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SUMMARY

As is well-known, there is a close and well-de�ned connection between the notions of Hilbert transform
and of conjugate harmonic functions in the context of the complex plane. This holds e.g. in the case
of the Hilbert transform on the real line, which is linked to conjugate harmonicity in the upper (or
lower) half plane. It also can be rephrased when dealing with the Hilbert transform on the boundary
of a simply connected domain related to conjugate harmonics in its interior (or exterior). In this paper,
we extend these principles to higher dimensional space, more speci�cally, in a Cli�ord analysis setting.
We will show that the intimate relation between both concepts remains, however giving rise to a range
of possibilities for the de�nition of either new Hilbert-like transforms, or speci�c notions of conjugate
harmonicity. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The motivation for writing this paper comes from the observation that there is an intimate
relationship between the Hilbert transform on the one hand and conjugate harmonic functions
on the other. Let us explain this relationship in the classical setting of the complex plane.
In the �rst place, it is well-known that given a real-valued function f∈L2(R), where the

real axis is to be understood as the boundary of the upper half plane C+ = {z= x + iy∈C :
y¿0}, there exists a unique harmonic function F(x; y)=P[f](x; y) in C+, called the Poisson
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1436 F. BRACKX ET AL.

transform of f, such that, in L2-sense, limy→0+ F(x; y)=f(x). Moreover, this function F(x; y)
admits a unique harmonic function G(x; y) in C+ vanishing at in�nity and such that F+iG is
holomorphic in the upper half plane. This function G(x; y) is known as the conjugate harmonic
function to F(x; y) in C+. It is usually called the conjugate Poisson transform of f and
denoted as Q[f](x; y). The Hilbert transform H[f](x) may then be de�ned as the boundary
value limy→0+ G(x; y), taken in L2-sense. In other words: Q[f](x; y)=P[H[f]](x; y).
So, more explicitly, the Hilbert transform on the real line H :L2(R)→L2(R), given by the

convolution integral

H[f](x)=
1
�
Pv
1
· ∗ f(·)(x)=

1
�
Pv

∫ +∞

−∞

f(t)
x − t dt

and the Poisson transform P :L2(R)→Harm(C+), given by

P[f](x)=P(·; y) ∗ f(·)(x)= 1
�

∫ +∞

−∞

y
(x − t)2 + y2 f(t) dt

are related by the property that for a real-valued function f, P[f] and P[H[f]] are conjugate
harmonic functions in the upper half plane C+. Moreover they constitute the real and imaginary
parts of the holomorphic Cauchy integral of f, given in C+ by

C[f](z)=− 1
2�i

∫ +∞

−∞

f(t)
(x − t) + iy dt=

1
2
P[f] +

i
2
P[H[f]]

Sometimes, instead of H, the Hilbert operator H = iH is considered; this bounded linear
operator on L2(R) squares to unity (i.e. H 2 = 1), it is self-adjoint and unitary.
The above construction may be summarized in the following scheme:

f(x)∈L2(R) P−→ P[f]∈Harm(C+)⏐⏐� ⏐⏐�
H[f](x)∈L2(R) BV←− Q[f]∈Harm(C+)

Next, if � is a bounded, simply connected domain in the complex plane, with C∞ smooth
boundary, then, according to Reference [1], the analogue of this scheme is precisely used to
de�ne the Hilbert transform on @�. Indeed, take u∈C∞(@�) real-valued, then there exists a
real-valued harmonic function U ∈C∞(�) for which the restriction to the boundary @� is the
given function u. Let V ∈C∞(�) be the conjugate harmonic to U for which V (a)=0, a∈�
and let v be the restriction to the boundary @� of V , then v is called the Hilbert transform
of u. This Hilbert transform maps C∞(@�) into itself and extends uniquely to a bounded
linear operator on L2(@�).
This paper treats a similar relationship between the notions of Hilbert transform and of

conjugate harmonic functions in higher dimensional Euclidean space. Section 3 deals with the
case of Euclidean space Rm, embedded in Rm+1 as the boundary of both upper and lower
half space; the de�nition of the Hilbert transform is recalled, as it was used in Reference [2]
in a Cli�ord setting, and its relation to conjugate harmonic functions, now adding up to a
monogenic one, is recalled. In Section 4, we pass to the case of a bounded and simply
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HILBERT TRANSFORM AND CONJUGATE HARMONIC FUNCTIONS 1437

