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Electron-phonon interaction in a spherical quantum dot with finite potential barriers:
The Fröhlich Hamiltonian

Dmitriy V. Melnikov and W. Beall Fowler
Physics Department and Sherman Fairchild Center, Lehigh University, Bethlehem, Pennsylvania 18015
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A Fröhlich Hamiltonian describing the electron-phonon interaction in a spherical quantum dot embedded in
another polar material is derived, taking into account interactions with both bulk longitudinal optical and
surface optical phonons. The Hamiltonian is appropriate to the general case of a finite confining potential
originating from a bandgap mismatch between the materials of the dot and the surrounding matrix. This
Hamiltonian is then used to treat the electron-phonon interaction in the adiabatic approximation for CdSe/ZnSe
and CuCl/NaCl quantum dot systems. It is found that, as the radius of the dot decreases, the magnitude of the
electron-phonon interaction energy first increases, passes through a maximum, and then gradually decreases to
the value appropriate to the situation where the electron is weakly localized inside the dot. As the height of the
interface barrier decreases, the absolute value of the electron-phonon interaction energy also decreases. These
results indicate that the dependence of the electron-phonon interaction on the radius of the dot is much smaller
than predicted from the simplified model with infinite value of the bandgap mismatch.
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I. INTRODUCTION

Remarkable progress in semiconductor nanotechno
has made it possible to fabricate a wide array of semic
ductor heterotructures. In these structures electronic st
are subject to a strong dimensional confinement effect ari
from the mismatch in the bandgaps of the constituent m
rials. Among various kinds of nanostructures~quantum wells
and superlattices with electronic confinement in one dim
sion, quantum wires with two-dimensional confinement p
tentials and quantum dots with the quantum confinem
present in all three dimensions!, the quantum dot~QD! sys-
tems have attracted the most attention because of their
tential applications to electronic and optoelectronic device1,2

and the interesting quantum-mechanical phenomena as
ated with them.

The electron-phonon coupling in nanostructures also
different features from that in the bulk. Namely, there is
strong increase of its strength with the reduction of dim
sionality~from 3D in the bulk to 0D in the quantum dot!, and
there exist surface optical~SO! modes3 due to the difference
in the dielectric constants of the materials inside and outs
the structure. To discuss phonon effects on electrons in n
structures in a proper way, these phonon features~polaron
effects! have to be taken into account.

Since the QD is one of the simplest examples of quan
confined structures, the polaron effects on an electron h
been studied extensively both theoretically and experim
tally. Polaron effects have been studied theoretically in Q
of various forms: cylindrical QD’s,4 rectangular quantum
boxes,5 and QD’s with a parabolic confinement potential.6–8

In the spherical quantum dots polaron effects have been
tensively investigated within the dielectric continuu
model.9–11 These effects were first studied for the case o
free polaron in a spherical QD~an electron confined in the
QD interacts with phonons! implementing an adiabatic
approximation,9–11 in which surface optical phonon mode
0163-1829/2001/64~24!/245320~9!/$20.00 64 2453
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do not contribute to the polaron energy shift. Second-or
perturbation theory12 was also used to calculate the polar
shift; it was found that the bulk-type phonons play the dom
nant role in the polaron energy shift. The all-coupling var
tional technique13 valid for a wide range of material param
eters was also developed and systematic calculations o
polaron energy shift were performed. The major results
these considerations are that~1! the bulk LO phonons play
the most important role in the polaron effects and the con
bution from the SO phonons is either negligible or nonex
ent and~2! with the increase of the dot’s radius the magn
tude of the polaron energy shift decreases rapidly from
large value and then gradually approaches its bulk value

However, almost all models utilized in the above pap
suffer from one important drawback: they all assume that
discontinuity at the interface of the QD has an infinite valu
The effect of the finite value of the discontinuity was co
sidered in Refs. 11,12; however, the electron-phonon Ham
tonian was not given there in explicit form. The assumpti
of an infinite surface barrier gives rise to the fact that t
electron is always confined perfectly inside the dot. Wh
the bandgap mismatch has a finite value, the electron
penetrate into the barrier material. Since the real semic
ductor quantum dots are usually embedded in another p
material, e.g., a GaAs QD in a AlGaAs matrix, this ma
result in a significant change of the total electron-phon
interaction energy since an electron in the barrier will a
interact with LO phonons pertinent to that medium. Thus
full electron-phonon interaction Hamiltonian should com
prise all these effects: the interaction of an electron with
internal LO phonons of the QD material together with t
interaction with phonons in the outer medium and t
electron-SO-phonon interaction due to the presence of
interface ~surface of the dot! should all be considered to
gether.

