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We introduce the resolvent formalism and complex scaling to calculate photoabsorption by transitions from
the ground state of a quantum dot embedded in a quantum well to subbands of the well and to the bulk
continuum. The method obviates the explicit calculation of continuum states. It is shown that photoabsorption
is strongly modified due to distortions of the subband continuum and resonance states induced by the dot
potential. An electric bias field causes pronounced modulations of the subband-to-bulk and dot-to-bulk photo-
absorption. We explain this behavior by a semiquantitative analytic model.
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I. INTRODUCTION

Quantum dots �QDs� embedded in semiconductor hetero-
structures have been studied as one approach to enhancing
the efficiency of quantum cascade lasers1 and for the design
of infrared photodetectors.2–5 Quantum cascade lasers with
embedded quantum dots use excited states of the dot as the
lasing transitions, for which the longer nonradiative lifetimes
of these states compared to subband levels of the well prom-
ise higher efficiency. Dot-in-well based infrared photodetec-
tors use transitions from the bound states of the dot into
subbands of the surrounding well. The advantages of these
devices compared to pure quantum well photodetectors lie in
the low dark current due to the 3d confinement of the dot
states and their sensitivity to normal incidence radiation.

The theoretical modeling of these systems is compara-
tively simple as only one type of charge carriers is involved.
Realistic models of unipolar quantum dots and wells are
based on k� · p� theory6–8 or use pseudopotentials.9 However,
even elementary models with only the reduced electron
masses and potentials representing the conduction band off-
sets can reproduce the behavior of such structures qualita-
tively and also quantitatively.10 For a model of that type,
bound and continuum states of single spherical quantum dots
were calculated analytically in Ref. 11. In Ref. 12, infrared
photocurrent spectra were investigated by calculating the
transition probabilities of electrons trapped in an InAs QD
into the subbands of a GaAs cylinder and the influence of
resonances in the continuum was studied. In Ref. 13, a the-
oretical treatment of the bound states in vertically stacked
flat dots with electric bias fields was introduced and optical
properties such as Stark tunability of the system were de-
scribed. The electronic continuum states of combined QD/
quantum well �QW� systems in magnetic fields were calcu-
lated in Ref. 14 using a quasiseparable potential to model flat
QDs.

Where analytical solutions are not available, one resorts
to numerical solutions of the Schrödinger equation in a finite
box. To obtain a dense representation of states near the con-
tinuum thresholds, one needs very large box sizes, which
make such calculations rather demanding.14 When an electric
bias field is added, a deep “triangular potential” appears at
one end of the box, where the highly oscillatory solutions
must be carefully calculated in order to obtain the correct

continuum structure. Strictly speaking, in the presence of a
bias field all bound states dissolve into the continuum as
eventually all states will ionize by tunneling. Especially near
threshold, no clear distinction between bound states, reso-
nance states, and continuum can be made and formerly
bound states may appear only as modulations of the con-
tinuum state density. For this reason, three-dimensional cal-
culations for heterostructures have been limited to the �quasi�
bound state spectrum.15–17

Here, we present calculations of the photoabsorption
spectra of quantum wells in a bias field with and without
embedded quantum dots in full dimensionality. We introduce
exterior complex scaling,18 which solves the problems re-
lated to box size and discretization, gives direct access to
resonances embedded in the continuum, and allows the com-
putation of photoabsorption probabilities without explicitly
computing continuum states. We find that in the presence of
the field, photoabsorption from GaAs/AlGaAs wells
strongly oscillates as a function of photon energy and bias
field. The behavior is described by a simple analytic model
and the same basic model also explains the weaker oscilla-
tory behavior of photoabsorption from an InGaAs quantum
dot. Finally, we study transitions from the ground state of the
dot into subband continua of a quantum-well heterostructure
and into the bulk. The presence of the dot strongly modifies
the subband continua and the corresponding photoabsorption
spectrum. We show that the field-induced oscillations are in-
dependent of the parameters of the heterostructures and can
be exploited to directly determine the local bias field across
the structure.