connected domain � in Rm+1, with a C∞ smooth boundary. We show how every well-chosen
‘Hilbert-like’ operator on @� may give rise to a speci�c notion of conjugate harmonicity in �
and we give some explicit examples. Finally, in Section 5, the rôles are inverted, starting from
a well-de�ned notion of conjugate harmonic functions in the interior (or even the exterior) of
the domain �, to arrive at new Hilbert transforms on the boundary by means of a construction
as indicated in the scheme above. As an example, we revert to the explicit construction of
a Hilbert-like integral transform on the unit sphere Sm, see Reference [3], based upon a
particular notion of conjugate harmonicity in the unit ball and in its exterior, as introduced
in Reference [4]. In order to make the paper self-contained, in Section 2 a quick introduction
is given to those notions of Cli�ord analysis which are necessary for our purpose.
For an overview of the historical background of the higher dimensional Hilbert transform

and some of its properties, we refer to Reference [5].

2. THE BASICS OF CLIFFORD ANALYSIS

We investigate how the above relationship between the Hilbert transform and the notion of
conjugate harmonic functions behaves in higher dimension within the framework of Cli�ord
analysis.
Cli�ord analysis is a function theory which constitutes a generalization to higher dimension

of the theory of holomorphic functions in the complex plane. It is centred around the notion of
a monogenic function, i.e. a null solution to the Dirac operator @. For a thorough introduction
to Cli�ord algebra and Cli�ord analysis we refer the reader to References [6–8]. Here, we
only recall those notions which are explicitly used in the paper.
Let R0; m be the real vector space Rm, endowed with a non-degenerate quadratic form of

signature (0; m), let (e1; : : : ; em) be an orthonormal basis for R0; m, and let R0; m be the universal
Cli�ord algebra constructed over R0; m. The non-commutative multiplication in R0; m is governed
by the rules

eiej + ejei=−2�i;j ∀i; j∈{1; : : : ; m}

For a set A={i1; : : : ; ih}⊂{1; : : : ; m} with 16i1¡i2¡ · · ·¡ih6m, let eA= ei1ei2 · · · eih . Moreover,
we put e�=1, the latter being the identity element. Then (eA : A⊂{1; : : : ; m}) is a basis for
the Cli�ord algebra R0; m. Any a∈R0; m may thus be written as a=

∑
A aAeA with aA ∈R or

still as a=
∑m

k=0 [a]k where [a]k =
∑

|A|=k aAeA is a so-called k-vector (k=0; 1; : : : ; m). If we
denote the space of k-vectors by Rk0; m, then R0; m=

⊕m
k=0 Rk0; m.

We will also identify an element x=(x1; : : : ; xm)∈Rm with the one-vector (or vector for
short) x=

∑m
j=1 xjej. The product of any two Cli�ord vectors x and y is given by

xy=−〈x; y〉+ x ∧ y

where

〈x; y〉=
m∑
j=1
xjyj=−12 (xy + yx)
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1438 F. BRACKX ET AL.

is a scalar and

x ∧ y=∑
i¡j
eij(xiyj − xjyi)= 12 (xy − yx)

is a 2-vector (also called bivector). In particular x2 =−〈x; x〉=−|x|2 = −∑m
j=1 x

2
j .

Conjugation in R0; m is de�ned as the anti-involution for which ej=−ej, j=1; : : : ; m. In
particular for a vector x we have x=−x.
A central notion in Cli�ord analysis is that of monogenicity, introduced by means of the

Dirac operator, i.e. the �rst-order Cli�ord-vector valued di�erential operator in Rm given by

@=
m∑
j=1
ej@xj

with fundamental solution

E(x)=
1
am

x
|x|m

where am=2�m=2=�(m=2) is the area of the unit sphere Sm−1 in Rm.
Now let f be a function de�ned on Rm and taking values in R0; m, then we say that f is

left monogenic in the open region � of Rm if and only if f is continuously di�erentiable
in � and satis�es in � the equation @f=0. Similarly, a continuously di�erentiable function
f satisfying in � the equation f@=0 is called right monogenic in �. As @f=f@=−f@,
the left monogenicity of a function f is equivalent to the right monogenicity of f. As
moreover the Dirac operator factorizes the Laplace operator �, −@2 = @@= @@=�, a
monogenic function in � is harmonic and hence C∞ in �, and so are its components.
Introducing spherical co-ordinates (r; �1; : : : ; �m−1)∈Rm, an arbitrary Cli�ord vector may be

written as x= r!, with r= |x| and !∈ Sm−1. Then the Dirac operator @ takes the form

@=!@r +
1
r
@!=!

(
@r − 1r !@!