In the present work we derive a Fro¨hlich Hamiltonian
describing the electron-phonon interaction in a spher
quantum dot embedded in another polar material, taking
©2001 The American Physical Society20-1
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account interactions with both internal and external LO a
SO phonons. This Hamiltonian is valid for quantum dot s
tems with finite values of the bandgap mismatch on the s
face of the dot~finite values of the confinement potential!. In
order to derive this Hamiltonian, various phonon modes
sponsible for polarization of the medium were first cons
ered and then the interaction of a charged particle~electron
or hole! with them was calculated. The electron-phonon
teraction in confined systems was first studied by Fuchs
Kliewer,14 Licari and Evrard,15 and Lucaset al.16 Later
Wendler17 extended their method for the calculation of t
phonon modes in layered semiconductor heterostructu
Klein et al.9 obtained the Hamiltonian describing th
electron-phonon interaction in spherical QD’s embedded
nonpolar material assuming perfect confinement of an e
tron in the dot. This Hamiltonian was used in the works cit
above and was also adapted for the cases of the bo
polaron10,18and exciton10,19confined in the QD. Recently th
approach of Licari and Evrard and Wendler was also use
derive the electron-phonon interaction Hamiltonian for qu
tum wire systems,20 again assuming perfect confinement
an electron in the system. The electron-phonon interac
was also studied in quantum well structures within t
second-order perturbation theory21 assuming finite value o
the interface barrier.

This paper is organized in the following way. In the ne
section the derivation of the electron-phonon Hamilton
is presented; first the interaction with SO modes is c
sidered and then the electron-LO-phonon interaction
calculated. In the following section this new Hamiltonia
is applied to the problem of the single polaron confin
in spherical quantum dot. To simplify the consideration,
electron-phonon interaction is treated in the adiabatic
proximation in Zn12xCdxSe/ZnSe~Ref. 22! and CuCl/NaCl
QD systems. Finally, the last section gives some conclud
remarks and outlines possible future directions of resear

II. THE ELECTRON-PHONON INTERACTION
HAMILTONIAN

We consider a sphere of radiusR made of a polar materia
with dielectric constant«1(v) ~material 1! embedded in an
infinite polar medium of dielectric constant«2(v) ~material
2!. We need to derive the Fro¨hlich Hamiltonian describing
the interaction of an electron with longitudinal optical~LO!
phonons. In this situation the only relevant modes are
internal and external LO~bulk! and the surface~SO! modes.
Since we have two different polar media there should e
two different types of LO phonons associated with the
which we call bulk LO phonons, and one type of S
phonons.

Proceeding from the standard electrostatic Maxwell eq
tions written for the dielectric continuum model

¹"D50, ~1!

D5«E5E14pp, ~2!

E52¹w, ~3!
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whereD, E, p, w are the dielectric displacement vector, ele
tric field, the polarization density, and the polarization pote
tial, respectively, we easily get the Poisson equation for
potentialw~r ! in this system

« i~v!Dw50, i 51,2. ~4!

From this equation we have two possibilities.
~1! « i(v)50, which, since the dielectric constant is give

by

« i~v!5« i`

v22v iLO
2

v22v iTO
2

, i 51,2, ~5!

corresponds to the polarization due to the bulk LO modes
eigenfrequencyv iLO . Here« i` is the high-frequency dielec
tric constant,v iLO and v iTO are the LO and TO eigenfre
quencies related by« i0 /« i`5(v iLO /v iTO)2, « i0 is the static
dielectric constant.

~2! Dw50, which will give another type of solution. I
was shown in Ref. 15 that the polarization associated w
these modes gives rise to a surface charge only, and
these modes are usually called surface or interface op
~SO! phonon modes. Let us consider these two cases s
rately and derive the Hamiltonian which describes the int
action of a charged particle~electron or hole! with bulk LO
and SO phonons.

A. Electron-SO-phonon interaction

Assuming that the eigenfrequenciesvs associated with
SO phonons are not equal to eitherv1LO or v2LO, the solu-
tion of the Poisson equation

Dw i~r !50, i 51,2 ~6!

can be written in the standard form

w1~r !5(
lm

Clm
(1)S r

RD l

Ylm~u,w!, r ,R,

w2~r !5(
lm

Clm
(2)S R

r D l 11

Ylm~u,w!, r .R, ~7!

where Clm
(1) ,Clm

(2) are constants to be determined later, a
Ylm(u,w) are the spherical harmonics. Here we have
sumed that the outer medium is infinite in extent.

The electrostatic boundary conditions for these potent
can be written as

w1ur 5R5w2ur 5R , ~8!

D1n5«1~vs!
]w1

]r U
r 5R

5D2n5«2~vs!
]w2

]r U
r 5R

. ~9!