II. METHODS

A. Resolvent matrix elements

The photoabsorption cross section from an initial state �i
with energy Ei is proportional to

�Mi�E� = � X d���E,���� · r���i��2, �1�

where the summation and integration is over all degenerate
final states �E ,�� at electron energy E=�+Ei with a photon
energy of �. The states are � normalized �E ,� �E� ,���
=��E−E�����−��� with respect to energy and �. For the
discussion below and for the numerical examples, we restrict

PHYSICAL REVIEW B 76, 035318 �2007�

1098-0121/2007/76�3�/035318�9� ©2007 The American Physical Society035318-1

http://dx.doi.org/10.1103/PhysRevB.76.035318


ourselves to light polarizations �� and bias fields in the growth
�z� direction. However, we will point out straightforward
generalizations to arbitrary field directions and polarization.
Here and below, we use atomic units �=4��0=e2=me=1.
The main difficulty in calculating Mi�E� near thresholds
arises because the usual plane-wave approximation for con-
tinuum states �E ,�� is not applicable. In explicit numerical
calculations of low energy continuum states, the large de
Broglie wavelength requires large box sizes or the imposition
of energy-dependent boundary conditions, which is difficult
in more than one dimension. Fortunately, the calculation of
continuum states can be avoided. Starting from the spectral
representation of the system’s Green’s function,

�H − E + i��−1 = X dE� X d��E�,���E − E� + i��−1�E�,�� ,
�2�

we obtain Mi�E� as the limit of the Green’s function matrix
element,

Mi�E� = −
1

�
lim
�→0

Im��i�z
1

H − E + i�
z��i� , �3�

by observing that

lim
�→0

Im
1

E� − E + i�
= − ���E� − E� . �4�

A straightforward calculation of the limit �3� suffers from the
fundamental problem that the resolvent of any discrete ap-
proximation of the Hamiltonian has a dense sequence of
poles at the energies of the discretized states, where the limit
does not exist. The problem can be solved by the analytic
continuation technique of complex scaling.18,19 This method
is widely applied in atomic and molecular physics and we
give only a brief outline here.

B. Complex scaling

We start from defining the coordinate scaling transforma-
tion for real scaling factors a,

�a�r�� = a3/2��ar�� , �5�

which is a unitary transformation due to the factor a3/2. A
corresponding scaled Hamiltonian operator is obtained by
the substitutions of the coordinates and derivatives,

Ha = H�r� → ar�,�� →
1

a
�� � . �6�

As the scaling transformation is unitary, the spectrum of Ha
is the same as the spectrum of H. A formal analytic continu-
ation a→	, 	 complex, is straightforward and leads to the
non-Hermitian, “complex scaled” Hamiltonian H	.18 Given
sufficient analyticity properties of the potential, the analytic
continuation of H	 can be made rigorous in the operator
sense and it can be shown that bound state energies are ana-
lytic functions of 	.20 As an analytic function that is constant
on the real axis is constant in the whole complex plane, the
invariance of the bound state energies for all real values of
	=a implies that they remain constant also for complex 	.

However, the continuous spectrum is rotated into the com-
plex plane by the angle −2
, where 
=arg 	. The center of
the rotation is at the continuum energy threshold. For the
present discussion, it is important that not only the bound
state energies but also the matrix elements

��	,L�	z�H	 − E + i��−1	z��	,R� �7�

are analytic functions of 	, if the corresponding right and left
hand eigenfunctions �	,R and �	,L of the complex scaled
Hamiltonian are used:

H	�	,R = Ei�	,R, H	
†�	,L

* = Ei�	,L
* . �8�

Here, H	
† means the adjoint Hamiltonian. By the same argu-

ment as for the bound state energies, it follows that the ma-
trix element �7� is independent of 	. The advantage of cal-
culating Eq. �7� is that it does not become singular in the
limit �→0 as the continuous spectrum of H	 lies in the
lower complex half plane. For that reason, efficient discrete
approximations of resolvent in Eq. �7� can be found.

