional situation. The one-subband case is illustra
schematically in Fig. 1 in which the Fermi energy has be
chosen to be smaller than the polar-optical~PO! phonon en-
ergy \vLO . This situation is realizeable for GaN-based h
erostructures, even at high densities, on account of the l
magnitude of\vLO ~for GaN we have\vLO'92.8 meV).
We also assume that the polar-optical phonons with wh
the electrons exchange energy are not affected by the he
structure and so assume their bulk form. This is a reason
approximation since we are interested in total scattering r
and thus may invoke the approximate sum rule applicable
this case, provided that the quantum wells are not
narrow.13,14 Our aim is to evaluate a momentum relaxati
time and hence determine the mobility under the abo
mentioned conditions and examine the variations of the
sults with the system parameters.

FIG. 1. A schematic drawing of the one-subband model sho
ing the lowest quantum well subband. The relative positions of
Fermi energy and the optical phonon energy are also shown.
©2001 The American Physical Society13-1
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II. ELECTRON-PHONON INTERACTION
IN QUANTUM WELLS

The system in question is a 2D electron gas confined
GaN/AlN quantum well. We consider a square quantum w
of width L and, for our purpose, it suffices to assume that
quantum well is infinitely deep, in which case the ener
spectrum of the electrons with in-plane wave vectorki in
subband n is given by en(ki)5n2e11eki

where n

51,2, . . . ,e15p2\2/2m* L2, and eki
5\2ki

2/2m* with m*
the effective mass. The probability of transition from
electron state of in-plane wave vectorki within the lowest
subbandn51 to stateki8 within the same subband by emi
sion (1) or absorption (2) of a PO phonon of wave vecto
q5(qi ,qz) is given by

Wki ,ki8 ,q
6

5
pe2vLO

V0«0
S 1

«`
2

1

«s
D H N1

1

2
6

1

2J
3

uG~qz!u2

qi
21qz

2
dki ,ki86qi

d~eki8
2eki

6\vLO!, ~1!

whereN is the phonon distribution function at temperatureT
and is defined byN5@exp(\vLO /kBT)21#21; e is the elec-
tronic charge,«s and«` are, respectively, the static and hig
frequency dielectric constants of the quantum well mate
~GaN!, while V0 is the large volume. The form factorG(qz)
appropriate for a square quantum well of widthL is expli-
citly given by15

G~qz!5
p2

~qzL/2!

sin~qzL/2!

@p22~qzL/2!2#
. ~2!

The total intrasubband scattering rate for an energyeki

follows from Eq.~1! by summation overki8 andq and can be
written as the sum of contributions from absorption (2) and
emission (1) processes as follows:

G2D~eki
!5

1

Zeki

1/2~ I 21I 1!, Z5
8p2A2\«0

e2vLOAm*
S 1

«`
2

1

«s
D 21

,

~3!

whereI 6 are given by the integrals

I 65S N1
1

2
6

1

2D u~eki
2 1

2 \vLO7 1
2 \vLO!

3E
q1

6

q2
6

dqi
2F~qi!

F42S kivLO

qieki

6
qi

ki
D 2G1/2, ~4!

whereF(qi) is given by
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F~qi!5E
2`

` uG~qz!u2

qi
21qz

2
dqz

5
8p

qi@4p21qi
2d2#

H p2

qid
1

3qid

8

1
4p4

qi
2d2 S e2qid21

4p21qi
2d2D J . ~5!

u is the unit step function and the limits of theqi integrations
are defined by

q1
656ki7H ki

27
2m* vLO

\ J 1/2

,

~6!

q2
65ki1H ki

27
2m* vLO

\ J 1/2

.