From the continuity of the potentialw @Eq. ~9!#, we obtain
for the constantsClm

(1) andClm
(2) that

Clm
(1)5Clm

(2)[Clm , ~10!
0-2
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ELECTRON-PHONON INTERACTION IN A SPHERICAL . . . PHYSICAL REVIEW B 64 245320
while from the continuity of the normal component of th
displacement vectorD @Eq. ~10!#, the equation for the SO
phonon frequencies follows

l«1~vs!1~ l 11!«2~vs!50. ~11!

By solving this equation together with Eq.~2!, the values of
the SO phonon eigenfrequenciesvs[v l can be determined
Note that forl 50 the only solution of this equation is fo
v05v2LO, which corresponds to the interaction of an ele
tron with bulk LO phonons. Thus the lowest value of t
orbital quantum number for SO phonon modes isl 51.

The polarization densities associated with the potent
defined above@Eq. ~4!# can then be cast in the followin
form

p1~r !52(
lm

x1~v l !

4p
Clm¹F S r

RD l

Ylm~u,w!G , ~12!

p2~r !52(
lm

x2~v l !

4p
Clm¹F S R

r D l 11

Ylm~u,w!G , ~13!

wherex1(v l) andx2(v l) are susceptibilities of materials
and 2, respectively.

In order to determine the constantsClm and to proceed
further with the derivation of the electron-phonon interacti
potential, we must calculate the Hamiltonian for a given ph
non mode~the free phonon Hamiltonian!. We start with the
basic equation of motion for the relative displacement of
ions in materiali ( i 51,2):

m i ü52m iv i0
2 u1eEloc , ~14!

wherem i is the reduced mass for an ionic pair,v i0 is the
characteristic frequency associated with the short-range
teraction, andEloc is the local field at the position of the ioni
pair. The oscillating ions produce a polarization field

p~r !5neu1naEloc , ~15!

wheren is the number density of pairs anda is the polariz-
ability of a pair.

According to the equation of motion, we may express
Hamilton functionHph

(SO) in the form of the following inte-
gral:

Hph
(SO)5

1

2E d3r ~nmuu̇u21nmv0
2uuu22neuEloc!. ~16!

Using Eq.~12! for the relation between the polarization an
the macroscopic electric fieldE, together with the well-
known Lorentz relation between the local and macrosco
electric field

Eloc5E1
4p

3
p, ~17!

and the equations for LO and TO phonon frequenc
vLO ,vTO:
24532
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vLO
2 5v0

21
~8p/3!vp

2

11~8p/3!na
, vTO

2 5v0
22

~4p/3!vp
2

12~4p/3!na
,

~18!

«`5
11~8p/3!na

12~4p/3!na
, ~19!

we may rewrite Eq.~16! in the following form:17

Hph
(SO)5

1

2E d3rQ~v l !~ uṗu21v l
2upu2!, ~20!

where

Q~v!5
vp

2

@vp
214pna~v0

22v2!#2
, vp

25
4pne2

m
. ~21!

We now introduce phonon creationalm
† and annihilation

alm operators as follows:

p1~r !52(
lm

x1~v l !

4p
Clm¹F S r

RD l

Ylm~u,w!G~alm
† 1alm!,

~22!

ṗ1~r !5(
lm

iv l

x1~v l !

4p
Clm¹F S r

RD l

Ylm~u,w!G~alm
† 2alm!

~23!

and analogously forp2(r ) andṗ2(r ). These expressions wil
allow us to obtain the standard free phonon Hamiltonian

Hph
(SO)5(

lm
\v l S alm

† alm1
1

2D . ~24!

Substituting expressions~22! and ~23! into Eq. ~20! and
using the usual commutation relations for the operatorsalm

†

andalm

@alm
† ,al 8m8#5d l l 8dmm8 , @alm

† ,al 8m8
†

#5@alm ,al 8m8#50,
~25!

and the first Green’s identity

E d3r¹f•¹c52E d3rfDc1E dsf
]c

]r
~26!

to perform the integration, we obtain constantsClm in the
form

Clm
2 5

2p\

v lR

1

x1
2~v l !Q1~v l !l 1x2

2~v l !Q2~v l !~ l 11!
.

~27!

The electron-phonon interaction Hamiltonian describi
the interaction of the point charge~electron or hole! at posi-
tion re with the polarizationp~r ! is given by

Hep
(SO)52eE d3r¹ r

1

ur2reu
•p~r !. ~28!
0-3
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Substituting in this equation the polarizationsp1(r ) and
p2(r ) together with constantsClm determined above, we wil
obtain for the electron-SO-phonon interaction the followi
expression:

Hep
(SO)52

e

4p (
lm

Clm$@x1~v l !I lm1x2~v l !Jlm#alm1H.c.%,

~29!

