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We determine the lifetime of the surface plasmon in metallic nanoparticles under various conditions, con-
centrating on the Landau damping, which is the dominant mechanism for intermediate-size particles. Besides
the main contribution to the lifetime, which smoothly increases with the size of the particle, our semiclassical
evaluation yields an additional oscillating component. For the case of noble metal particles embedded in a
dielectric medium, it is crucial to consider the details of the electronic confinement; we show that in this case
the lifetime is determined by the shape of the self-consistent potential near the surface. Strong enough pertur-
bations may lead to the second collective excitation of the electronic system. We study its lifetime, which is
limited by two decay channels: Landau damping and ionization. We determine the size dependence of both
contributions and show that the second collective excitation remains as a well-defined resonance.
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I. INTRODUCTION

The surface plasmon �SP� resonance is a very important
collective excitation in metallic clusters.1,2 It is the dipolar
vibration of the electronic center of mass with respect to the
positive ionic charge, analogous to the giant resonance of
nuclei.3 Since an external electromagnetic dipole field
couples directly to the electronic center of mass, the photo-
absorption spectrum of a metallic cluster is dominated by the
SP. The lifetime of this collective excitation is a determining
factor in the relaxation process studied in femtosecond
pump-probe experiments.4

The classical electromagnetic theory for a charged metal-
lic sphere in the vacuum yields the energy ��M of the reso-
nance, with the Mie frequency �M=�p /�3, where �p
= �4�ne2 /me�1/2 is the bulk plasma frequency of the metal, n,
e, and me being the electron density, charge, and mass, re-
spectively. If the clusters are embedded in a matrix �of di-
electric constant �m� and/or we consider noble metal clusters
�where the effect of the d electrons can be modeled by a
dielectric function �d� the Mie frequency takes the form
�M=�p /��d+2�m. The Mie frequency is close to the experi-
mentally measured resonances. Such an agreement is not sur-
prising since we deal with a collective excitation with a clear
classical counterpart. Small red- and blueshifts with respect
to �M have been experimentally observed in different physi-
cal conditions, and various microscopic approaches have
been developed to account for the frequency shifts.1,2 The
most successful among them are based on a jellium descrip-
tion �where the ionic positive charges are taken as a uniform
background� and linear-response theory in the framework of
the time-dependent local density approximation �TDLDA�.5

While it is difficult to measure the SP lifetime, numerous
data for the linewidths of the absorption peak of ensembles
of nanoparticles are available,1,2,6,7 but their theoretical
analysis has proven to be quite involved. In principle, inho-
mogeneous effects arising from the dispersion among the
probed ensemble of clusters have to be separated from the

properties of single particles. Intrinsic effects depending on
the bulk properties of the metal have to be separated from
size-dependent properties of the cluster, and from the effect
of the interaction with the local environment �matrix�. In
addition, the decay of the SP may follow different channels
depending on the size of the cluster.2 We calculate the Lan-
dau damping contribution to the linewidth �i.e., decay into
particle-hole pairs�, which dominates in the case of small
clusters of radius a in the range 0.5–2.5 nm.3 For larger
particles the Landau damping competes with radiation damp-
ing.

Recent measurements of single-cluster optical absorption
have rendered accessible the optical properties of individual
nano-objects.8–10 Most of the individual nanoparticles stud-
ied so far �in static8 or dynamic9 setups� are too large to be in
the Landau regime. However the linewidth of a single 2.5
nm radius gold nanoparticle has been determined lately.10

The possibility of overcoming the inhomogeneous broaden-
ing, and the application as biological markers, resulted in a
renewed interest for the optical response of metallic clusters.

Kawabata and Kubo studied the Landau damping of the
SP,11 and using linear response theory they proposed a total
linewidth

�t�a� = �i + ��a� ,

with �i a constant intrinsic width and ��a� inversely propor-
tional to the particle size a. Barma and Subrahmanyam,12

and Yannouleas and Broglia13 improved this calculation and
proposed corrections to the behavior of � outside the regime
��M/�F�1, where �F is the Fermi energy. They obtained

��a� =
3

2

�F

kFa
g��� , �1�

where kF is the Fermi wave-vector, and g a function of the
ratio �=��M/�F. Numerical calculations within the TDLDA
on free alkaline clusters14 agree with this analytical result for
1.5	a	2.5 nm. For smaller radii, � shows a nonmonoto-
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nous size dependence superposed to the overall behavior of
Eq. �1�. These shell effects arise from the electron-hole
density-density correlations in the angular-momentum re-
stricted density of states,15 and a semiclassical evaluation of
� is in good agreement with TDLDA calculations.

The experimentally observed nonmonotonous size depen-
dence of the plasmon linewidth for charged alkaline metal
nanoparticles in vacuum6 is consistent with the theoretical
calculations. However, our calculated linewidths yield lower
bounds for the experimentally measured ones, and the corre-
sponding lifetimes are upper bounds of those found in real
systems. Further measurements with smaller radii and a nar-
rower size distribution seem necessary to clearly establish
the connection with the theory.

Noble metal clusters embedded in inert matrices7 also ex-
hibit a nonmonotonous linewidth for small a. However, a
direct application of Eq. �1� overestimates the smooth part of
�.15 This discrepancy motivates us to develop a refined the-
oretical description of the SP lifetime for the case of clusters
with internal dielectric constant �d and surrounded by a di-
electric medium with constant �m. The presence of an inho-
mogeneous dielectric environment leads to the modification
of Eq. �1�.

Under a weak initial optical excitation, only the first sur-
face plasmon �that we simply denote “surface plasmon”
when there is no possibility of confusion� is excited. With
sufficiently strong initial excitations, we can also reach the
second quantum level of the center-of-mass motion, known
as the second �or double� plasmon. Such a resonance will be
experimentally relevant provided its lifetime is sufficiently
large �in the scale of �M

−1�. The lifetime is given by the an-
harmonicities of the center-of-mass system and by its inter-
actions with the other degrees of freedom. Like in the previ-
ous discussion, the Landau damping is an important channel
for the decay of the second plasmon, but a new channel
appears when 2��M is larger than the ionization energy: the
ionization in which the cluster loses an electron into the
continuum.16 Such a process was discussed in order to inter-
pret the ionization of charged Na93

+ clusters observed by
Schlipper and collaborators.17,18

We calculate the decay rates associated with different
channels for the single- and double-plasmon states using a
semiclassical approach within a mean-field description of the
nanoparticle. Whenever it is possible, we verify the semiclas-
sical approach by comparing to numerical calculations. We
characterize the size-dependent oscillations of the first and
second plasmon linewidths for the case of free alkaline met-
als. In addition, we analyze the theoretical difficulties in ex-
tending these calculations to the case of embedded and/or
noble metal clusters and propose a way to overcome them.
We also apply our semiclassical approach to the calculation
of the ionization rate via the double-plasmon channel, and
obtain results comparable with the experiments.17,18

The paper is organized as follows: In Sec. II we introduce
the basic formalism for the photoabsorption and the SP line-
width. In Sec. III we present the semiclassical calculation of
the single-plasmon linewidth, testing some of the approxima-
tions that we will use in the sequel. In Sec. IV we study the
case of noble metal nanoparticles embedded in a dielectric
medium and present the need to improve the existing theory

for this case. In Sec. V we show a semiclassical description
of the two main channels contributing to the decay of the
double plasmon: Landau damping and ionization. Finally in
Sec. VI we draw the conclusions and the perspectives of our
work. We relegate to the appendix a few technical, but im-
portant issues; in Appendix A we extend the standard calcu-
lation of the plasmon linewidth to the case where the cluster
is made of a noble metal and/or is embedded in a nonreactive
matrix. In Appendix B we show how to take advantage of the
spherical symmetry in semiclassical calculations like the
ones of this paper, and how to recover some well-known
results. In Appendix C we present the frequency dependence
of the different plasmon linewidths.

II. PHOTOABSORPTION AND PLASMON LINEWIDTH

When the cluster is placed in an electromagnetic field
with a wavelength much larger than its size,19 the photoab-
sorption cross section is obtained from the application of the
dipole operator on the ground state of the system:


��� =
4�e2�

3c
�

f

��f �z�0��2���� − Ef� , �2�

where c is the velocity of light; �f� and Ef are, respectively,
the many-body excited states and eigenenergies of the elec-
tronic system. The ground state is noted as �0� and its energy
is taken as zero. In Eq. �2�, the photon degrees of freedom
have already been integrated out. In order to describe the
electronic system, we consider a closed shell nanoparticle
�perfectly spherical with a “magic number” of atoms� within
a jellium model. The Hamiltonian representing N valence
electrons in a uniformly positively charged sphere of charge
+Ne is given by

H = �
i=1

N � pi
2

2me
+ U�ri�	 +

1

2 �
i,j=1

�i�j�

N
e2

�ri − r j�
, �3�

with the single-particle confining potential

U�r� = 
2�ne2� r2

3
− a2� , r 	 a ,

− 4�ne2 a3

3r
, r � a ,
 �4�

where n=N /V is the electronic density and V=4�a3 /3 the
volume of the particle. The potential U is harmonic inside
the particle and Coulomb-like outside it.