III. SOLUTION OF THE BOLTZMANN EQUATION

A. The ladder technique

Our aim is to evaluate the PO phonon-limited low-fie
mobility of the 2D electron system subject to an electric fie
E parallel to the quantum well planes. Previous treatme
have dealt with mobility calculations in a number of way
notably the variational method,16–19 the iteration method,20

the matrix method,21 the Monte Carlo method,22–24 and
methods dealing with standard and drifted distributi
functions.25,26 In this paper we employ an exact method
which we solve the linearized Boltzmann equation followi
a ladder technique similar to that used by Delves.27 The lad-
der technique is described at length by Fletcher a
Butcher28 and has recently been used by Ridley.29 The dis-
tribution function of this electron system is taken to have
following form:

f ~ki!5 f 0~e!1S ] f 0~e!

]e DF~ki!•E, ~7!

where f 0(e) is the equilibrium Fermi-Dirac distribution
function ~low-electric-field approximation!

f 0~e!5
1

exp~e2eF!/kBT11
~8!

and we have dropped the subscriptki in e for ease of nota-
tion. The vector functionF is defined by solving the linear
lized Boltzmann equation

2S e\

m*
D E•ki

] f 0

]e
5(

q
(
ki8

$Wki8 ,ki ,qf ~ki8!@12 f ~ki!#

2Wki ,ki8 ,qf ~ki!@12 f ~ki8!#%, ~9!

where, on the right-hand side of this equation,Wki ,ki8 ,q

stands for the scattering probability due to interaction w
the polar-optical phonons and is defined in Eq.~1!. The sum-
mand indicates that we have taken account of both proce
3-2
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of transition into the stateki and out of it, weighted by the
probabilities of the electron states being empty or fu
Clearly in conditions of statistical equilibrium, the electro
flux in the transitionki→ki8 must balance the reverse flux
the transitionki8→ki and so we have

Wki8 ,ki ,qf 0~ki8!@12 f 0~ki!#5Wki ,ki8 ,qf 0~ki!@12 f 0~ki8!#.

~10!

The main problem in solving the Boltzmann equation~9!
is that it is not possible here to exploit the usual relaxat
time approximation. This is due to the strong inelastic nat
of the electron–PO-phonon interaction. As a result of t
Eq. ~9! should be treated as an algebraic difference equa
in which the unknown energy function depends on three
ferent argumentse, e1\vLO , ande2\vLO .

The initial steps towards obtaining the solution invol
substituting for the perturbed distribution functionf (ki)
from Eq. ~7! on the right-hand-side of Eq.~9!, and retaining
terms up to the first order inE. We then identify the vector
function F as the term proportional toki . We write

F~ki!5
e\

m*
t~e!ki , ~11!

wheret(e) is an effectivemomentum relaxation time to b
determined. The next steps involve substituting for the tr
sition probabilityWki ,ki8 ,q from Eq.~1!, converting the sum-

mation into an integration and finally eliminating the elect
field. We obtain a difference equation which can be writt
in the following form:

Ze3/25A~e!t~e1\vLO!1B~e!t~e!1C~e!t~e2\vLO!,
~12!

where the functionsA,B,C are defined as follows:

A~e!52~N11!
f 0~e1\vLO!

f 0~e!
I A2 , ~13!

B~e!5F ~N11!
f 0~e1\vLO!

f 0~e!
I B21N

f 0~e2\vLO!

f 0~e!
I B1G ,

~14!

C~e!52N
f 0~e2\vLO!

f 0~e!
I A1 ~15!

in which the integralsI A6 and I B6 are given by

I A65E
q1

6

q2
6

dqi
F~qi!~2e7\vLO2\2qi

2/2m* !

@42~ki\vLO /qie6qi /ki!
2#1/2

3u~e2 1
2 \vLO7 1

2 \vLO!, ~16!

I B65E
q1

6

q2
6

dqi
2eF~qi!