)
(1)

while we may write the Laplace operator as

�= @2r +
m− 1
r

@r +
1
r2
�∗

�∗ being the Laplace–Beltrami operator acting on Sm−1, and explicitly given by �∗=
!@! − @2!!. Form (1) of the Dirac operator can easily be rewritten as

@=
!
r
(r@r −!@!)= !r (E + �)

where

E = r@r =
m∑
j=1
xj@xj

�=−!@!=−! ∧ @!= −
∑
i¡j
eiej(xi@xj − xj@xi)

are the (scalar) Euler operator and the (bivector-valued) so-called spherical Dirac operator,
respectively.
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HILBERT TRANSFORM AND CONJUGATE HARMONIC FUNCTIONS 1439

In this paper, we will also use the so-called inner and outer spherical monogenics. Starting
from a homogeneous polynomial Pk(x) of degree k ∈N which we take to be left monogenic,
it is clear through so-called spherical inversion that the functions Qk(x)= (x =|x|m+2k)Pk(x)
are left monogenic functions in the complement of the origin, which are moreover
homogeneous of degree −(m+ k − 1). By taking restrictions to the unit sphere Sm−1 of both
Pk(x) and Qk(x) we obtain the inner spherical monogenics Pk(!) and the outer spherical
monogenics Qk(!)=!Pk(!), respectively. Together, both notions constitute a re�nement of
the concept of a spherical harmonic, i.e. the restriction to the unit sphere of a
homogeneous harmonic polynomial of degree k. Indeed, taking an arbitrary spherical harmonic
Sk(!), one may consider its unique orthogonal decomposition into an inner and an outer
spherical monogenic, viz

Sk(!)=Pk(!) +Qk−1(!) (2)

where obviously Q−1(!) ≡ 0.

3. A CARTESIAN APPROACH FOR THE HALF SPACE IN m+ 1 DIMENSIONS

From Rm we pass to Rm+1 by adding one more basis vector e0, which satis�es similar
multiplication rules as the others, i.e.

e20 =−1; e0ej + eje0 = 0; j=1; : : : ; m

In other words, denoting x∈Rm+1 as
x= x0e0 + x

with x=
∑m

j=1 ejxj ∈Rm, Rm is embedded in Rm+1 as the hyperplane x0 = 0. Clearly, this
approach also leads to a cartesian splitting of the Cli�ord algebra R0; m+1, i.e.

R0; m+1 =R0; m ⊕ e0R0; m
In this setting, the observations of Section 1 may be rephrased quite literally.
To this end, take a function f∈L2(Rm), which is R0; m-valued and consider its Hilbert

transform, de�ned by the convolution integral

H[f](x)=
2
am+1

Pv
·

|·|m+1 ∗ f(·)(x)=
2
am+1

Pv
∫
Rm

x − y
|x − y|m+1f(y) dV (y)

Similarly as in the complex plane, instead of H, one may consider the Hilbert operator
H = e0H, which then is a bounded linear operator on L2(Rm), which squares to unity, is
self-adjoint, and hence also unitary.
The Poisson transform to upper half space (x0¿0) of the same function f is the unique

harmonic extension of f to Rm+1+ given by

P[f](x)=P(x0; ·) ∗ f(·)(x)= 1
am+1

∫
Rm

2x0
|x0e0 + x − y|m+1 f(y) dV (y)
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1440 F. BRACKX ET AL.

where the limit

lim
x0→0
¿

P[f](x)=f(x)

has to be interpreted in the sense of L2 non-tangential boundary values.
Explicitly, one has that

Q[f](x)=P[H[f]]=Q(x0; ·) ∗ f(·)(x)=− 1
am+1

∫
Rm

2(x − y)
|x0e0 + x − y|m+1 f(y) dV (y)

and

P[f] + e0P[H[f]]

is a monogenic function in Rm+1+ , with respect to the Cauchy–Riemann operator @x0 + @,
consequent to which one says that U =P[f] and V =Q[f]=P[H[f]] are conjugate harmonic
functions in Rm+1+ in the sense of [2], i.e. they satisfy the system{

@x0V + @U =0

@V + @x0U =0

Moreover, up to a factor 1
2 , the monogenic function to which they add up is exactly the

Cauchy integral C[f], which is given by

C[f](x)=
1
am+1

∫
Rm

x0 − e0(x − y)
|x − y|m+1 f(y) dV (y)

and indeed decomposes as

C[f]= 1
2P[f] +

1
2e0P[H[f]]

Here, note that the additional basis vector e0 plays a similar, although not identical, rôle
as the imaginary unit i in the complex plane. Indeed, both may be interpreted as unit normal
vectors with respect to the boundary (either R or Rm) of the domain in which the conjugate
harmonicity is de�ned (either C+ or Rm+1+ ).
Hence we may conclude that in the context of Rm embedded in Rm+1, a scheme completely

similar to the one in the complex plane is valid: the Hilbert transform of a function f∈L2(Rm)
is the L2 non-tangential boundary value of the function in Rm+1+ which is conjugate harmonic
to the Poisson transform of the original function f.