The experimentally obtained photoabsorption cross sec-
tion is dominated by the surface plasmon �SP� resonance at
the frequency �M. The width � of this resonance can, in
principle, be calculated from the eigenstates of H appearing
in Eq. �2�. However, this procedure is in general exceedingly
difficult, and thus various approximation schemes have been
proposed.2,13 Among them, the TDLDA �time-dependent lo-
cal density approximation� is a numerical approach based on
the local density approximation.5 We will use this numerical
scheme as a check of analytical approaches that instructs us
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on the physical underlying mechanisms to the plasmon de-
cay.

Since we are in the long-wavelength limit where the field
couples only to the electronic center of mass, a particularly
useful decomposition of the Hamiltonian �3� is

H = Hcm + Hrel + Hc.

Introducing the canonical coordinates �R ,P�, the �harmonic�
center-of-mass Hamiltonian is given by

Hcm =
P2

2Nme
+

1

2
Nme�M

2 R2.

Hrel is the Hamiltonian of the relative coordinates and Hc
expresses the coupling between the two subsystems. Intro-
ducing the standard position, momentum and lowering op-
erators

aQ =�Nme�M

2�
Q +

i
�2Nme��M

PQ, Q = X,Y,Z ,

we can write

Ĥcm = ��M �
Q=X,Y,Z

�aQ
† aQ +

1

2
� .

It is difficult to handle Hrel and Hc in the general case. A
notable exception is that of a confining potential which is not
given by Eq. �4�, but which is harmonic for all r. We are then
in the situation for which Kohn’s theorem20 applies. It states
that in a purely harmonic confinement potential, and with
interactions only depending on the interparticle distance, the
center of mass and the relative coordinates decouple �i.e.,
Hc=0�. The motion of the center of mass is that of a har-
monic oscillator, with the characteristic frequency of the con-
fining potential, independent of the electron-electron interac-
tion. Due to the decoupling, the SP has an infinite lifetime.
Kohn’s theorem gives us a first insight into the relaxation
process of the SP: The Coulomb part of U �for r�a� leads to
the coupling of the center of mass and the relative coordi-
nates �i.e., Hc�0�, and translates into the decay of the SP.

For the realistic situation Hc�0, it is useful to describe
Hrel and Hc within the mean-field approximation, where Hrel
can be expressed as

ĤMF = �



�
c

†c
,

where �
 are the eigenenergies for the mean-field potential V
and c


† �c
� creates �annihilates� the one-body eigenstate �
�.
Consequently, the mean-field approximation to Hc will be
given by the change �V induced in the one-body potential V
by a displacement Z of the center of mass. In Appendix A we
show how to obtain �V in a self-consistent way from the
electronic Coulomb interactions �Eq. �A2��. In second quan-
tization, we can write

Ĥc =��me�M
3

2N
�

�

d
��aZ
† + aZ�c


†c�, �5�

where d
� is the matrix element of the classical dipole field
between two eigenstates of the unperturbed mean-field prob-
lem �Eq. �A3��.

The laser excitation induces an initial electronic state cor-
responding to a rigid shift �with a magnitude Z� of the un-
perturbed ground state. Within our separation for the degrees
of freedom of the electronic system, such an initial state can
be written as a product of the ground state for the relative
coordinate system and a coherent state for the center of mass
�along the direction of the excitation�. Since the amplitude of
the perturbation is assumed to be small, the initial coherent
state can be approximated by a linear superposition of the
ground state �0cm� and the first �harmonic oscillator� excited
state �1cm,Z�. The lifetime of such an initial state is that of the
SP. It is related to the transition rate � of �1cm,Z� to �0cm� by
T1=� /�, while the dephasing time is given by T2=2T1. This

decay is due to the coupling Ĥc and results in the transition
of the relative coordinate system from its ground state to
excited ones �that within our mean-field assumption we note
�0MF� and �fMF�, respectively�.

Assuming a weak coupling Ĥc, the SP linewidth can be
obtained from the Fermi Golden Rule as

� = 2��
fMF

��0cm, fMF�Ĥc�1cm,Z,0MF��2����M − � fMF
� .

According to form �5� of Ĥc, the final mean-field states �fMF�
are particle-hole excitations, and therefore

� =
���M

3 me

N
�
ph

�dph�2����M − �p + �h� , �6�

where �p� and �h� represent, respectively, particle and hole
states of the mean-field problem.

Form �6� of the SP linewidth can also be derived from
discrete-matrix random phase approximation13 using the
classical field associated with the collective state as the
source of particle-hole transitions. The procedure presented
above is easy to generalize for the two cases important for
our work: a nonhomogeneous dielectric function and the ex-
citation of the second plasmon.

III. SIZE DEPENDENCE OF THE PLASMON LINEWIDTH

In order to evaluate the plasmon linewidth from Eq. �6�,
we need a description of the eigenstates �
� �p or h� of the
mean-field problem. The self-consistent potential obtained
from TDLDA �thick line, Fig. 1� suggests that for analytical
calculations, V�r� can be approximated by a spherical well of
radius a and finite height V0:

V�r� = V0��a − r� , �7�

with � the Heaviside distribution. This stairlike approxima-
tion becomes more appropriate as the particle size increases.
As we discuss in the next chapter, the dielectric constants
inside and outside the cluster influence the steepness of V�r�.

LIFETIME OF THE FIRST AND SECOND COLLECTIVE … PHYSICAL REVIEW B 72, 115410 �2005�

115410-3



The spherical symmetry of the problem allows us to sepa-
rate the wave functions and matrix elements into radial and
angular components

�klm�r� =
ukl�r�

r
Yl

m��� ,

and

d
� = Al
l�

m
m�Rk
k�

l
l� . �8�

ukl satisfies the radial Schrödinger equation �B1�, Yl
m repre-

sents the spherical harmonics, k= �2me��1/2 /� is given by the
principal quantum number, while l and m are the angular
momentum quantum numbers. The angular part of the matrix
element can be expressed in terms of the Wigner-3j symbols
as

Al
l�

m
m� = �− 1�m
��2l
 + 1��2l� + 1�

��l
 l� 1

0 0 0
�� l
 l� 1

− m
 m� 0
� . �9�

The dipole matrix element of the radial problem can be writ-
ten as

Rk
k�

l
l� =
�2

me��
 − ���2�
0

�

dr uk
l

* �r�

dV

dr
uk�l�

�r� . �10�

In the limit of large V0, we have ukl�r�
=�2�a3/2jl+1�ka��−1rjl�kr�, where jl are the spherical Bessel
functions and the allowed values of k are given by the quan-
tization condition jl�ka�=0, one obtains13

Rkpkh

lplh =
2�2

mea

��p�h

��p − �h�2 . �11�

The summations appearing in Eq. �6� can be replaced
by integrals provided one knows the particle �and hole�
density of states �DOS�. Decomposing the latter as a sum
over its fixed angular momentum components �����
=�l=0

� �m=−l
+l �l����, we have

� = 2
4��

Nmea
2�M

�
max��F,��M�

�F+��M

d�p�p�h

� �
lp,mp

lh,mh

�lp
��p��lh

��h��Alplh

mpmh�2,

with �h=�p−��M. The overall factor of 2 accounts for the
spin degeneracy. The angular part �9� of the dipole matrix
element contains the selection rules mh=mp and lh= lp±1.
Performing the sum over mp and lh, with the change of vari-
ables �p=�0�p

2 , �h=�0�h
2 ��0=�2 /2mea

2 and �=ka�, we
have

� = 4�0
2��

�p
min

�p
max

d�p�p
3�h

2

��
lp

�lp�lp−1��h� + �lp + 1��lp+1��h���lp
��p� , �12�

where �=2��3 /3Nme
2�Ma4, �p

min=�Fmax�1,���, �p
max

=�F
�1+� , �=��M/�F, and �F=kFa.

The SP linewidth depends on the l-fixed DOS of the par-
ticles and holes. The asymptotic distributions of the zeros of
the Bessel functions were used in Refs. 12 and 13 to obtain
the leading behavior of � for the largest radii of the consid-
ered interval. Corrections, relevant for smaller radii, necessi-
tate numerical or semiclassical approaches.

A. Semiclassical approach and smooth size-dependent
component of the plasmon linewidth

The semiclassical approximation to the radial problem
�see Appendix B� allows us to write the l-fixed DOS as

�l��� =
�l���
2���1 + 2�

r̃=1

�

cos�r̃�Sl���
�

−
3�

2
�	� . �13�

The classical action of the periodic orbit at energy � is

Sl��� = 2����ka�2 − �l + 1/2�2 − �l +
1

2
�arccos� l + 1/2

ka
�	 ,

while its period is given by

�l��� =
���ka�2 − �l + 1/2�2

�0�ka�2 ,

and we note r̃ the number of repetitions of the periodic orbit.
Within the semiclassical approximation, the finite height V0
of the self-consistent potential is irrelevant since the classical
trajectories at a given energy are not sensitive to the shape of
the potential above this energy.