The potentials used to describe quantum dots are not, in
general, analytic everywhere, e.g., when square-well poten-
tials are used. In that case, it is sufficient to apply the com-
plex scaling transformation only beyond a finite distance,

x → x0 + �x − x0�	 for �x� � x0 � 0, �9�

and analogously for the coordinates y and z, where different
scaling radii x0, y0, and z0 can be chosen for the respective
coordinates. In this so-called “exterior complex scaling,”18

the complex scaled Hamiltonian is only defined on functions
that are discontinuous at the scaling radii in the form19

��±x0 ± 0� = 	1/2��±x0 � 0� . �10�

It turns out that the important analyticity of energies and
matrix elements is maintained. This allows complex scaled
calculations also for potentials that are only analytic beyond
a finite region of nonanalyticity.

Another important aspect of complex scaling is that poles
of the S matrix connected to resonances correspond to dis-
crete complex eigenvalues of the scaled Hamiltonian H	.
Such eigenvalues can appear in the wedge-shaped area of the
complex plane between the real axis and the rotated con-
tinuum. Just like bound states, they are independent of 	 for
all arg 	�
0 beyond the value 
0 where they first appear. In
numerical calculations, the resonance energies can be identi-
fied by their independence of the complex scaling factor 	,
which distinguishes them from approximate continuum ener-
gies that depend on 	.

C. Computational aspects

For our calculations, we model the quantum dots and
wells in cylindrical symmetry by Hamiltonians of the general
form

H = −
1

2m*�
,z��1




�

�




�

�

+

�2

�z2	 + V�
,z� + ezF . �11�

Dot and wells are defined through the local effective electron
masses m*�
 ,z� and the potentials V�
 ,z�. The bias field F
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always points in the z direction. Both the potential and the
effective masses are discontinuous at the boundaries between
dots, wells, and the bulk material, which introduces well-
defined discontinuities into the eigenfunctions of H. The
same type of discontinuity is required for exterior complex
scaling �10�. It is essential for proper convergence of the
numerical approximation that these discontinuities are cor-
rectly included in the discretization.

The finite element method �FEM� provides a most natural
way of including discontinuities into a basis. In FEM, space
is divided into a mesh of finite volumes and on each volume
the solution is approximated by a polynomial. Usually, the
solution is connected continuously across element bound-
aries. If the element boundary coincides with a discontinuity
of the Hamiltonian or a scaling radius, one instead imposes
the corresponding condition of discontinuity, e.g., Eq. �10�.

In our calculations, we use rectangular product grids in
the coordinates 
 and z. A FEM approximation to a wave
function has the general form

� = 

i=1

N

ci�i� , �12�

where �i�= �hni,mi
�
 ,z�� is a polynomial confined to element

volume �
ni−1 ,
ni
�� �zmi−1 ,zmi

�. Continuity conditions can be
formulated as a linear constraint on the expansion coeffi-
cients ci.

19 The complex scaled Hamiltonian is approximated
by the finite matrix

Ĥ	,ij = �i�H	�j�	, �13�

and the unit and dipole operators are approximated by the
matrices

Ŝ	,ij = �i�j� and Ẑ	,ij = �i�	z�j� , �14�

respectively. All matrices are restricted to the subspaces with
linear constraints corresponding to the proper continuity con-
ditions. The fact that these conditions also depend on 	 is

indicated by the subscript 	 also for the overlap matrix Ŝ	.
The discrete approximation of the resolvent matrix element
is given by

��	,L�	z�H	 − E�−1	z��	,R� 
 c	,L · Ẑ	�Ĥ	 − EŜ	�−1Ẑ	c	,R,

�15�

where the coefficient vectors c	,L and c	,R fulfill the gener-
alized discrete eigenvalue equations

Ĥ	c	,R = ẼiŜ	c	,R, Ĥ	
†c	,L

* = ẼiŜ	
†c	,L

* . �16�

The eigenvalue Ẽi
Ei is the variational approximation to the
exact initial state energy. Note that the dot product in Eq.
�15� is defined without complex conjugation, which is con-
sistent with the definition of c	,L