@42~ki\vLO /qie6qi /ki!
2#1/2

3u~e2 1
2 \vLO7 1

2 \vLO!. ~17!
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It is seen from Eq.~12! that if we can obtain a good
estimate oft(e) in the first energy interval 0,e,\vLO ,
then it is a simple matter to generatet(e) for any e. How-
ever, any estimates oft(e) in the first interval must be ex
tremely accurate, otherwise even small deviations quic
become significant. The ladder technique adopted here
volves writing Eq.~12! as an infinite set of equations, one fo
each of the energy intervals as follows:

A~e0!t11B~e0!t05Ze0
3/2,

A~e1!t21B~e1!t11C~e1!t05Ze1
3/2,

•••, ~18!

A~em!tm111B~em!tm1C~em!tm215Zem
3/2,

•••,

where en5e81n\vLO with 0,e8,\vLO and tn5t(en).
We get successive equations by assigning integern>0 and
setting t2150. The series of equations indicate thatt0 is
determined by in-scattering events from the statee81\vLO
and out-scattering frome8, whereastm is determined by in-
scattering events from the statese81(m61)\vLO and out-
scattering frome81m\vLO . Thus, in principle,t0 depends
on t1 ,t2 , . . . ,tm , . . . , and so onthrough all the in-
scattering terms. The procedure involves truncating the se
equations at thenth equation, and we are left to solven
equations for (n11) unknowns. The additional conditio
which is needed to obtain a solution is provided by appli
tion of a boundary condition. Clearly we must havet(e)
50 for e,0. As for the upper limit, we note that Grigor’e
et al.21 and also Fletcher and Butcher28 make use of the fac
that for e@\vLO we may writet(e6\vLO)'t(e). Hence
the upper limit may be written as

t~e!→ Ze3/2

A~e!1B~e!1C~e!
, e→`. ~19!

This is the condition adopted in this paper. The solution
the set of equations, together with Eq.~19!, can be found
using matrix inversion techniques. For a givene a trial value
of n is first used in the computations and then gradua
increased to achieve a sufficiently accurate value oft(en).
The procedure is then repeated for differente to produce
values oft(e) covering the entire energy range. The error
the final effective relaxation timet(e) is small for smalle,
but is liable to increase ase increases. Fortunately this erro
should not affect the accuracy of any transport coefficie
thus derived, as the contribution of high-energy electrons
the transport coefficients is small because of their small nu
ber.

B. The low-energy approximation

This is a particular approximation that is suitable for co
ditions in whichkBT,\vLO andeF,\vLO , which are con-
sistent with electrons having energy no higher than 2\vLO .
3-3
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FIG. 2. Variation withe of the momentum
relaxation timet(e) ~solid curve!, evaluated for a
fixed well width L53 nm and fixed electron
density and temperature using the exact lad
method described in Sec. III A. Also shown spa
ning the first two energy intervals are the corr
sponding results emerging from the low-ener
approximation~dashed curve! of Sec. III B @the
curves coincide~a! and ~b!#. The values of the
electron densities in these figures are as follow
~a!, n051010 cm22; ~b!, n055.031012 cm22;
~c!, n051013 cm22; and ~d!, n055.031013

cm22. The temperature was fixed at 300
throughout. The relevant GaN parameters a
\vLO592.8 meV; m* 50.21me ; es59.5 and
e`55.37.
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Under such conditions, we need only consider out of the
~18! the first two equations withm50,1, ignoring terms in-
volving t2,

A~e0!t11B~e0!t05Ze0
3/2, ~20!

A~e1!t21B~e1!t11C~e1!t05Ze1
3/2, ~21!

which can be solved to yield

t05Z
B~e1!e0

3/22A~e0!e1
3/2

B~e0!B~e1!2A~e0!C~e1!
,

~22!

t15Z
B~e0!e1

3/22C~e1!e0
3/2

B~e0!B~e1!2A~e0!C~e1!
.

We call this the low-energy approximation, which is simil
to that of Grigor’evet al.21 except that we include two inter
vals of \vLO rather than one. The validity of this approx
mation depends on the temperature and the degeneracy o
electron system and it would be instructive to examine
accuracy relative to the exact ladder method when we c
sider the variation with the parameters.