4. THE CASE OF A DOMAIN � IN Rm+1: FROM HILBERT-LIKE OPERATORS
TO CONJUGATE HARMONICITY

Now, let �⊂Rm+1 be a bounded and simply connected domain, with a C∞ smooth boundary,
denoted by @�. In what follows, a crucial rôle will be played by the so-called Hardy space
on @�. This is the function space de�ned as the closure in L2(@�) of the L2 non-tangential
boundary values (NTBVs) on @� of all monogenic functions in �, having such a NTBV in
L2(@�). This space is denoted as H 2(@�;R0; m+1), or shortly H 2(@�).

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1435–1450



HILBERT TRANSFORM AND CONJUGATE HARMONIC FUNCTIONS 1441

A �rst characterization of the space is given in Proposition 4.1. To this end, we de�ne the
Cauchy integral of f∈L2(@�) by

C[f](x)=
1
am+1

∫
@�

x − �
|x − �|m+1 N (�)f(�) dS(�); x =∈ @� (3)

where N (�) denotes the unit Cli�ord vector, outward normal to @� at the point �∈ @�. As
above, again note the appearance of this normal vector to the boundary, however now no
longer being constant and thus playing its rôle in the integral. One has

Proposition 4.1
A function h∈L2(@�) belongs to the Hardy space H 2(@�) if and only if

Cint[h](�) ≡ lim
x→�

x∈�; �∈@�
C[h](x)= h(�)

where the limit has to be understood as an L2 NTBV.

Introducing also the so-called Poisson transform P[f] of f∈L2(@�) as the unique harmonic
function in � for which the NTBV is precisely f, i.e.

�P[f](x)=0 in � and lim
x→�

x∈�; �∈@�
P[f](x)=f(�)

we are immediately led to a second characterization of this Hardy space.

Proposition 4.2
A function h∈L2(@�) belongs to the Hardy space H 2(@�) if and only if its Cauchy integral
and its Poisson transform coincide, i.e.

C[h](x)=P[h](x) in �

Proof
On account of Proposition 4.1 we have that C[h] is a monogenic, hence harmonic, function
with the same boundary value as P[h], if and only if h∈H 2(@�).

We will now introduce a so-called ‘Hilbert-like’ operator on @�, denoted as B :L2(@�)→
L2(@�), and satisfying the following properties:

(i) B is a bounded linear operator (4)

(ii)
1 +B

2
is a (skew) projection operator on H 2(@�) (5)

One may then easily prove the following result.

Proposition 4.3
Let the operator B :L2(@�)→L2(@�) satisfy conditions (4)–(5). Then
• B2 = 1,
• h∈H 2(@�)⇐⇒ B[h]= h.

Observe that the second statement in the above proposition may be seen as a third
characterization of H 2(@�).

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1435–1450



1442 F. BRACKX ET AL.

With each operator B satisfying conditions (4)–(5), one may now easily associate a
corresponding notion of conjugate harmonicity. Indeed, for any f∈L2(@�), consider the
function

h= 1
2f +

1
2B[f]

On account of Proposition 4.3, it directly follows that B[h]= h, or equivalently, h belongs
to H 2(@�). Hence, on account of Proposition 4.2 one has that C[h]=P[h], or, using the
linearity of the Poisson transform

C[h] ≡ C[ 12 f +
1
2B[f]]=

1
2P[f] +

1
2P[B[f]]

This implies that the harmonic functions P[f] and P[B[f]] add up to the monogenic Cauchy
integral of 1

2f +
1
2B[f]. These observations lead to the following de�nition.

De�nition 4.4
Let B be an operator satisfying properties (4)–(5) and let f∈L2(@�), then P[f] and P[B[f]]
are called B-conjugate harmonic functions in �.

The above ideas are now illustrated in three concrete examples.