* in Eq. �16�.
One advantage of FEM that it shares with methods such

as B-splines or finite differences is its numerical stability. It
is also rather easy in FEM to increase the polynomial order p
on each element, which usually leads to exponential im-
provement of accuracy at the expense of an �O�p3� increase
in computation times. The mesh sizes are determined by the

extension and complexity of the system investigated. As an
example, in Table I we show the convergence of photoab-
sorption from the ground state of a dot-in-well system with a
strong bias field of 48 kV. The transition to an energy just
below the band edge of the well barrier was selected, as in
this case the final state has continuous character in the 

direction, while it is a decaying state with large decay width
in the z direction �see the discussion of Fig. 8�. A rather
modest number of 420 discretization points suffices for �1%
accuracy. Further details about our implementation of FEM
including important aspects of exterior complex scaling can
be found in Ref. 19.

Due to the small basis sizes required for discretization, an
extension of the method to systems without cylindrical sym-
metry is straightforward. Photoabsorption with polarizations
perpendicular to z can be treated as a first order perturbative
process and extending the basis by the dipole-reachable
states is sufficient, which would increase the basis sizes by a
factor of 3 at most. When stronger static fields significantly
break the cylindrical symmetry of the system, the use of
Cartesian instead of cylindrical coordinates may be of advan-
tage.

III. ANALYTICAL MODELS

Photoabsorption spectra of quantum wells and dots expe-
rience strong modifications in the presence of a bias field.
These are caused by the reflection of continuum electrons by
the field. In the field direction, the scattering waves have the
general character of Airy functions with an energy-dependent
sequence of nodes. In good approximation, the photoabsorp-

TABLE I. Convergence of photoabsorption with the discretiza-
tion parameters. M�E� from the ground state of a quantum dot em-
bedded in a quantum dot to a subband energy of E=320 meV, just
below the well barrier conduction band edge. A bias field of 48 kV
is applied. System parameters are the same as for Fig. 8. The error
�M /M is given with respect to a reference calculation with box
size z�
=200�45 nm2 and nz�n
=799�48 linear discretization
coefficients. The order of the FEM polynomials was 4 and 8 in the
z and 
 directions, respectively, except for the last two lines, where
order 6 was chosen in the 
 direction. The number of elements is
approximately equal to the number of coefficients divided by the
FEM polynomial order on the respective axis. With only 420 total
linear coefficients, 1% accuracy is reached �last line�.

nz n


z box
�nm�


 box
�nm� �M /M

399 48 100 30 1.0�10−5

399 48 100 20 5.7�10−4

399 48 100 15 2.3�10−2

199 48 100 30 3.1�10−5

47 48 50 30 2.6�10−4

35 48 50 30 7.2�10−3

199 24 50 20 5.3�10−4

199 12 50 20 2.9�10−3

35 12 50 20 1.0�10−2
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tion spectra can be deduced from simple analytic models.
We first replace the reflection in the bias field by reflec-

tion from a rigid wall on one side of a square-well potential.
The potential reads

V�z� = 0 for z � − a/2

= − V0 for − a/2 � z � a/2

= � for a/2 � z . �17�

The continuum solutions in the region of the well are stand-
ing waves,

��− a/2 � z � a/2� = C sin K�a

2
− z� ,

K =�2m

�
�E + V0� . �18�

The modulus of C depends on energy in the form

�C� =
1

2�1 +
V0

E
cos2 Ka

, �19�

corresponding to Fabry-Pérot-like resonances due to reflec-
tions from edges of the well. In addition to this rather smooth
variation, the bound-continuum matrix elements periodically
change sign with increasing continuum energy, which causes
a sequence of zeros in the photoabsorption cross section. For
the sake of the argument, we assume that the ground state
��i� in the well is symmetric with respect to z=0 �see Fig.
1�. As the continuum energy increases, the character of the
continuum wave functions above the well changes from co-
sinelike and even with respect to z=0 to sinelike and odd.
With an even initial state dipole transitions to even con-
tinuum states are suppressed and photoabsorption goes
through a zero.