In the semiclassical approach of Ref. 15, that we extend
and improve in the sequel, it is natural to decompose the
DOS into a smooth part �l

0 and an oscillating part �l
osc �Eqs.

�13� and �B3��. With Eq. �12�, this leads to the dominant
�smooth 1/a-dependent� component of � �due to the terms
�lp

0 �lh
0 of the product� with nonmonotonous �in a� correc-

tions.
For the smooth part, we assume that lp�1, consistent

with the fact that we are interested in leading order contri-

FIG. 1. Self-consistent potential as a function of the radial co-
ordinate �in units of the Bohr radius a0� from the TDLDA calcula-
tions for a 832-atom nanoparticle with mean distance between elec-
trons rs= �3/4�n�1/3=3.03 a0, corresponding to a�28.5 a0. The
different curves are for �=�d=�m between 1 and 4, showing that the
slope of the potential decreases with increasing values of �. The
corresponding Fermi levels are indicated by horizontal lines.

WEICK et al. PHYSICAL REVIEW B 72, 115410 �2005�

115410-4



butions in �. Then we use lh±1� lp and approximate the sum
over lp by an integral. Setting y= lp

2 /�F
2 and z=�p

2 /�F
2, we find

�0�a� =
��kFa�6

2�2 �
max�1,��

1+�

dz�
0

z−�

dy�z − y�z − y − � .

�14�

Performing the integrals of Eq. �14� leads to the smooth
component �0 given by Eq. �1�. The 1/a dependence agrees
with the linear-response result of Kawabata and Kubo.11 The
function g appearing in Eq. �1� decreases with � with g�0�
=1 and lim�→�g���=0. Its explicit form can be found in
Refs. 12 and 13; it is reproduced in Fig. 5 of Appendix C.

The smooth component of the linewidth of the collective
state is inversely proportional to the radius of the nanopar-
ticle: This has been interpreted11 as a surface effect arising
from the confinement of the single-particle states. The ana-
lytical evaluation of �0 agrees with the numerical calcula-
tions �see dashed line of Fig. 2�. Experiments on charged
alkaline clusters with a diameter in the range 1–5 nm in
vacuum6 yield a linewidth of the order of ��1 eV. Al-
though the charged character of those clusters limits the ap-
plicability of our model, we note that our calculated value is
smaller, but of the same order of magnitude than the experi-
mental one. This difference might be explained by additional
contributions to the linewidth present in the experiment.

B. Shell effects and nonmonotonic behavior
of the plasmon linewidth

The oscillating part of the DOS �13� gives rise to terms of
the type �l

0�l�
osc as well as �l

osc�l�
osc. The former become neg-

ligible �in the semiclassical limit of small �� in Eq. �12�
because one integrates a smooth function multiplied by a
highly oscillating one. The latter yield

�osc =
4�

�2�
�p

min

�p
max

d�p�p �
lp

lh=lp±1

f lh �

=p,h

��

2 − �l
 + 1/2�2

� �
r̃
�1

cos�r̃
�Sl

��
�

�
−

3�

2
�	 ,

where f lh
= lp for lh= lp−1 and f lh

= lp+1 for lh= lp+1. We can
expand the product of the two cosines and keep only the
contribution in leading order in �, neglecting the highly os-
cillating term as a function of the particle and hole actions.
We now write this contribution with the help of the Poisson
summation rule to obtain

�osc �
�

�2�
�p

min

�p
max

d�p�p �
m̃=−�

+�

�
r̃p,r̃h�1


=±

�
−1/2

lmax

dlp

� �
lh=lp±1

f lh �

=p,h

��

2 − �l
 + 1/2�2e
i�lp

r̃pr̃hm̃��p�,

�15�

where we have defined the phase

�lp

r̃pr̃hm̃��p� =
r̃pSlp

��p�

�
−

r̃hSlh
��h�

�
−

3�

2
�r̃p − r̃h� + 2�m̃lp.

�16�

Performing a stationary phase approximation, given by the

condition �� /�lp�l̄p =0 with the stationary points l̄p, we obtain
the stationary phase equation

r̃parccos� l̄p + 1/2

�p
� − r̃harccos� l̄h + 1/2

�h
� = �m̃ .

The phase of Eq. �16� indicates that the major contribution to
the integral over lp in Eq. �15� will be given by r̃p= r̃h and
m̃=0. We then select only one point within the full mesh of
the stationary points,

l̄p + 1/2

�p
=

l̄h + 1/2

�h
. �17�

Noticing that �h= ��p
2 −�F

2��1/2��p, we see that in order to

satisfy Eq. �17�, we have to set l̄h= l̄p−1. The stationary point
is then given by

l̄p =
�p + �h

2��p − �h�
.

Performing the integral over lp with the help of the stationary
phase approximation finally provides the following result for
the oscillating part of the first plasmon linewidth:

FIG. 2. Inverse lifetime of the first collective excitation in Na
nanoparticles as a function of the radius a of the particle. The
dashed line is the smooth part of the single plasmon linewidth, Eq.
�1�. The full line is the smooth part plus the oscillating contribution
from Eq. �18� for a number of repetitions r̃=1. This semiclassical
result is compared to numerical TDLDA calculations �dots� for
clusters with magic numbers of atoms between 20 and 1760.
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�osc�a� = 6��
�F

��kFa�5�
max�1,���

�1+�

d�
� + ��

�� − ���4

��5/2��3/2��kFa�2�� − ���2 − 1�5/4

��
r̃=1

�
1
�r̃

cos�2r̃���kFa�2�� − ���2 − 1

− arccos� 1

kFa�� − ���
�	 −

�

4
� , �18�

where ��=��2−� and �=��M/�F. The remaining integral
over � can be performed numerically �solid line, Fig. 2�.
Assuming that kFa�1, using that �−���1 and that the sum
over the number of repetitions is dominated by the first term,
we see that the argument of the cosine is close to 2kFa and

�osc�a� �
�F

�kFa�5/2cos�2kFa� .

Therefore the linewidth of the single SP excitation has a
nonmonotonic behavior as a function of the size a of the
metallic cluster. This is due to the density-density particle-
hole correlation appearing in the Fermi Golden Rule �6�. Let
us mention that the result of Eq. �18� is slightly different
from the one of our previous work.15 This is due to the fact
that we have used here a more rigorous treatment of the
semiclassical radial problem. As in Ref. 15, we have to set a
phase shift in our analytical prediction of Eq. �18� to map the
TDLDA numerical points in Fig. 2. This is due to the fact
that we have taken only one stationary point �Eq. �17�� and
neglected all the other contributions coming from the full
mesh of stationary points which influence the phase appear-
ing in Eq. �15�.

A nonmonotonic behavior has also been observed experi-
mentally in the case of charged lithium clusters.6 Our nu-
merical TDLDA calculations �that we have extended here to
larger sizes, up to 1760 atoms� confirm the presence of size-
dependent oscillations for alkaline metals. The semiclassical
approach also predicts a nonmonotonous behavior of � for
noble metal clusters, in agreement with recent experimental
results.21 However, the presence of different dielectric con-
stants inside and outside the cluster render the problem more
involved. This issue is discussed in the following section.

IV. PLASMON LINEWIDTH WITH AN
INHOMOGENEOUS DIELECTRIC ENVIRONMENT

In a previous analysis of the surface plasmon �SP�
linewidth,15 we were interested by the case of noble metallic
nanoparticles �where the d electrons are modeled via a di-
electric constant �d� embedded in a matrix of dielectric con-
stant �m. The two dielectric constants affect �M as discussed
in the introduction. However, a generalization of the deriva-
tion of Sec. III shows that, as long as we work with the
hypothesis of a steep potential �Eq. �7��, the smooth part of �
is still given by Eq. �1�. For a silver nanoparticle ��d�3.7�
embedded in an argon matrix ��m�1.7�,22 using Eq. �1�
yields a value of �0 about three times larger than the TDLDA
calculations15 �themselves in good agreement with existing

experiments7�. This discrepancy makes the more systematic
study of the dependence of the plasmon lifetime on �d and �m
presented in this section necessary.

In Fig. 3�a� we present the SP linewidth obtained from
TDLDA for several particle sizes between N=138 and 1760,
taking �d=4 and �m=2 and the electron density of silver
�rs=3.03 a0�. As in the case of Fig. 2, we see that for rela-
tively large radii the linewidth can be approximated by �0

=C / �a /a0� while for smaller radii a, superimposed oscilla-
tions become noticeable. As shown in Fig. 3�b�, when plot-
ting the coefficients C as a function of �d and �m, we see that
the numerical results are at odds with the simple prediction
of Eq. �1� �upward continuous curves�.