Example 4.5
For the case of a bounded and simply connected domain � in Rm+1 with a C∞ smooth
simply connected boundary @�, the Hilbert (or short: H -) transform has been de�ned in
Reference [8]. We recall this de�nition: take f∈L2(@�) and put

H [f](�)=
2
am+1

Pv
∫
@�

�− �
|�− �|m+1 N (�)f(�) dS(�); �∈ @�

where again, N (�) is the outward unit normal Cli�ord-vector to @� at the point �∈ @�.
This H -transform arises as part of the NTBV of C[f], viz

Cint[f](�) ≡ lim
x→�

x∈�; �∈@�
C[f](x)= 1

2f(�) +
1
2H [f](�)

As, clearly, H is bounded and (1 +H)=2 is a (skew) projection on H 2(@�), we immediately
have that P[f] and P[H [f]] are H -conjugate harmonics in � in the sense of De�nition 4.4.
Moreover

C[ 12f +
1
2H [f]]=

1
2P[f] +

1
2P[H [f]]

a relation which for this particular operator H further reduces to

C[f]= 1
2P[f] +

1
2P[H [f]]

since in this case C[ 12 f +
1
2 H [f]] and C[f] are two monogenic, hence harmonic functions

with the same L2 NTBV, which consequently have to coincide. Note however that, as opposed
to the Cauchy integral C[f], the kernel of the Poisson integral P[f] is not explicitly known
for a general domain �.
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Example 4.6
Consider the orthogonal decomposition of L2(@�) w.r.t. the Hardy space H 2(@�), i.e. let

f=P[f] + P⊥[f]

where P[f]∈H 2(@�) and P⊥[f]∈H 2⊥(@�) are the so-called Szeg�o projections of
f∈L2(@�). One has that

P⊥[f](�)=−N (�)P[N (·)f(·)](�)
The above result allows to decompose any f ∈ L2(@�) as

f(�)=P[f](�)− N (�)P[Nf](�); �∈ @� (6)

Consequent to this decomposition, we now de�ne the operator K :L2(@�)→L2(@�) by
K[f](�)=P[f](�) + N (�)P[Nf](�); �∈ @� (7)

Roughly speaking, the K-transform K[f] is obtained by orthogonal re�ection of the
H 2⊥-component of f. It turns out that K is a bounded linear operator on L2(@�), enjoy-
ing the following properties:

• K2 = 1,
• K[1]=1,
• K∗=K ,
• h∈H 2(@�)⇐⇒ K[h]= h,
• g∈H 2⊥(@�)⇐⇒ K[g]=−g.

Furthermore, combination of (6) and (7) yields

P[f] = 1
2f +

1
2K[f]

P⊥[f] = 1
2f − 1

2K[f]

Hence, in particular, K is a ‘Hilbert-like’ operator in the sense of De�nition 4.4, inducing a
corresponding concept of conjugate harmonicity: the functions P[f] and P[K[f]] are quali�ed
as being K-conjugate harmonic in �.
Note that if f is real-valued then P[f] is real-valued, while P[K[f]] is a para-bivector,

i.e. a scalar plus a bivector. Furthermore, we have

C[ 12f +
1
2K[f]]=

1
2P[f] +

1
2P[K[f]]

Comparing both examples, we will in general have that K �= H , since K∗=K , while one
may check that H ∗=NHN , an equality to be interpreted in the sense that

H ∗[f](�)=N (�)H [N (·)f(·)](�)
Furthermore, (1 + H)=2=Cint is a skew projection on H 2(@�), while (1 + K)=2=P is an
orthogonal projection.
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1444 F. BRACKX ET AL.

However, in the case of the unit sphere (i.e. �=Bm+1(O; 1) and @�= Sm) the K- and the
H -transform do coincide, since here it has been shown that Cint constitutes an orthogonal
projection, forcing it to coincide with P. In addition, a straightforward calculation reveals that
here H ∗=H as well. as it should, since we already know that K∗=K .
The Poisson kernel for the unit ball being explicitly known, we treat this particular case in

the following example.

Example 4.7
Let �=Bm+1(O; 1) and @�= Sm, and take f∈L2(Sm). Then we have that

P[f](x) =
∫
Sm
P(x; �)f(�) dS(�)=

1
am+1

∫
Sm

1− |x|2
|x − �|m+1 f(�) dS(�)

Q[f](x) =
∫
Sm
Q(x; �)f(�) dS(�)=

1
am+1

∫
Sm

1 + |x|2 + 2x�
|x − �|m+1 f(�) dS(�)

where Q(x; �) is conjugate harmonic to the Poisson kernel P(x; �) and Q[f](x) denotes
P[H [f]] (=P[K[f]]). Furthermore

C[f](x) =
1
2
P[f](x) +

1
2
Q[f](x)

=
1
am+1

∫
Sm

1 + x�
|x − �|m+1 f(�) dS(�)=

1
am+1

∫
Sm

x − �
|x − �|m+1 �f(�) dS(�)

the last expression being in correspondence with (3).