A. Field-induced modulations

The energy dependence of the spacing between subse-
quent zeros can be estimated by putting a reflecting wall to

an energy-dependent location z0. A naive choice for z0 would
be the classical turning point of the electron in the bias field
z0=E /F for field strength F �see Fig. 2�. This, however, ne-
glects the fact that the electron is decelerated in the field
when it approaches the turning point. As the quantum phase
shift is approximately equal to the action integral along the
classical trajectory, the correct choice for z0 is such that the
reflection from the wall and the reflection in the field have
the same action integral,

�
0

E/F

dz�2m*�E − zF� = z0
�2m*E , �20�

which gives z0=2E / �3F�. When we neglect the influence of
the well potential, the properly normalized scattering wave is
�k�=�2m* / ��k�sin�k�z−z0�� with wave vector k=�2m*E,
and we obtain

Mi�E� =
m*

�k
�1 + cos�4

�2m*E3

3F
�	��k�i�k��2, �21�

where �̃i denotes the Fourier transform of the initial state.
We see that the modulation frequency increases with E like
�E1/2.

The fact that we are dealing with Airy functions rather
than sine functions does not qualitatively modify the picture:
at higher energies, the Airy function can be thought of as
�A�z�sin�k�z� ·z� with slowly varying space dependent wave
vector k�z� and amplitude A�z�. Figure 3 compares the exact
Mi�E� for a Gaussian well potential with Mi�E� calculated in
the Born approximation, i.e., neglecting the action of the
well potential on the scattering states, and with Eq. �21�. The
Born approximation is almost exactly reproduced by Eq.
�21�. However, the exact result is far overestimated by the
Born approximation.

So far, our considerations were one dimensional, i.e., for a
quantum well with a bias field applied perpendicular to the
growth direction. For a quantum dot, the full spatial dimen-
sions must be taken into account, which modifies the picture
above. For transitions to a given direction of the continuum
electron wave vector, one also observes zeros in the photo-
absorption cross section, but upon integration over all direc-
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FIG. 1. Square well with a reflecting wall. The symmetric
ground state does not dipole connect to excited states that are sym-
metric above the well, like the lower scattering state shown.
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FIG. 2. Well potential with a bias field. A scattering wave of
energy E is reflected in the external field F at the classical turning
point E /F.
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tions the modulations are washed out and diminish rapidly
with increasing photon energy. An analytic estimate of this
effect can again be obtained using the reflection from a wall
at a distance z0=2E / �3F�. The scattering waves with wave
vector k� are

�k�� =�m*�k��
2�3 eik��·r�� sin�kz�z − z0�� , �22�

from which one readily obtains �see the Appendix�

Mi�E� =
m*k3

2�2 �1

3
+ �

sin 2kz0

2kz0
���k�i�k���2. �23�

Here, �̃i denotes the Fourier transform of the initial state,
which we have assumed to be spherically symmetric for sim-
plicity. For the reflecting wall, we have �=1. We see that in
three dimensions the periodic modulations of the photoion-
ization cross section become suppressed like �E−3/2 with
increasing photoelectron energy E. This simple formula ac-
curately reproduces the magnitude and the modulation period
of Mi�E� in the Born approximation. However, to obtain the
correct modulation amplitude, one must introduce the scaling
factor �
1/3 �Fig. 4�, which could be interpreted as moving
the reflecting wall to the distance z0=2E /F. A single value of
z0 fails to simultaneously account for the correct phase shift,
which determines the modulation period, and the effective
reflection distance, which determines the modulation ampli-
tude. Note that these discrepancies only arise in the modula-
tion of Mi�E�, whereas the magnitudes of Mi�E� agree for the
Born approximation and the reflecting wall model. However,
like in the one-dimension case, both models strongly overes-
timate the exact Mi�E�.