The increase of �0 with �d and �m in the latter case arises
from the fact that the function g is decreasing with �
=��M/�F and the Mie frequency �M=�p /��d+2�m is red-
shifted when �d or �m is increasing. Calculations performed
for the electronic density of sodium �rs=3.93 a0� give the
same kind of discrepancy between Eq. �1� and TDLDA
results.23

The discrepancy between the numerics and Eq. �1� shows
that a direct application of the analytical approach presented

FIG. 3. �a� Surface plasmon linewidth from the TDLDA as a
function of the inverse radius for the example of �d=4 and �m=2
�dots�. The straight line is a linear fit �=C / �a /a0�. �b� Prefactor C
of the smooth 1/a size-dependent component of the surface plas-
mon linewidth �0 as a function of �m for �d=1 �solid line�, �d=2
�dashed line�, �d=3 �dashed-dotted line�, and �d=4 �dotted line�.
The crosses connected by straight lines �guide-to-the-eye� represent
the TDLDA calculations, while the increasing curves in the upper
part of the figure depict the analytical expression �1�. The thin gray
line is for �d=�m. The results presented in the figure are for the
electron density of silver �rs=3.03 a0�.
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in the preceeding section does not reproduce the TDLDA
results. As we will see in the following, the discrepancy is
caused by approximating the electronic self-consistent poten-
tial by a square well.

The TDLDA calculations show that the shape of the self-
consistent potential is modified when one increases the di-
electric constants �d or �m. In Fig. 1 we present the self-
consistent potential of a nanoparticle consisting of N
=832 atoms �rs=3.03 a0� for various values of �=�d=�m.
This choice does not correspond to a physical realization, but
it is useful for the interpretation of the analytical work, as it
merely represents a renormalization of the electronic charge.
The main effect of increasing � is the decrease of the slope of
the potential near the boundary r=a. This indicates that our
approximation of a square-well potential becomes less valid
as the dielectric constant is increased. The �0 dependence on
� in this case is obtained by moving along the line �d=�m in
Fig. 3�b�.

In the following we refine the calculation of the dipole
matrix element �10� in order to take into account the behav-
ior of the slope of the self-consistent potential. The finite
value of the slope of the self-consistent potential is often
ignored. But here, it is necessary to go beyond the hypothesis
of infinitely steep potential walls �Eq. �7�� in order to make
progress. As it can be seen from Eq. �10�, the dipole matrix
element is proportional to the matrix element of the deriva-
tive of the potential V with respect to r. In the sequel, we
show that below a certain value, the dipole matrix element is
directly proportional to the slope of the self-consistent poten-
tial near the interface and estimate the slope from a simple
model. Since the linewidth is proportional to the square of
the dipole matrix element, we see that � decreases with the
slope, and thus with the increase of the dielectric constant.

A. Surface plasmon linewidth with a soft
self-consistent potential

In order to improve our understanding of the role of a
dielectric mismatch to the SP linewidth, we now need to
come back to the evaluation of Eq. �6� without making the
approximation of an infinitely steep well for the self-
consistent potential. A simplified way of taking into account
the noninfinite slope of V�r� is to change Eq. �7� by

V�r� =

0, 0 	 r � a −

ds

2
,

s�r − a −
ds

2
� + V0, a −

ds

2
	 r 	 a +

ds

2
,

V0, r � a +
ds

2
,



where the distance ds on which the slope s=V0 /ds is nonva-
nishing is assumed to be small as compared to the nanopar-
ticle radius a. We first need an approximation for the dipole
matrix element between particle and hole states in that po-
tential. As explained in Appendix B 3, this can be done semi-
classically using the limit in which particle and hole states
are close in energy ���p−�h� /�F=��M/�F�1�. This semi-
classical approximation relates the dipole matrix element to

the Fourier components of the classical trajectory in the one-
dimensional effective potential Vl

eff�r�. As a simplifying ap-
proximation, we neglect the centrifugal part of the effective
potential above r�a−ds /2. Integrating the classical equa-
tion of motion, we obtain periodic trajectories �for ��V0�
given by

r�t� = 
�
2�

me
t2 +

�2�l + 1/2�2

2me�
, t 	 tc,

−
s

2me
� �l

2
− t�2

+ a +
ds

2
−

V0 − �

s
, t � tc,


with r�tc�=a−ds /2 and where �l is the period. We can now
evaluate the dipole matrix element using the semiclassical
Eq. �B7�, neglecting the acceleration of the particle for r
−a+ds /2→0− �justified for a�ds�. An expansion in 1/�n
�where �n is the difference between the radial quantum num-
ber of the particle and of the hole� gives, up to an irrelevant
phase factor

Rkpkh

lplh �
s

me

2

�lp

�3

��p − �h�3sin���n
�t

tc
� , �19�

with �t=�lp
/2− tc the time spent by the particle in the region

where the slope is nonvanishing.
An estimation of the argument of the sine gives

���M/���ds /a�, with � the mean level spacing. Typical val-
ues give ��M/��104�1. In the limit of a very large slope,
ds /a tends to zero. Then, the argument of the sine is very
small compared to one, and we recover the semiclassical
evaluation of Eq. �B8� with an infinite slope. On the contrary,
if we assume that ds is of the order of the spillout length24

��a0�, the argument of the sine is much greater than one.
Inserting Eq. �19� into Eq. �6�, we obtain

�0 =
2s2

���M
3 Nme

�
�F

�F+��M

d�p �
lp,mp

lh,mh

�Alplh

mpmh�2sin2���n
�t

tc
� .

Averaging the highly oscillating sine �squared� by 1/2 gives
for the SP linewidth in the limit �→0

�0�a� �
3s2

4

1

me�M
2

1

kFa
. �20�

We then see that in the case of a soft self-consistent potential,
the SP linewidth is proportional to the square of the slope s
of that potential. When one increases the dielectric constant
of the medium, the slope decreases �see Fig. 1� and therefore
�0 decreases. We also notice that the smooth 1/a size depen-
dence of the SP linewidth remains valid even for a finite
slope.

B. Steepness of the self-consistent potential
with a dielectric mismatch

In order to estimate the slope of the self-consistent poten-
tial, we consider the simpler geometry of a metallic slab of
dielectric constant �d, bounded by two interfaces at x
= ±w /2 and with an infinite extension in the �y ,z� plane,

LIFETIME OF THE FIRST AND SECOND COLLECTIVE … PHYSICAL REVIEW B 72, 115410 �2005�

115410-7



surrounded by a dielectric medium with a constant �m. This
geometry allows us to simplify the problem to an effective
one-dimensional system and can be expected to provide a
good approximation for the shape of the potential near the
interface for the sphere geometry.

We make the jellium approximation for the ionic density
ni�x�=ni��w /2− �x��, with � the step function, and work
within the Thomas-Fermi approach, writing the local energy
in the electrostatic field � as

� =
p2�x�
2me

− e��x� ,

and the electronic density �at zero temperature� as

ne�x� =
1

3�2�2me

�2 �3/2

�� + e��x��3/2,

with � the chemical potential in the potential V�x�=−e��x�.
The Thomas-Fermi approach to surfaces is known to have
serious shortcomings25 �for instance, it predicts a vanishing
work function�. However, it will be useful for our estimation
of the slope of the mean field seen by the charge carriers. The
self-consistency is achieved through the Poisson equation

d2�

dx2 = 

4�e

�d
�ne�x� − ni� , �x� �

w

2
,

4�e

�m
ne�x� , �x� �

w

2
.
 �21�

First we consider the simpler case where �d=�m=�. In this
case, integrating once Eq. �21� and invoking the continuity of
the potential and the electrical field, we find for the slope of
the self-consistent field at x=w /2

s =
4e

�15�
�2me

�2 �3/4�1
5/4

�7/4 �1 −
2

5�3/2��1

�F
�3/2	5/4

, �22�

where we have assumed the scaling ���1 /� with �1 the
chemical potential in the case where �=1, and �F is the
Fermi energy of the free electron gas. The chemical potential
is fixed by the consistency condition

� ��

8�e2ni
�

1− 2
5� �

�F
�3/2

1 du

f�u�
=

w

2
�23�

with

f�u� =�2

5
� �

�F
�3/2

�u5/2 − 1� − �u − 1� .

If we do not have any dielectric constant �i.e., �=1�, the
same equation is obtained but without the prefactor ��. The
integral in Eq. �23� is clearly dominated by its prefactor.
Then, assuming that the integral appearing in this equation
does not change appreciably when we have a dielectric con-
stant, we find the scaling ���1 /�. Therefore, we see that
the slope at the interface is decreasing with increasing values
of the dielectric constant �, a feature confirmed by our
TDLDA calculations �see Fig. 1�.

In the case where we have a dielectric mismatch between
the metallic slab and the environment, the continuity of the
normal component of the displacement field D gives, pertur-
batively, in the limit ��d−�m�→0,

s =
4e

�15�
�2me

�2 �3/4 �1
5/4

�m
1/2�d

5/4�1 −
2

5�d
3/2��1

�F
�3/2	5/4

��1 +
�d − �m

2�d
5/2 ��1

�F
�3/2�1 −

2

5�d
3/2��1

�F
�3/2	� , �24�

with the scaling ���1 /�d, which can be justified in the
same manner as for the case of a single dielectric constant.
The only difference is that in the case of a dielectric mis-
match, we obtain Eq. �23�, up to a change of � by �d. We then
see that the slope s of the confining mean-field potential at
the interface is decreasing either with �d or �m �for small
��d−�m��, in agreement with the TDLDA calculations.