5. THE CASE OF A DOMAIN � IN Rm+1: CONJUGATE HARMONICS INDUCING
NEW HILBERT TRANSFORMS

We now turn our attention to the inverse case, starting from a well-de�ned notion of conjugate
harmonic functions in the interior (or even the exterior) of a domain �, to arrive at new
Hilbert transforms on the boundary by means of a construction as indicated in the scheme of
Section 1.
To this end, we revert to the notion of angular conjugate harmonic function, as introduced in

Reference [4] for a given real-valued harmonic function u(x). We recall the basic de�nitions
and main results established there. Note in particular that the explicit construction of an
angular conjugate harmonic holds in a broad class of the so-called radially normal domains,
the de�nition of which is given below.

De�nition 5.1
Let �⊂Rm+1 be open and let �̃ be its projection on Sm along the radial direction. Then � is
called a radially normal domain if there exists a constant c∈R+ such that for all !∈ �̃ the
set � ∩ {t! : t¿0} is non-empty, connected and moreover contains the point c!.
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Clearly, the most simple, yet important examples of radially normal domains are the unit
ball and its complement.
We �rst reformulate the main result of Reference [4] concerning the construction of a

tangential conjugate to a given real-valued harmonic function in such a radially normal domain.

Proposition 5.2
Let �⊂Rm+1 be an open and radially normal domain, and let u(x)= u(r!) be a real-valued
harmonic function in �. Furthermore, let C(!) be a real-valued C∞-function satisfying

�∗C(!)=−cm(@ru)r=c; !∈ �̃

with c as in De�nition 5.1 and �∗ the Laplace–Beltrami operator on Sm. Put

h(r!)=
1
rm−1

(∫ r

c
�m−2u(�!) d�+ C(!)

)
Then

1. h(r!) is a real-valued harmonic function in �.
2. w(r!)=−�[h(r!)] is a W-valued harmonic function in �, with

W=span{!e�1 ; : : : ; !e�m−1}⊂R(2)0; m+1
the subspace of bivectors spanned by products of !∈ Sm with the tangent unit vectors
e�1 ; : : : ; e�m−1 to the sphere S

m at !.
3. f(r!)= u(r!) + w(r!)= (E − � +m− 1)[h] is left monogenic in �.
In Reference [4], the function v(r!)= − erw(r!) is called the tangential conjugate to u

in �; note that this function is not harmonic, since the decomposition of the monogenic
function f in the harmonic terms u + w= u + erv involves the non-constant basis vector er
(or !). Hence, for the present purpose, we will use the actual harmonic function w and call
it ‘the harmonic complement’ of u.
It is clear that, in principle, the following scheme allows for the introduction of a new

Hilbert operator B on the boundary of any radially normal domain �,

f∈L2(@�;R) −→ P[f] harmonic in �⏐⏐� B

⏐⏐�
B[f]∈L2(@�;W ) NTBV←− Q[f] harmonic complement in �

However, up to now, only on Sm the explicit construction of suitable Hilbert-like
integral transforms, based on the above concept of conjugate harmonicity and its constructive
determination, has been established, see Reference [3]. This case is treated in the examples
below. Here, we �rst sketch the main lines in the method.
In a �rst step, we start from a function f∈L2(Sm) of which we determine the Poisson

transform P[f] in Rm+1\Sm, given by the following integral (see also Section 4), here
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expressed in spherical co-ordinates:

P[f](r!)=
∫
Sm
P(r!; �)f(�) dS(�)=

1
am+1

∫
Sm

1− r2
|r!− �|m+1 f(�) dS(�)

The obtained function P[f] is harmonic in Rm+1\Sm and vanishes at in�nity. Restriction of
P[f] to the unit ball Bm+1(O; 1) yields the unique harmonic function Pint[f](x), of which
the L2(Sm) non-tangential boundary value for r→ 1− is precisely f(!). In order to obtain
the analogue in Rm+1\Bm+1(O; 1), we need the Kelvin inversion, given by

K(u(x))=K−1(u(x))=
1

|x|m−1 u
(
x
|x|2

)
and leading to the function Pext[f], viz

Pext[f](x)=K(Pint[f])(x)

which is the unique harmonic function in Rm+1\Bm+1(O; 1), vanishing at in�nity, of which the
L2(Sm) non-tangential boundary value for r→ 1+ is f(!).
Next, we will determine the harmonic complements of the functions Pint[f](x) in Bm+1(O; 1)

and Pext[f](x) in Rm+1\Bm+1(O; 1), respectively, denoted by Qint� [f] and Qext� [f].
The constructive procedure is concluded by taking the non-tangential boundary values in

L2(Sm)-sense of the harmonic functions Qint� [f] and Qext� [f], hence obtaining the Hilbert-like
transforms Dint[f](!) and Dext[f](!) according to the scheme

f(!)∈L2(Sm) Pint

−→ Pint[f]∈Harm(Bm+1(O; 1))⏐⏐� ⏐⏐�
Dint[f](!)∈L2(Sm) BV←− Qint� [f]∈Harm(Bm+1(O; 1))

and similarly for Pext[f].