C. Results for the momentum relaxation time

Figures 2~a! to 2~d! show the variation withe of the mo-
mentum relaxation timet(e), evaluated at room temperatu
T5300 K for a fixed well widthL53 nm and fixed elec-
tron density using the exact ladder method described in S
III A. The values of the electron densities in these figures
as follows: Fig. 2~a!, n051010 cm22 (eF52140 meV);
Fig. 2~b!, n055.031012 cm22 (eF554 meV); Fig. 2~c!,
n051013 cm22 (eF5114 meV); and Fig. 2~d!, n055.0
31013 cm22 (eF5569 meV). A common feature of thes
results is thatt(e) exhibits steps at all integer multiples o
24531
et

the
s
n-

c.
e

\vLO . The first step arises due to the sudden onset of em
sion when the electron energy becomes equal to\vLO . The
subsequent steps arise at higher multiples of\vLO due to
their link to the variations in the first energy interval 0,e
,\vLO at each absorption and emission of a phonon. I
also seen that foreF,\vLO , the momentum relaxation time
t decreases with increasing density, with smaller and l
sharper steps. The trend is such that at higher density
steps would disappear and would be replaced by a sm
curve, exhibiting a maximum at the Fermi energy. Al
shown spanning the first two energy intervals in Figs. 2~a! to
2~d! are the corresponding results emerging from the lo
energy approximation of Sec. III B. Clearly this approxim
tion provides good representations of the results for the r
tively small densities in Figs. 2~a! and 2~b!, but substantial
deviations from the exact results are seen at the higher
sities in Figs. 2~c! and 2~d!. This feature would have to be
borne in mind when calculating the low-field mobility a
high electron densities.

Figures 3~a! to 3~c! show the variations of the momentum
relaxation time for fixede5\vLO/2. Figure 3~a! displays the
variations oft(\vLO/2) with the well width for a fixed elec-
tron density n055.031012 cm21. At this low energy e
5\vLO/2 and at low density the approximate theory in Se
III B is seen to provide a good representation of the ex
results spanning the range of well widths shown in the figu
Figure 3~b! shows the variations oft(\vLO/2) with electron
density for a fixed well widthL53 nm. Once again fore
5\vLO/2 the low-energy approximation provides a go
representation of the results at low and moderately high d
sities. At very high densities, however, the low-energy a
proximation diverges widely from the exact results. Fina
the variations oft(\vLO/2) with temperature are displaye
in Fig. 3~c! for a fixed electron densityn055.0
31012 cm22 and a fixed well widthL53 nm.

IV. EVALUATION OF THE MOBILITY

The mobility m in two dimensions is related tot(e) as
follows:15
3-4
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FIG. 3. Variations of the momentum relaxation time for a fix
e5\vLO/2: ~a! variations oft(\vLO/2) with the well width for a
fixed temperatureT5300 K and a fixed electron densityn055.0
31012 cm22; ~b! variations oft(\vLO/2) with electron density for
a fixed well widthL53 nm and a fixed temperatureT5300 K; ~c!
variations oft(\vLO/2) with temperature for a fixed electron de
sity n055.031012 cm22 and a fixed well widthL53 nm. The
full curves represent the results using the exact ladder metho
Sec. III A and the dashed curves are those emerging from the
energy approximation of Sec. III B@the curves coincide in~c!#. The
parameters used are the same as those quoted in Fig. 2.
24531
of
-

FIG. 4. ~a! Variation of the mobility with the GaN/AlN quantum
well width for three different values of the electron densityn0

51010 cm22 ~solid curve!; n051012 cm22 ~dot-dashed curve!;
n051013 cm22 ~dotted curve!. ~b! Variation of the mobility with
the two-dimensional electron density in a GaN/AlN quantum w
of width L53 nm. The different curves correspond to differe
temperatures:T5150 K ~solid curve!; T5300 K ~dashed curve!;
andT5450 K ~dash-dot curve!; ~c! variation of the mobility in a
GaN/AlN quantum well of widthL53 nm as a function of tem-
perature for three different values of electron density:n0

51010 cm22 ~solid curve!; n051012 cm22 ~dot-dashed curve!;
n051013 cm22 ~dotted curve!. The parameters used are the sam
as those quoted in Fig. 2.
3-5
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m5
e

p\2n0kBT
E

0

`

t~e! f 0~e!@12 f 0~e!#e de. ~23!