This Thomas-Fermi approach to the mean-field potential
of a metallic slab then provides an estimate of the slope of
that potential near the interface between the slab and the
surrounding environment. It can be expected that these re-
sults are also applicable to the more involved problem of the
metallic sphere, up to some geometrical prefactors. In the
following section, we will incorporate our estimate of the
self-consistent potential slope in our evaluation of the SP
lifetime.

C. Surface plasmon linewidth with a dielectric mismatch

We can now use our estimate �24� for the slope of the
self-consistent potential in our evaluation �20� of the SP line-
width. In order to do that, we assume that the chemical po-
tential �1 for �=1 is the Fermi energy �F of a free electron
gas.

In the case where we have a charge renormalization �i.e.,
�d=�m=��, we obtain by inserting Eq. �22� into Eq. �20�

�0�a� �
9

5

�F

kFa

1

�5/2�1 −
2

5�3/2�5/2

. �25�

This result qualitatively reproduces the decrease obtained
from TDLDA for �0a /a0 as a function of the dielectric con-
stant � as it can be seen on Fig. 3�b� �gray thin line�. We
notice that for �=1, we have �0��F /kFa in the limit of
small �, which has to be compared with Eq. �1� giving
1.5 �F /kFa. This small discrepancy is not surprising, regard-
ing the various approximations we made here.

In the case where we have a dielectric mismatch, by in-
serting Eq. �24� into Eq. �20� and making the expansion for
small ��=�d−�m, we obtain

�0�a� � ����=0�
0 �a� + A�� �26�

for fixed �d and

�0�a� � ����=0�
0 �a� − B�� �27�

for fixed �m. In the above two equations, A and B are two
positive coefficients not specified here, and ����=0�

0 is given
by Eq. �25�. These results confirm the behavior of the
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TDLDA calculations depicted on Fig. 3�b� around ��=0
�thin gray line�. For instance, if we are at �m fixed, we see
that when ���0, Eq. �27� predicts that �0a /a0 decreases for
increasing value of �d.

We have shown in this section how to take into account an
inhomogeneous dielectric environment in our semiclassical
model through the corrections in the slope of the mean-field
potential. This improved theory is in qualitative agreement
with the TDLDA calculations.

V. HIGHER COLLECTIVE EXCITATIONS:
DOUBLE PLASMON

In this section we discuss the lifetime of the second col-
lective excitation level in metallic nanoparticles. Although
there is no clear direct experimental observation of a double
plasmon in metallic clusters, the development of femtosec-
ond spectroscopy will certainly allow for detailed studies in
the near future. Recent experiments observed the ionization
of the charged cluster Na93

+ by a femtosecond laser pulse and
claimed it was a consequence of the excitation of the second
plasmon state.17 However, the analysis of the distribution of
photoelectrons yielded a thermal distribution and therefore
the relevance of the double plasmon for this experiment is
not yet settled.18 On the other hand, it is clear that a strong-
enough laser pulse will excite the second collective state.
Such an excitation will be a well-defined resonance only if
its linewidth is small compared with other scales of the pho-
toabsorption spectrum �like for instance �M�.

Second collective excitations have been widely analyzed
in the context of giant dipolar resonances in nuclei.26 The
anharmonicities were found to be relatively small, making it
possible to observe this resonance.27 The theoretical tools
developed in nuclear physics have been adapted to the study
of the double plasmon in metallic clusters.28,29 In particular,
a variational approach29 showed that the difference between
the energy of the double plasmon and 2��M decreases as

N−4/3 with the size of the nanoparticle. In our calculations,
we will assume that the double-plasmon energy is exactly
twice the Mie energy.

For most of the clusters of experimental interest, 2��M
�W���M, where W is the work function. Ionization then
appears as an additional decay channel of the double plas-
mon that competes with the Landau damping, while it is not
possible if only the single plasmon is excited.30

A. Second plasmon decay: Landau damping

In this section, we consider processes which do not lead
to ionization, that is, the final particle energies verify �p
�V0=�F+W. A sufficiently strong laser excitation gives rise
to an initial center-of-mass state which is a linear superposi-
tion of the ground state �0cm�, the first ��1cm,Z��, and the sec-
ond ��2cm,Z�� harmonic oscillator excited states.

The second plasmon state can decay by two distinct Lan-
dau damping processes. A first-order process, with a rate
�2→1, results from the transition of �2cm,Z� �double plasmon�
into �1cm,Z� �single plasmon�. The corresponding matrix ele-

ment of the perturbation Ĥc between these two states is a
factor of �2 larger than the one worked in Sec. II, and then
�2→1=2� �where � is the single-plasmon linewidth given by
Eq. �6� and calculated under certain approximations in Sec.
III�. Thus, the contribution of the first-order process to the
linewidth is just twice that of the single plasmon, and shows
the same nonmonotonic features superposed to a 1/a size-
dependence.

The other mechanism one has to take into account is the
second-order process, where the double plasmon decays di-
rectly into the center-of-mass ground state. This is possible
provided that V0�2��M. In order to simplify the calculation
we assume, for the remaining of this section, that V0→�.
The corresponding linewidth �2→0 is given by the Fermi
Golden Rule in second order in perturbation theory by16

�2→0 = 2��
fMF

��
fMF�

�0cm, fMF�Ĥc�1cm,Z, fMF� ��1cm,Z, fMF� �Ĥc�2cm,Z,0MF�
��M − � fMF�

�2

��2��M − � fMF
� .

Expliciting the perturbation �5� and restricting ourselves to
the random phase approximation which allows only one
particle-one hole transitions, we obtain

�2→0 =
��2�M

6 me
2

N2 �
ph

�Kph�2��2��M − �p + �h� , �28�

with

Kph = �
i�p,h

dpidih

��M − �i + �h
. �29�

The sum over i runs over all the virtual intermediate states.
We use the same notations as in Sec. III and replace the sums
over particle and hole states by integrals over the energy with
the appropriate density of states �DOS�, which is approxi-
mated by its semiclassical counterpart.

As in the case of the single plasmon, we work in the limit
lp�1 in order to find the smooth size-dependent contribution
�2→0

0 �and the corresponding Kph
0 �. Using Eqs. �8�, �9�, and

�11�, and the selection rules, we have
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Kph
0 =

8�2

�me�0
2 �Alplp+1

mpmp Alp+1lh

mpmh Ilp+1��p,�h���lhlp
+ �lh,lp+2�

+ Alplp−1
mpmp Alp−1lh

mpmh Ilp−1��p,�h���lhlp
+ �lh,lp−2���mpmh

.

�30�

Here, we have defined the integral

Ili
��p,�h� = �

li+1/2

�

d�i

�i
��i

2 − �li + 1/2�2

���F
2 − �i

2 + �h
2����i

2 − �p
2���i

2 − �h
2��2 .

Inserting Eq. �30� into Eq. �28�, replacing the sum over lp by
an integral, we find

�2→0
0 = 2��

�Fmax�1,�2��

�F�1+2�

d�p�p

� �
0

�h

dlplp
��p

2 − lp
2��h

2 − lp
2�Ilp

��p,�h��2,

where the factor of 2 accounts for the spin degeneracy. We
have introduced �=64���M�6 /5�3N2�0

5 and �h= ��p
2

−2�F
2��1/2. With the change of variables z=�p

2 /�F
2, y= lp

2 /�F
2,

and x=�i
2 /�F

2, we obtain

�2→0
0 �a� �

81

10�3

�F

�kFa�2h��� , �31�

where the function h��� of the parameter �=��M/�F is
smoothly increasing with h�0�=0. An approximate expres-
sion of h is given in Appendix C.

The total linewidth of the Landau damped second plas-
mon is the sum of the first- and second-order processes:
�DP=�2→1+�2→0. The different �smooth� size dependence
of both processes �vF /a for the former and �kFa�−1vF /a for
the latter� implies that, except for the smallest clusters, the
second-order process gives a negligible contribution to the
linewidth of the double plasmon �in comparison with that of
the first order�. We might ask the question of whether the
inclusion of the oscillating components of both linewidths
can affect the above conclusion in this range of particle sizes.
An extension of the calculations presented in Sec. III B
shows31 that the oscillating part of the second-order channel
of the double plasmon is given by

�2→0
osc �a� �

�F

�kFa�11/2cos�2kFa� .

As indicated before, �2→1
osc is given by twice the result of Eq.

�18�, therefore these nonmonotonic contributions cannot lead
to a significant modification of our conclusion about the ir-
relevance of the second-order term for the sizes of physical
interest. We also notice that �DP���M, since for typical
nanoparticles, �F���M and kFa�1. Therefore, the Landau
damping is not capable of ruling out the second plasmon as a
well-defined resonance.

The lifetime of the second plasmon for the Landau damp-
ing processes is simply ��DP

−1 . From the experimental point of
view, what is usually more relevant is the time it takes for the
double excited state of the center-of-mass system to return to
its ground state rather than the lifetime of the excited state.

Therefore, we also have to take into account the decay of the
first plasmon into the ground-state �1→0. If we assume that
the recombination of particle-hole pairs �created by the decay
of the double plasmon into the single plasmon� is very fast as
compared to other time scales, we have �1→0=�. Due to the
fact that lifetimes are additive, we have for this sequential
decay a lifetime �2→1→0=1.5��−1.