Example 5.3 (the interior D-transform)
We �rst consider the above method for Pint, i.e. in the interior of the unit ball, where we
will obtain an explicit form for the corresponding Dint-transform of a function f∈L2(Sm).
To this end, a �rst strategy is to construct the harmonic complement of the Poisson kernel

P(r!; �). This construction was established in Reference [4], leading to the conjugate Poisson
kernel Q(r!; �), given by

Q̃(r!; �)=
1
am+1

(
2

|r!− �|m+1 −
m− 1
rm

F(r; 〈!; �〉)
)
r! ∧ �

where F(0; 〈!; �〉)=0 and @rF = r(m+1)=2=(1− 2r〈!; �〉+ r2)(m+1)=2.
There is however an alternative way to proceed, where we start from the decomposition of

the given function f into spherical harmonics, viz

f(!)=
∞∑
k=0
Sk[f](!)
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where Sk denotes the projection of f onto the vector space H(k) of spherical harmonics of
degree k in Rm+1, given by

Sk[f](!)=
N(m+ 1; k)

am+1

∫
Sm
Pk;m+1(〈!; �〉)f(�) dS(�)

in which N(m+1; k) is the dimension of H(k) and Pk;m+1(t) are the Legendre polynomials
of degree k in m+ 1 dimensions.
We then may write

Pint[f](x)=
∞∑
k=0
Sk[f](x)

since clearly the uniquely determined harmonic function in Rm+1 with non-tangential boundary
value Sk(!) on the unit sphere, is Sk(x)= rkSk(!). Applying Proposition 5.2, we arrive at the
harmonic potential function h, given by

h(x)=
1
rm−1

∞∑
k=0

∫ r

0
�m+k−2Sk[f](!) d�=

∞∑
k=0

Sk[f](x)
m+ k − 1

The harmonic complement to Pint[f](x) then is

Qint� [f](x)= −
∞∑
k=1

�(Sk[f])(x)
m+ k − 1

Strictly speaking, this construction is only valid for real-valued functions f, see
Reference [4]. However, decomposing a Cli�ord algebra-valued function f into its real
components f(!)=

∑
A fA(!)eA and applying the theorem to each of them, the result is

easily extendable to arbitrary Cli�ord algebra-valued functions.
The L2(Sm) non-tangential boundary value of Qint(x) is given by

Qint(!)= −
∞∑
k=1

�(Sk[f])(!)
m+ k − 1

an expression which may be re�ned by means of the orthogonal decomposition of a spherical
harmonic into an inner and an outer spherical monogenic

Sk[f]=Pk[f] +Qk−1[f]=
k +m− 1− �
2k +m− 1 Sk[f] +

k + �
2k +m− 1 Sk[f]

As moreover

�Pk[f]=−kPk[f] and �Qk−1[f]= (m+ k − 1)Qk−1[f]
we obtain

Qint� [f](!)=
∞∑
k=1

k
m+ k − 1 Pk[f](!)−Qk−1[f](!)=

∞∑
k=0

k
m+ k − 1 Pk[f](!)−Qk[f](!)

In the above, Pk[f] and Qk[f] are to be interpreted as the projections of the function f onto
the vector spaces M+(k) and M−(k) of inner and outer spherical monogenics, respectively.
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In an integral form, they are given by

Pk : L2(Sm) �→M+(k)

f �→ Pk[f](!)=− 1
am+1

!
∫
Sm
{C(m+1)=2k (t)!− C(m+1)=2k−1 (t)�}f(�) dS(�)

Qk : L2(Sm) �→M−(k)

f �→Qk[f](!)=− 1
am+1

∫
Sm
{C(m+1)=2k (t)!− C(m+1)=2k−1 (t)�}�f(�) dS(�)

where t= 〈!; �〉 and C(m+1)=2k (t) denotes the Gegenbauer polynomials in m+ 1 dimensions.
These formal calculations eventually lead to the following de�nition.

De�nition 5.4
The interior D-transform Dint[f] of an L2-function f on the unit sphere Sm is given in terms
of the spherical monogenic decomposition of f by

Dint[f](!)=
∞∑
k=0

k
m+ k − 1 Pk[f](!)−Qk[f](!)

The main properties of Dint are summarized in the following proposition.

Proposition 5.5
The interior D-transform, Dint : L2(Sm) �→ L2(Sm), is a self-adjoint bounded linear operator.