Oscillations of the photoabsorption cross section have
also been reported for atoms in strong electric fields and the
basic mechanism was explained there.21,22 In solid state

physics, a related mechanism causes the well known Franz-
Keldysh effect of an electric field on an optical absorption
edge.23,24

IV. RESULTS

A. Well

We model GaAs/Al0.4Ga0.6As quantum wells with a well
potential of V0=−333 meV and effective masses of m*

=0.067 in the well and m*=0.0962 in the bulk. Without a
bias field, photoabsorption is dominated by the Fabry-Pérot
resonance structure of the continuum above the well.
Maxima and minima of Mi�E� coincide with Fabry-Pérot
resonances �Fig. 5� �note the logarithmic y axis�. Clearly, the
energy range in this figure far exceeds the range of validity
of the simple reduced mass model employed here. The cal-
culation demonstrates that the method can reliably reproduce
quantities that involve highly oscillatory parts of the con-
tinuum wave function. For physical parameters, only the en-
ergetically lowest resonance contributes significantly. Figure
6 shows the photoabsorption of the ground state of the well
with a width of 4 nm. When no external field is applied, a

0
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M
i(

E
)

(a
.u

.)

E (a.u.)
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FIG. 3. �Color online� Mi�E� for a Gaussian well calculated
exactly �magnified by a factor of 30� in the Born approximation and
with a reflecting wall at z0=2E / �3F�. The modulations are repro-
duced correctly up to a model-dependent offset of the phase. The
Born approximation and reflecting wall model closely agree, but
strongly overestimate the exact Mi�E� and give incorrect energy
dependence.
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FIG. 4. �Color online� Field-induced modulations of Mi�E� for a
Gaussian quantum dot. Exact and Born approximation agree up to a
phase offset, but the reflecting wall model �divided by 3� overesti-
mates the modulations by a factor 
3.
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FIG. 5. Mi�E� for a single quantum well without bias field. The
crosses mark the Fabry-Pérot resonance energies.
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relatively smooth curve �corresponding to the lowest Fabry-
Pérot resonance� is obtained. Upon the application of a field,
rapid oscillations of the cross section appear, whose period
increases with increasing field strength as discussed in the
previous section.

One finds that the exact position and shape of the peaks
are dependent on the geometry and for energies up to a few
times V0 also on the depth of the well potential. However, the
modulation period depends only on the bulk parameters and
on field strength and is nearly independent of the well geom-
etry. For the present bulk reduced mass and dielectric con-
stant, the number of zeros below energy E �in meV� at field
F �in kV/cm� is given by n=�E3/2 /F, with a value of �
=0.12 for all combinations of well thicknesses of 4 and
8 nm, potential depths of 333, 666, and 999 meV, and fields
up to 96 kV/cm.

B. Single dot

We simulate a Ga0.47In0.53As quantum dot �V0=
−376 meV, effective mass m*=0.041� embedded in GaAs
bulk material. The dot supports two bound states at energies
E1=−197 meV and E2=−19.5 meV. Figure 7 gives the pho-
toabsorption cross section for a dot with radius=8 nm and
height=4 nm. Distinctive Fabry-Pérot resonances are absent
in this case. As discussed earlier, modulations of the photo-
absorption cross section due to a bias field decay with in-
creasing photon energy due to integration over degenerate
photoelectron momenta. As the present dot is rather flat, the
decay is somewhat slower than that for the spherically sym-
metric dot used for the illustration in the previous section.

C. Dot in well

As the simplest case of combined QW/QD systems, we
calculated photoabsorption from ground state of a dot lo-
cated in the center of a well with a width of 8 nm. We use the
same reduced masses, dot potential, and depth of the well
potential as in the preceding sections. As energy E=0, we
chose the GaAs conduction band edge. With this choice, the