B. Second plasmon decay and ionization

We now examine the last decay channel of the second
plasmon state: the relaxation of this collective excitation by
ejecting an electron from the nanoparticle �ionization, see
inset of Fig. 4�. We now need to determine the particle and
hole states in the self-consistent field �Eq. �7��, which has a
finite height V0, since the ionization process requires the
states of the continuum. For simplicity, we will neglect the
Coulomb tail seen for r�a by electrons with an energy �p
�V0.

In order to determine the particle and hole states, we close
the system into a spherical box of radius L�a to quantize
the states above the well and take the limit of L→� at the
end of our calculations. We need to do some approximations
in order to simplify this difficult problem. First, in the high
energy limit, we assume that kr�1, and then use the
asymptotic expansions of the quantum mechanical single-
particle states inside and outside the well. Even though this
approximation strongly affects the wave functions near r=0,
its impact on the dipole matrix elements is very small.32

Second, for the states with energy ��V0, we neglect the
exponential decay of the wave function for r�a. Finally, in
the spirit of the scattering theory, we use a simplifed expres-
sion for the normalization of the free states above the well.
The above assumptions result in the following radial wave
functions inside the well ���V0�

FIG. 4. Ionization linewidth of the second plasmon state as a
function of the nanoparticle radius for singly charged Na clusters.
Square: experimental value for Na93

+ taken from Ref. 17 and 18. We
have assumed a constant work function W=4.65 eV and took the
experimental Mie frequency of 2.75 eV. Inset: scheme of the ion-
ization process of the double-plasmon state which decays by creat-
ing a particle-hole pair of energy 2��M, via the intermediate state
�i�. Since the energy of the particle is such that �p�V0, ionization
occurs.
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ukl
��r� � 
�2

a
sin�kr − l�/2� , r 	 a ,

0, r � a .



The wave-vector k= �2me��1/2 /� is given by the quantization
condition ka= l� /2+n�, with n a non-negative integer. Out-
side of the well ���V0�, we have

ukl
��r� ��2

L
�
l�k�A�k�sin�kr − l�/2� , r 	 a ,

sin���r − L�� , r � a ,
�

with �= �k2−2meV0 /�2�1/2. We have introduced the abbrevia-
tions


l�k� = sign� sin���a − L��
sin�ka − l�/2�� ,

A�k� =�sin2���a − L�� + ��

k
�2

cos2���a − L�� .

The ionization rate of the double-plasmon state �ion is
given by Eq. �28� in the case where the final particle states p
of the sum are in the continuum. Since the effective �second-
order� matrix element Kph �Eq. �29�� is given by a sum over
intermediate states i, we now have contributions from cases
where i lies in the well as well as in the continuum.

When i represents a state in the well, using the angular
momentum selection rules, we can write in the limit kr�1

Rkikh

lilh =
�− 1�ni−nh

�kih
2 a

�li,lh±1, �32�

and

Rkpki

lpli = ±�a

L


lp
�kp�A�kp�

�kpi

��cos��kpia� −
sin��kpia�

�kpia
	�li,lp±1, �33�

where �k
�=k
−k� �
 ,�= p ,h , i�.
When i represents a state in the continuum, Rkikh

lilh can be
obtained by exchanging �p↔ i� and �i↔h� in Eq. �33�. For
the remaining case, we have

Rkpki

lpli �
a

L


lp
�kp�
lp+1�ki�A�kp�A�ki�

�kpi

��cos��kpia� −
sin��kpia�

�kpia
	�li,lp±1 + B�kp,ki� ,

�34�

where

B�kp,ki� =
a2

L
�cos���piL� − sin���piL�ci����pi�a�

+ ��pia�cos���piL�sign���pi�si����pi�a��� ,

with si and ci the sine and cosine integral functions.
The semiclassical l-fixed smooth DOS can be approxi-

mated by

�l
0��� �

1

2��0

��ka�2 − �l + 1/2�2

�ka�2 , � � V0,

���L�2 − �l + 1/2�2

��a�2 , � � V0.

There is an obvious divergency that occurs in the sum of

Eq. �29� for �i=�h, as it can be seen on the matrix element
�32�. However, a careful analysis shows that the contribution
around that divergency vanishes because of the alternating
sign when one integrates over ni. For �i=�p, there is no
divergency in Eq. �34�. Therefore the dominant contribution
to Kph is given by the divergency of the term 1/ ���M−�i

+�h� that occurs for �i�V0 in the regime we are interested in
���M�W�2��M�. We then have for the ionization rate

�ion � 2
��2�M

6 me
2

N2 �
p�V0

h��F

��2��M − �p + �h�

� �
i,j�V0

dpidih

��M − �i + �h

dpjdjh

��M − � j + �h
,

where the factor of 2 accounts for the two spin channels and
the d
� are given by Eq. �8� with the approximations �32�
and �33� for the radial matrix elements. Furthermore, we can
distinguish in the above equation two contributions: off-
diagonal terms �i� j� which have divergencies of the princi-
pal value type and that we neglect here, and diagonal terms
�i= j� yielding divergencies which determine �ion. We
smooth out the energy �i appearing in the denominator by
introducing an imaginary part of the order of the mean level-
spacing

� =
3��0

3/2

���M + �h

at an energy ��M+�h. This standard procedure of smoothing
the divergencies is of critical importance, and that is why in
Ref. 16 the final result is presented as a function of �. Sum-
ming over li and mi, the remaining sum over the radial quan-
tum numbers ni can be done with the help of

�
ni

1

���M − �i + �h + i��2
�

�

4�

1

��M + �h
.

For the smooth terms of the sum, we have taken their values
at the divergency to obtain

�ion �
�2a���M�6�0

120N2L
�
lp

lp�
max�V0,2��M�

�F+2��M

d�p

�lp
��p��lp

��h�

�

�
�A�kp��2

���M + �h�����M + �h − ��h�4���p − ���M + �h�2
,

with �h=�p−2��M.
Taking the limit of L→�, we finally obtain
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�ion�a� �
3�

80

�F

kFa
q��,�� , �35�

where �=��M/�F and �=W /�F. The function q of the two
variables � and � is defined in Appendix C, Eq. �C1�.

The size scaling of �ion is mainly given by a
1/a-dependence of the prefactor �Fig. 4�, despite the fact that
the work function W appearing in the parameter � is size
dependent and scales �for a neutral cluster� as33 W=W�

+3e2 /8a where W� is the work function of the bulk material.
Using the work function W=4.65 eV and the experimen-

tal value of ��M=2.75 eV for the charged Na93
+ clusters of

Ref. 17 and 18, Eq. �35� yields �ion�0.1 eV, which corre-
sponds to an ionization lifetime of the second plasmon of 6.6
fs. This value is of the same order of magnitude as the ex-
perimentally reported lifetime of 10 fs. It is also in rough
agreement with the estimation yielded by the numerical cal-
culations of Ref. 16 based on a separable residual interaction
�10 to 20 fs�. Therefore, despite the approximations we have
been forced to make in our analytical calculations, we be-
lieve that we kept the essential ingredients of this compli-
cated problem. The lifetimes obtained by the different pro-
cedures consistently establish the second plasmon as a well-
defined resonance in metallic clusters. While the numerical
calculations of Ref. 16 have been performed for just one size,
our results exhibit a clear size dependence that can be tested
in future experiments.

VI. CONCLUSION

In this work we have analyzed the lifetime of collective
excitations in metallic clusters. Different decay mechanisms
have been studied within a semiclassical approach for the
mean-field self-consistent potential describing the electrons
in a jellium background. We have considered Landau damp-
ing, which is the dominant relaxation mechanism for nano-
particles with radius a in the range 0.5–2.5 nm. We found
that the linewidth of the single surface plasmon exhibits a
1 /a dependence, superimposed to an oscillating behavior
arising from electron-hole density-density correlations.
These results are in good agreement with numerical time-
dependent local density approximation calculations, and con-
sistent with experiments on free alkaline nanoparticles.

To describe noble metal clusters, we have taken into ac-
count the screening effect of the d electrons and the modifi-
cations induced by the dielectric properties of an eventual
matrix. We have demonstrated that such an inhomogeneous
dielectric environment of the nanoparticles strongly affects
the steepness of the self-consistent potential, which in turn
has a crucial influence on the plasmon linewidth. We could
then solve the discrepancy presented in Ref. 15 between the
well-known Kawabata and Kubo formula on one side,
against experiments and numerical calculations on the other
side. The size-dependent oscillations of the linewidth also
depend on the dielectric constants through the slope of the
self-consistent potential. The access to individual nano-
objects, recently developed by different experimental tech-
niques, provides a promising way of testing our theoretical
results concerning the size-dependent linewidth oscillations.

The physical relevance of the second plasmon has been
analyzed in terms of different decay channels: Landau damp-
ing and particle ionization. We have shown that both pro-
cesses are relevant, but they do not preclude the existence of
the resonance. The comparison of our semiclassical calcula-
tion with the existing numerical and experimental results is
reasonably good, despite the various approximations of our
model.