The results for the mobility are based on this equation
require numerical integration with input from the metho
described in Secs. III A and III B for the evaluation oft(e).
The variation of the mobility with the parameters are sho
in Figs. 4~a!–4~c!. Figure 4~a! displays its variation with the
GaN/AlN quantum well width for different values of th
electron density. The curves exhibit a general trend of
creasing mobility with increasing quantum well width. Th
is consistent with a corresponding increase of the elec
density of states with increasing well width. In Fig. 4~b! the
variation of the mobility with the two-dimensional electro
density is shown for a GaN/AlN quantum well of widthL
53 nm. The different curves correspond to different te
peratures and it is seen that the curves are practically fla
a wide range of density, but each curve exhibits a clear m
mum at a characteristic density. It can be seen that thi
consistent with the behavior of the momentum relaxat
time in Fig. 3~b!. Finally, in Fig. 4~c! the mobility in a GaN/
AlN quantum well of widthL53 nm is presented as a func
tion of the temperature for different values of electron de
sity. There is a general trend of a decrease of the mob
with increasing temperature, and this feature has its or
mainly in the distribution functions, which lead to a decrea
of the momentum relaxation rate and hence the mobility w
increasing temperature. The dependence of the mobility
electron density as shown in Fig. 4~b! exhibits a pronounced
minimum at a characteristic density. We have checked
this feature coincides with the conditioneF'\vLO . This
corresponds to an increase in the emission rate and a
crease in the momentum relaxation time as in Fig. 3~b!. For
GaN quantum wells the drop in mobility in this region
density should, in principle, be experimentally accessible

V. COMMENTS AND CONCLUSIONS

We have studied electron transport in square GaN/A
quantum wells in which the electron system is degener
systematizing the procedure leading to the evaluation of
momentum relaxation time, and this enabled calculations
the mobility to be carried out. A prominent feature of th
results for the momentum relaxation timet(e) are the steps
d
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.
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at integer multiples of\vLO . The first step arises due to th
sudden onset of emission when the electron energy beco
equal to\vLO . The subsequent steps arise at higher m
tiples of \vLO due to their link to the variations in the firs
energy interval 0,e,\vLO at each absorption and emissio
of a phonon. Another feature is that foreF,\vLO the mo-
mentum relaxation timet decreases with increasing densit
with smaller and less sharper steps as the density increa
The trend is such that at higher densities the steps wo
disappear and would be replaced by a smooth curve exh
ing a maximum at the Fermi energy.

We have highlighted the low-energy approximation
this context and showed that at low energiese<2\vLO this
approximation provides a good representation of the ex
results spanning a fairly wide range of well widths and f
low to moderate electron densities. At very high densiti
however, the low-energy approximation diverges wide
from the exact results. Finally we have drawn attention to
existence of a minimum in the variations of the mobility wi
electron density and suggested that for GaN quantum w
this should, in principle, be experimentally measurable.

The work carried out here needs to be extended to t
account of different regimes of approximations. First, at h
densities screening effects must be explicitly included in
formalism, as well as the coupled mode effects at densi
for which the plasma frequency becomes comparable to
PO phonon frequency. Second, the one-subband mod
expected to be inadequate as soon as the Fermi energ
comes comparable to the energy separation between the
est two quantum well subbands. The two-subband prob
using the ladder technique would be intractable, however
would be the one-subband problem involving two phono
plasmon coupled modes of different frequencies. Finally,
allied problem of electron transport in a triangular quantu
well needs to be addressed using the ladder technique,
particular emphasis on the density dependence of the e
tive well width.30 These regimes will not be considered a
further here.
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