three subband thresholds of the well lie at E=42, 164, and
330 meV. The larger band offset in the barrier material leads
to a slight increase of the ground state of the combined dot-
in-well system, E=−195 meV �to be compared to −197 meV
of the dot in bulk GaAs, Sec. IV B�. The level structure is
reflected in the photoabsorption shown in Fig. 8. As the
field-free ground state in the dot is symmetric under z→−z,
without a bias field the first dipole-allowed subband states
are the odd states starting from the threshold energy of
164 meV. When the field is turned on, it breaks the reflection
symmetry with respect to z and the transitions to the lowest
subband starting from E=42 meV become dipole allowed.
There appears a very pronounced peak in the photoabsorp-
tion at a subband energy E=137 meV, which exceeds the
value at the second subband threshold by several orders of
magnitude. This peak is due to a resonant state induced by
the dot potential in the first well subband. It is completely
absent when the influence of the dot potential on the subband
continuum is neglected �see Fig. 9 below�. A similar behav-
ior is observed at 330 meV, where the symmetry of the third
well subband becomes lifted and a peak in the photoabsorp-
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FIG. 6. �Color online� Mi�E� for a single rectangular quantum
well: the peak for the field-free case is the first Fabry-Pérot reso-
nance peak in Fig. 5. With a bias field, Mi�E� becomes fully
modulated.
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FIG. 7. �Color online� Mi�E� for transitions from the ground
state of a single flat quantum dot into the bulk continuum. The bulk
threshold at E=0 becomes blurred with increasing bias field. The
decay of field-induced modulations with E is slower than that for a
spherically symmetric dot.
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FIG. 8. �Color online� Mi�E� for a quantum dot embedded in a
quantum well without bias field and with bias fields of 24 and
48 kV/cm. The arrows mark the field-free subband �down arrows�
and bulk �up arrow� thresholds.
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tion into the third subband grows with the bias field.
Just below the third subband threshold, a zero occurs in

Mi�E� at E
300 meV. It is due to effectively one-
dimensional nature of the subband continuum in the cylin-
drically symmetric system. Without a bias field and when we
neglect the influence of the dot potential, the wave functions
of the second subband are

�k
,2� � Jn�k

��2�z� , �24�

where Jn is the nth Bessel function and �2�z� denotes the
second well state. With a cylindrically symmetric initial state
�i�
 ,z�, transitions occur only to the n=0 states. The zero
occurs as the radial wave vector k
 increases and the nodes
of J0�k

� move across the support of �i�
 ,z�, causing sign
changes of the matrix element. The mechanism remains un-
altered when the exact scattering wave functions are used
instead of Eq. �24�. When a bias field is switched on, the
exact zero in the absorption cross section is reduced to a dip.
This is because the third subband lies rather near the bulk
threshold and experiences a significant dc Stark shift of �E
=4.6 meV and also acquires a width of �=29 meV, which
covers the zero of the field-free case.

Field-induced modulations of absorption appear only
above the bulk threshold, where the wave functions have
continuous character also in the z direction.

The general characteristics of the spectra can be deduced
making the Born approximation for the continuum states as
discussed above, i.e., by ignoring the impact of the dot on the
continua. However, quantitatively the results deviate dra-
matically and obviously dot-induced resonances cannot be
reproduced. To demonstrate this, we made a calculation
where we use the Born approximation for the continuum
states, i.e., we calculate the resolvent in Eq. �3� for the
Hamiltonian without the dot potential

Hwell = −
1

2m*�
,z��1




�

�




�

�

+

�2

�z2	 + Vwell�z� + ezF .

�25�

Figure 9 compares the field-free exact photoionization
with the Born approximation. In general, the Born results
strongly overestimate the actual cross sections. This is due to
the higher electron velocity and correspondingly lower am-
plitude and stronger oscillatory behavior of the scattering
wave functions in the region of the dot potential as compared
to the plane waves of the Born approximation.

D. Dot in multiple wells

For Figs. 10–12, additional wells and barriers have been
added keeping the same reduced masses and potential depth
as before. Figure 10 shows absorption for a three-well struc-
ture with wells of width 8 nm separated by barriers of 8 nm
added to either side of the central dot-in-well system. The
influence of adjacent wells is small and differences mainly
arise due to modification of the bulk continuum. As in the
single well case, the bias field enables otherwise forbidden
transitions due to symmetry breaking. Above the bulk thresh-
old, one again sees field-induced modulations of the photo-
absorption cross section.