Our theoretical results concerning the different decay
mechanisms of the collective excitations of metallic clusters
should be important for the analysis of the electron dynamics
following short and strong laser excitations.
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APPENDIX A: TRANSITION POTENTIAL

In this Appendix we present the derivation of the transi-
tion potential induced by the plasmon field and generalize
the derivation of Ref. 3 considering the Coulomb interaction
in the case of a dielectric mismatch between the electrons
and the surrounding matrix in which the nanoparticles are
embedded. Assuming that at equilibrium the electron density
is uniform within a sphere of radius a , n�r�=n��a−r� ��
being the Heaviside distribution�, a rigid displacement with a
magnitude Z along the ez direction changes the density at r
from n�r� to

n�r − u� = n�r� + �n�r� .

To first order in the field u=Zez, we can write

�n�r� = − u ·
�

�r
n�r� = Zn cos  ��r − a� .

We have neglected the oscillations of the density in the inner
part of the particle due to shell effects, and also the extension
of the electronic density outside of the particle �spillout
effect�.2 Noting VC�r ,r�� the Coulomb electron-electron in-
teraction, the change in the self-consistent potential due to
the rigid shift �transition potential� is

�V�r� =� d3r��n�r��VC�r,r�� . �A1�

Using the multipolar decomposition of the Coulomb interac-
tion, one obtains3

�V�r� = Z
4�ne2

3
d�r� , �A2�

with
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d�r� = 
z , r 	 a ,

za3

r3 , r � a . 
 �A3�

We notice that a displacement of the electron system leads to

a dipolar field inside the nanoparticle, and that its magnitude
decays as 1/r2 outside the particle.

If we now consider the case of a noble metal nanoparticle
�where the d electrons are taken into account with the help of
a dielectric constant �d� embedded in a matrix �of dielectric
constant �m�, the Coulomb interaction between electrons is
given by34

VC�r,r�� = 4�e2

1

�d
�
lm

1

2l + 1
� r�

l

r�
l+1 +

rlr�l

a2l+1

�l + 1���d − �m�
�dl + �m�l + 1� 	Yl

m*���Yl
m���� , r,r� 	 a ,

�
lm

r�
l

r�
l+1

Yl
m*���Yl

m����
�dl + �m�l + 1�

, r� 	 a,r� � a ,

1

�m
�
lm

1

2l + 1
� r�

l

r�
l+1 +

a2l+1

rl+1r�l+1

l��m − �d�
�dl + �m�l + 1�	Yl

m*���Yl
m���� , r,r� � a ,



where r�=min�r ,r��, r�=max�r ,r��, and Yl

m are the spheri-
cal harmonics. Inserting this expression into Eq. �A1�, we
obtain the result of Eq. �A2� with the additional multiplying
factor 3 / ��d+2�m�.

In both cases �with and without a dielectric mismatch�,
the expression �A2� can be written as �V�r�=Zme�M

2 d�r�.
The only effect of the dielectric constants on the transition
potential as compared to the free case is through the red-shift
of the Mie frequency.

APPENDIX B: SEMICLASSICS WITH RADIAL
SYMMETRY

Semiclassical expansions constitute a very useful tool in
mesoscopic physics since they allow for an intuitive descrip-
tion of relatively complex systems. The spectral properties of
metallic clusters35 or the conductance fluctuations in the
electronic transport through quantum dots36 can be readily
understood when the quantum observables are expressed in
terms of an appropriate ensemble of classical trajectories.

In problems with radial symmetry, like the one we treat in
this work, it is tempting to take advantage of the separability
into radial and angular coordinates in order to reduce the
dimensionality of the trajectories contributing to the semi-
classical expansions. However there are technical difficulties
introduced by the singularity at the origin of the centrifugal
potential, and this is probably the reason why the radial sym-
metry is often not fully exploited in semiclassical expan-
sions. On the other hand, the well-known Langer
modification37 is a prescription to avoid the above-mentioned
difficulties and provides a route to the semiclassical quanti-
zation of spherically symmetric systems �which has been re-
cently extended to higher orders38�.

In this Appendix we start from the Langer modification in
order to obtain the partial �or angular momentum dependent�
density of states �DOS� �l��� that we need in our evaluation

of plasmon lifetimes. As a check of consistency, we verify in
a few simple examples that when �l��� is summed �in a
semiclassical way� over l and m, we recover the well-known
Berry-Tabor formula for the total DOS.39,40

1. Langer modification and partial density of states

For a central potential V�r�, the Schrödinger equation is
separable into angular and radial parts. The wave function
can be written as �klm�r�= �ukl�r� /r�Yl

m���, where ukl verifies

�−
�2

2me

d2

dr2 +
�2l�l + 1�

2mer
2 + V�r�	ukl�r� = �klukl�r� , �B1�

with the condition ukl�0�=0. It is important to notice that the
variable r is limited to positive values and that the centrifu-
gal potential possesses a singularity at r=0. This significant
difference between Eq. �B1� and a standard one-dimensional
Schrödinger equation prevents from a naive application of
the Wentzel-Kramers-Brillouin �WKB� approximation to
treat this radial problem. The change of variables x=ln r and
!kl�x�=exp�x /2�ukl�r� results in a standard Schrödinger
equation. Using the WKB approximation for !kl amounts to
change the centrifugal potential in Eq. �B1� according to the
Langer modification37,41

l�l + 1� ⇒ �l +
1

2
�2

.

The resulting WKB quantization provides the exact spectrum
for the hydrogen atom, as well as for the three-dimensional
isotropic harmonic oscillator.

The same kind of considerations in two-dimensional sys-
tems with a circular symmetry leads to the following substi-
tution in the centrifugal potential:35,41
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�m −
1

4
�2

⇒ m2, �B2�

which yields an exact WKB spectrum for the cases of the
isotropic harmonic oscillator as well as for the hydrogen
atom in two dimensions.

The semiclassical approximation provides a method to
calculate the leading � contributions to the DOS in the limit
of large quantum numbers, and decomposes the DOS into a
smooth and an oscillating part. The smooth term is simply
the Weyl contribution35 and the oscillating term is given, in
the case where the periodic orbits �POs� are not degenerated
in action, by the Gutzwiller trace formula42 as a sum over the
primitive periodic orbits �PPOs�.

In the case of multidimensional integrable systems, the
POs belonging to a torus of the phase space are degenerate,
and the oscillating part of the DOS is given by the Berry-
Tabor formula as a sum over rational tori.40 In one-
dimensional problems, or in the radial coordinate of a spheri-
cally symmetric case, the trajectories are not degenerate, and
therefore the semiclassical approximation to the DOS at
fixed angular momentum l is given by

�l��� = �l
0��� + �l

osc��� , �B3�

with

�l
0��� =

�l���
2��

,

�l
osc��� =

�l���
��

�
r̃=1

�

cos�r̃�Sl���
�

− "c
�

2
− "r��	 ,

where Sl and �l=�Sl /�� are the action and period referring to
the motion in the effective �l-dependent� radial potential;
"c�"r� is the number of classical turning points of the PPOs
against the smooth �hard� walls.

2. Total density of states and Berry-Tabor formula
for systems with radial symmetry

Using the selection rules for the plasmon decay, its life-
time can be expressed in terms of the partial DOS �l���
whose semiclassical expression is given by Eq. �B3�. It is
then important to verify that the semiclassical sum over an-
gular momenta �that we use throughout our calculations�,
when applied to �l���, is able to reproduce the total DOS.
Rather than working the most general case, we perform our
test for three particular examples: the disk billiard �where the
calculations are particularly simple�, the three dimensional
billiard �like the one we treat in the text�, and the isotropic
spherical harmonic oscillator �where the semiclassical spec-
trum coincides with the exact one�.

a. Disk billiard

A disk billiard is defined by its radial potential

V�r� = �0, r � a ,

� , r � a ,
� �B4�

where a is the radius of the disk. The effective radial motion
is governed by the potential Vm

eff�r�=�2m2 /2mer
2+V�r�, with

m the z component of the angular momentum included ac-
cording to Eq. �B2�. The classical PPOs have "c="r=1 since
there is one turning point at the �smooth� kinetic barrier and
another at the �hard� wall for r=a. For a given energy � we
have mmax= �2me��1/2a /�= �� /�0�1/2=ka, with �0=�2 /2mea

2.
The action and period of the PO with energy � and angu-

lar momentum m are given by

Sm��� = 2����ka�2 − m2 − m arccos� m

ka
�	 , �B5a�

�m��� =
���ka�2 − m2

�0�ka�2 , �B5b�

respectively. The smooth part of the DOS is

�0��� = �
m=−mmax

+mmax

�m
0 ��� =

1

4�
�2me

�2 �A ,

with A=�a2 being the disk area. We have replaced the sum
by an integral and obtained the Weyl part of the DOS. For
the oscillating part we make use of the Poisson summation
rule and write

�osc��� = �
m̃=−�

+�

�
r̃�1


=±

�
0

mmax

dm
�m���
2��

e
i�m
m̃r̃���

with the phase

�m
m̃r̃��� = r̃�Sm���

�
−

3�

2
	 + 2�m̃m .