Example 5.6 (the exterior D-transform)
The de�nition and properties of the exterior D-transform are obtained in a similar way as in
previous section, now starting from

Pext[f](x)=
∞∑
k=0

K(Sk[f](x))=
∞∑
k=0
r1−k−mSk[f](!)

De�nition 5.7
The exterior D-transform Dext[f] of an L2-function f on the unit sphere Sm is given in terms
of the spherical monogenic decomposition of f by

Dext[f](!)=
∞∑
k=1
−Pk[f](!) + m+ k − 1k

Qk−1[f](!)

Proposition 5.8
The exterior D-transform, Dext : L2(Sm) �→ L2(Sm), is a self-adjoint bounded linear operator.

Still note that, unlike the Hilbert transform, the D-transforms do not square to the unity
operator and that in particular the D-transforms of a constant are zero. Moreover, only in the
case where m=1, the interior and exterior D-transforms coincide and reduce to the so-called
circular Hilbert transform (see e.g. Reference [9]). For other dimensions, one has the formula

Dint +Dext = (m− 1)
∞∑
k=1

[
− 1
m+ k − 1 Pk[f](!) +

1
k
Qk−1[f](!)

]
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6. CONCLUSION

It may be clear that the notions of conjugate harmonicity in an open, bounded and simply
connected domain � in Euclidean space, and of Hilbert transform on the smooth boundary
@� of such a domain, both are not uniquely determined. However, they remain strongly
connected to each other since each appropriate notion of conjugate harmonicity in � induces
a Hilbert-like transform on @� and vice versa.
This situation is essentially di�erent from the one in the complex plane. Indeed, given a

real-valued harmonic function u(x; y) in an open, simply connected region G of the complex
plane, there is—up to a constant—a unique conjugate harmonic v(x; y), such that u + iv is
holomorphic in G. As opposed to that, given a real-valued harmonic function U (x) in an open,
simply connected region � of Euclidean space, there exists a wealth of harmonic functions
V (x) such that U (x) + V (x) is left-monogenic in �, which at the same time explains the
absence of a standard notion of conjugate harmonicity.
In order to illustrate the interplay between the two protagonists under consideration, we

summarize the results obtained for the unit ball, which o�ers the advantage of an explicitely
known Poisson kernel,

P(x; �)=
1
am+1

1− |x|2
|x − �|m+1 ; x∈Bm+1(O; 1); �∈ Sm

Starting from the Hilbert transform of Reference [8] for f∈L2(Sm), which is given by

H [f](�)=
2
am+1

Pv
∫
@�

�− �
|�− �|m+1 �f(�) dS(�); �∈ @�

since N (�)= �, for all �∈ Sm, the H -conjugate Poisson kernel has been shown to be

Q(x; �)=
1
am+1

1 + |x|2 + 2x�
|x − �|m+1 ; x∈Bm+1(O; 1); �∈ Sm

Note that, if the function f is decomposed into spherical harmonics, and subsequently in
spherical monogenics as well, viz

f(!)=
∞∑
k=0
Sk[f](!)=

∞∑
k=0
Pk[f](!) +Qk−1[f](!); !∈ Sm

then the Hilbert transform of f takes the form

H [f](!)=
∞∑
k=0
Pk[f](!)−Qk−1[f](!); !∈ Sm

on account of the fact that Pk[f] and Qk−1[f] are eigenfunctions of H with respective eigen-
values +1 and −1, see Reference [5]. Meanwhile, this also nicely illustrates the properties
H 2 = 1 and H [1]=1.
On the other hand, if we start from the notion of angular conjugate harmonics, a Hilbert-

like integral transform Dint on Sm is obtained for which, again in terms of the decomposition
of f∈L2(Sm) in spherical monogenics, we have found

Dint[f](!)=
∞∑
k=0

k
m+ k − 1 Pk[f](!)−Qk[f](!); !∈ Sm
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As mentioned above, here we have that (Dint)2 �=1 and that Dint[1]=0. So clearly, H and
Dint are di�erent operators. Moreover, the Dint-conjugate Poisson kernel reads

Q̃(x; �)=
1
am+1

(
2

|x − �|m+1 −
m− 1
rm

F(r; 〈!; �〉)
)
x ∧ �

where the function F has been speci�ed in Example 5.3. With P, the kernel Q̃ adds up to
a monogenic kernel, which obviously is not the Cauchy kernel. Note in particular that the
H -conjugate Poisson kernel Q is para-bivector valued (i.e. a scalar plus a bivector), while the
new Q̃ is a pure bivector by construction.
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