Figures 11 and 12 show systems of a dot within multiple
wells, where the width of the barriers and outer wells has
been reduced to 4 nm �with only the middle well at 8 nm�.
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FIG. 9. �Color online� Exact Mi�E� vs Born approximation. Sys-
tem parameters are the same as in Fig. 8 for a field of 48 kV/cm.
Born approximation overestimates Mi�E� by O�30� and misses the
sharp peak in the first subband.
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FIG. 10. �Color online� Mi�E� for a quantum dot within three
equidistant wells.
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FIG. 11. �Color online� Quantum dot within three wells sepa-
rated by a narrow barrier. Transitions at energies of 50 meV are
enhanced comparing to Fig. 10 due to stronger coupling to adjacent
wells.
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The graph in Fig. 11 �three wells� is similar to the one above
�the transition to the first z-bound state is suppressed in the
field-free case�. However, the low energy regime shows re-
markable modifications as compared to Fig. 10 due to the
coupling to the neighboring wells. The threshold of the sec-
ond subband of the field-free triple-well system lies at
102 meV and is Stark shifted to 57 meV at a field of
48 kV/cm. In addition, we notice a sharpening of the peaks
in the bulk continuum with an increasing number of wells.

V. CONCLUSION

In this paper, we used resolvent formalism and complex
scaling for the numerical calculation of photoabsorption
cross sections. These methods were found to be efficient and
well converging particularly for bound-continuum transitions
in the case of an external electric field.

The cross sections are dominated by the shape of the par-
ticular heterostructure, which determines the Fabry-Pérot
resonances and subband thresholds, and by bias-field-
induced modulations of the photoabsorption cross section.
The modulations are complete for transitions from subband
states into the bulk, whereas they are only significant near
threshold of a dot-bulk transition and decay rapidly at higher
energies. A specific feature of dot-subband transitions in a
QD/QW system are zeros in the photoabsorption that can
appear due to the reduced dimensionality of the subband
continuum. When a bias field is applied in the growth direc-
tion of the QD/QW system, field-induced modulations ap-
pear only above the bulk threshold.

We have demonstrated that the density of the field-
induced modulations is largely independent of a specific well
structure, which allows us to determine the local bias field
from a measurement of the photoabsorption.

We also showed that the Born approximation for realistic
system parameters seriously overestimates the photoioniza-
tion cross sections and, maybe more severely, misses impor-
tant features such as strong resonances in the subbands that
are induced by the dot potential.

For the transition of an electron from the dot into the
subbands of a superlattice, the most significant structures
arise from the energy thresholds of the subbands. In our ge-
ometry, these were basically defined by the single well into

which the dot has been embedded. Only for narrow barriers
can the nearest adjacent wells modify the photoabsorption
spectrum. The addition of further wells produces only minor
distortions near and above the bulk threshold.
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APPENDIX: DERIVATION OF EQUATION (23)

We approximate the wave in the electric field F by a plane
wave reflected from a solid wall at a distance z0,

�k�� = Neik��·r�� sin�kz�z − z0�� , �A1�

with the normalization

N =�m*�k��
2�3 .

The dipole matrix element from an initial state ��i� then is

�k��z��i� =
N

2i
� d�3�r�i�r��z

��e−i�k��·r��−kzz�e−ikzz0 − e−i�k��·r��+kzz�eikzz0� . �A2�

If we assume that the initial state is symmetric with respect
to reflections of z, ��r�� ,z�=��r�� ,−z�, the integral �A2� be-
comes

N

i
cos�kzz0� � d�3�re−i�k�·r��z�i�r�� , �A3�

which can be written using the Fourier transform �̃i�k�� as

− N cos�kzz0�
�

�kz
�i�k�� . �A4�

We simplify the integration over angles by assuming that �i

is spherically symmetric, �kz
�̃i=	�k�̃i. The angles of �k�� are

restricted to the half-sphere, which results in

k2�
0

2�

d�k�
0

1

d	��k��z��i��2

= 2�N2k2�
0

1

d		2�cos�	kz0��2��k�i�k���2

= �N2k2�
0

1

d		2�1 + cos�2	kz0����k�i�k���2

=
m*k3

2�2 ��k�i�k���2

��1

3
+

sin 2kz0

2kz0
+

2 cos 2kz0

�2kz0�2 −
2 sin 2kz0

�2kz0�3 	 . �A5�

Keeping only the leading terms of the oscillatory part, we
arrive at Eq. �23�.
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FIG. 12. �Color online� Quantum dot within 3, 5, and 11 wells at
F=48 kV/cm. Only minor differences of Mi�E� near and in the
bulk continuum can be seen.
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