Consistently with the semiclassical expansions, we perform a
stationary phase approximation. The stationary points are
given by m̄=ka cos #r̃m̃, with #r̃m̃=�m̃ / r̃ and the condition
r̃�2m̃�0, which yield just the classical angular momenta of
the POs labeled by the topological indices �r̃ , m̃�. We then
recover for the oscillating DOS the well-known result39,40

�osc��� =
1

�0

1
��ka

�
m̃=1

�

�
r̃�2m̃

f r̃m̃

sin3/2#r̃m̃

�r̃
cos $r̃m̃,

where f r̃m̃=1 if r̃=2m̃ and f r̃m̃=2 if r̃�2m̃, $r̃m̃=kLr̃m̃

−3r� /2+� /4 and Lr̃m̃=2r̃a sin #r̃m̃ is the length of the orbit
�r̃ , m̃�.

We also notice that the quantization of the radial problem
leads to the well-known Keller and Rubinow condition43

��ka�2 − m2 − m arccos� m

ka
� = ��n +

3

4
� ,

from which the Berry-Tabor formula can be readily obtained.
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b. Spherical billiard

A spherical billiard is also defined by Eq. �B4�, but in the
three-dimensional case Vl

eff�r�=�2�l+1/2�2 /2mer
2+V�r�. For

an energy �, the maximum value of the angular momentum
is given by lmax=ka−1/2. The action and the period of a
trajectory with energy � and angular momentum l are the
same as in the two-dimensional case up to a change of m by
l+1/2 �Eqs. �B5��. The total DOS is given by

���� = �
l=0

lmax

�
m=−l

+l

�l��� = �
l=0

lmax

�2l + 1��l��� .

For the smooth DOS, we find the first term of the Weyl
expansion:35

�0��� =
1

4�2�2me

�2 �3/2
��V ,

where V=4�a3 /3 is the volume of the sphere, and for the
oscillating part

�osc��� =
1

�0
�ka

�
�

m̃�1

r̃�2m̃

�− 1�m̃sin�2#r̃m̃��sin #r̃m̃

r̃
cos $r̃m̃,

with the same notations as in Appendix B 2 a. We again
recover the Berry and Tabor semiclassical DOS to leading
order in �,39,40 as well as the quantization condition of Keller
and Rubinow.43

c. Isotropic spherical harmonic oscillator

The isotropic harmonic oscillator in three dimensions is
a nonbilliard integrable system and therefore the Berry-
Tabor quantization is very difficult to implement. The radial
approach that we develop clearly overcomes this difficulty.
The effective potential is Vl

eff�r�=�2�l+1/2�2 /2mer
2

+ �1/2�me�
2r2, where � is the pulsation of the harmonic con-

finement. At a given �, we have lmax=−1/2+� /��. The clas-
sical action is given by Sl���=�� /�−���l+1/2� and the
period is �=� /�. Using Eq. �B3� with "c=2r and "r=0 �no
hard wall� gives the DOS at fixed orbital momentum.

For the smooth part of the DOS, the sum over l can be
performed exactly, but to be consistent with the semiclassical
approximation we have to take the limit � /���1:�0���
��2 /2����3. Writing the Poisson summation rule for the
oscillating part and performing a stationary phase approxi-
mation, we have the condition on topological indices r̃=2m̃
and m̃�1. Finally we obtain for the total DOS the trace
formula

���� =
�2

2����3�1 + 2�
m̃=1

�

�− 1�m̃cos�2�m̃
�

��
�	 ,

which has to be compared with the exact trace formula given
in Ref. 35, where the prefactor is shifted by the quantity
−1/8��, negligible at the �high energy� semiclassical limit.
One also notices that the WKB quantization rule yields the
exact quantum spectrum of the harmonic oscillator: �nl
=���2n+ l+3/2�.

We have demonstrated the usefulness of the radial decom-
position for the semiclassical expansion of the DOS. Even in
the case of degenerated classical periodic trajectories, one is
able to find the semiclassical DOS by using the appropriate
symmetry of the system, without requiring the action-angle
quantization of Berry and Tabor.

3. Semiclassical dipole matrix element
with spherical symmetry

In this Appendix we focus on the semiclassical evaluation
of the dipole matrix element for the case of a spherically
symmetric system, and extend the well-known result which
relates in the one-dimensional case the dipole matrix element
to the Fourier components of the classical motion of the
particle.44

The spherical symmetry permits us to separate the dipole
matrix element �nlm�z�n�l�m�� into two parts: an angular part
given by Eq. �9� and a radial part

Rnn�
ll� =

�2

me��n�l� − �nl�
�

0

�

dr unl�r�
d

dr
un�l��r� ,

where the radial wave functions unl satisfy Eq. �B1� and we
have used the commutation relation between the radial mo-
mentum and the Hamiltonian. Next we restrict ourselves to
the classical region in the effective potential Vl

eff�r� between
the two turning points �r− ,r+� and use the WKB approxima-
tion to express the radial wave functions as

unl�r� =

2 cos�1/��
r−

r

dr��2me��nl − Vl
eff�r��� − �/4�

��l�2me��nl − Vl
eff�r��/me

2�1/4
.

We also assume that the radial potential is a smoothly vary-
ing function of the radial coordinate, that l� l� �this is justi-
fied because the selection rules dictate that l�= l±1 and we
are in the high energy limit� and that the energies involved in
the dipole matrix element are sufficiently close to each other
to satisfy

�n�l� − �nl �
2���n

�l
, �B6�

with �n=n�−n.
With these approximations, changing the spatial coordi-

nate r to the time t, we obtain, to leading order in �

Rnn�
ll� =

2

�l
�

0

�l/2

dt r�t�cos�2��n
t

�l
� , �B7�

where r�t� represents the classical trajectory in the effective
potential. Thus we see that, as in the one-dimensional case,
the dipole matrix element is related to the Fourier transform
of the trajectory of the classical motion.

As a check of consistency, we apply this semiclassical
analysis to the hard-wall potential involved in our evaluation
of the surface-plasmon lifetime. This analysis is only pos-
sible in the limit �F���M: The approximation of Eq. �B7� is
valid if we assume that the energy of the particle is close to
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the one of the hole. This energy difference is, because of the
conservation of energy appearing in the Fermi Golden Rule
�6�, simply ��M.

At a given energy �, the periodic trajectory in the effec-
tive potential is

r�t� =�2�

me
t2 +

�2�l + 1/2�2

2me�
, 0 	 t 	

�l

2
.

Substituting this expression in Eq. �B7� and making the ex-
pansion in 1/�n �proportional to 1/��M, see Eq. �B6��, we
obtain the leading order term

Rkpkh

lplh =
2�2

mea

�p

��p − �h�2 , �B8�

which agrees with Eq. �11� in the limit �p��h. We notice
that this semiclassical dipole matrix element leads to the cor-
rect result for the smooth part �0 of the single-plasmon line-
width in the limit �=��M/�F→0 of Eq. �1�.

APPENDIX C: FREQUENCY DEPENDENCE OF THE
PLASMON LINEWIDTHS

In this Appendix, we present the frequency dependence of
the single- and double-plasmon linewidths. In Fig. 5, we rep-
resent the function g �thick line� of �=��M/�F involved in
the expression of the single-plasmon linewidth �see Eq. �1��,

as well as in the first-order decay rate of the double plasmon
��2→1�. The function g is plotted after its analytical expres-
sion �Eqs. �62� and �63� in Ref. 13� and is a smoothly de-
creasing function with lim�→�g���=0.

The function h involved in the expression of the second-
order double-plasmon linewidth �31� is defined by

h��� = �
max�1,2��

1+2�

dz�
0

z−2�

dy�z − y�z − y − 2�

���z − y

z
−�z − y − 2�

z − 2�
�2

and has been approximately determined by integrating out
the intermediate states i in the limit kFa�1. The integral
over the intermediate state energy has been performed by
introducing cutoffs in order to avoid unphysical divergencies
due to the fact that discrete single-particle levels have been
replaced in our model by a continuum of states. When the
remaining two-dimensional integral is evaluated numerically
we obtain a smoothly increasing function of the parameter �,
with h�0�=0 as shown in Fig. 5. This function has the
asymptotic limit lim�→�h���=�. We see that when the
double-plasmon state is too high in energy, the linewidth
diverges to infinity and this resonance is no longer well-
defined �the double-plasmon state has a lifetime equal to zero
in this condition�.

The function q of the two variables � and �=W /�F in-
volved in our evaluation of the ionization rate via the double-
plasmon state, Eq. �35�, is defined as

q��,�� = � �

2
�6�

max�2�,1+��

1+2�

dz
�2z − 1 − ���z − 2�

z��z − ���z − 1 − ��

�
1

��z − � − �z − 2��4��z − �z − ��2
. �C1�

Since our approach is valid when ��M	W	2��M, the
function q is defined for �	�	2� and can be integrated
numerically. The result is shown in Fig. 5. The function q is
not very sensitive to the value of � /�=W /��M in the pre-
sented interval. However, it vanishes at the upper limit �W
=2��M�, since in this case particle states cannot be in the
continuum and �ion=0.
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