I lm5E
r ,R

d3r¹ r

1

ur2reu
•¹F S r

RD l

Ylm~u,w!G ,
Jlm5E

R.r
d3r¹ r

1

ur2reu
•¹F S R

r D l 11

Ylm~u,w!G .
In order to evaluate the integrals, we again apply the fi

Green’s identity which transforms the integrals over the v
ume into the integrals over the surface of the sphere w
radiusR:

x1~v l !I lm1x2~v l !Jlm5@x1~v l !l 1x2~v l !~ l 11!#

3
1

REr 5R
ds

1

ur2reu
Ylm~u,w!.

~30!

This last integral can be easily evaluated by making us
the well-known expansion

1

ur2reu
U

r 5R

5
4p

2l 11

35 (
lm

1

R S r e

RD l

Ylm* ~u,w!Ylm~ue ,we!, r e,R,

(
lm

1

r e
S R

r e
D l

Ylm* ~u,w!Ylm~ue ,we!, r e.R.

~31!

Realizing also thatx i(v)5« i(v)21, the factorx1(v l) l
1x2(v l)( l 11) becomes equal to2(2l 11) so that the final
expression for the electron-SO-phonon interaction can
given as follows:

Hep
(SO)52(

lm
a l@Vlm~r !alm1H.c.#, ~32!

with11

a l5S 2p\

v lR

1

x1
2~v l !Q1~v l !l 1x2

2~v l !Q2~v l !~ l 11!
D 1/2

,

~33!

x i
2~v!Q i~v!5« i`

v iLO
2 2v iTO

2

~v22v iTO
2 !2

, i 51,2, ~34!
24532
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Vlm~r !5H ~r /R! lYlm~u,w!, r ,R,

~R/r ! l 11Ylm~u,w!, r .R.
~35!

and the frequenciesv l are to be determined from Eq.~11!. It
should be mentioned here that the quadratic equation~11!
has two different solutions due to the presence of two po
materials: one of them is associated with medium 1 and
other with medium 2.

In the limiting case when the outside medium is nonp
larizable, i.e.,«2(v)[«d5const, there will be only one so
lution for the eigenfrequencies, and the Hamiltonian can
easily rewritten in the well-known form first obtained b
Klein et al.9

Hep
(SO)52(

lm
a l@Vlm~r !alm1H.c.#, ~36!

with the electron-SO-phonon coupling constant

a l5
«1`Al

l«1`1~ l 11!«d
v1LOA2pe2\

v lR
S 1

«1`
2

1

«10
D ,

~37!

v l
25

«d1~«d1«10!l

«d1~«d1«1`!l

«1`

«10
v1LO

2 .

Another limiting case is when«1(v)5«2(v), i.e., there
is no interface. In this case Eq.~11! will be satisfied only
when v l5vLO , and this situation corresponds to the inte
action of a charged particle with bulk LO phonons.

B. Electron-bulk-phonon interaction

In this case we need to consider two separate cases~1!
v5v1LO corresponding to the interaction with bulk LO
phonons in the material 1 and~2! v5v2LO appropriate for
the LO modes in the outside medium. We start with the fi
case.

~1! Here the solution of the Poisson equation

«1~v1LO!Dw1~r !50, «1~v1LO!50, r ,R,

«2~v1LO!Dw2~r !50, «2~v1LO!Þ0, r .R ~38!

takes the form

w1~r !5(
klm

Aklmj l~kr !Ylm~u,w!, r ,R,

w2~r !5(
lm

Blm~R/r ! l 11Ylm~u,w!, r .R. ~39!

From the continuity of the normal component of the d
placement vector on the surface, we obtain that the poten
outside the sphere is equal to zero:

w2~r !50, r .R. ~40!

From the continuity of the electrostatic potential on the
terface, we then conclude that

j l~kR!50 ~41!
0-4
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ELECTRON-PHONON INTERACTION IN A SPHERICAL . . . PHYSICAL REVIEW B 64 245320
which specifies the allowed spectrum ofk[kln5m ln /R,
wherem ln is the nth root of thel th order spherical Besse
function j l . The unknown constantsAlmn will be determined
later from the comparison of the polarization Hamiltoni
with the free phonon Hamiltonian written for LO modes
medium 1, similar to the case of the electron-SO-phon
interaction considered above.

~2! In the situation when the frequencyv coincides with
the eigenfrequency of LO phonons in medium 2,v2LO, the
potential outside the dot is given by

w2~r !5(
klm

Ãklmf l~kr !Ylm~u,f! ~42!

with

f l~kr !5 j l~kr !1B̃klmnl~kr ! ~43!

and nl is the spherical Neumann function of thel th order.
Inside the quantum dot the potential is equal to zero, and
continuity on the interface results in the condition

f l~kR!50. ~44!

There is one constant still undetermined (B̃klm). To find it
we need to set up boundary conditions on the distant o
interface with radiusR2:

f l~kR2!50. ~45!

Together these two last equations determine the allo
spectrum ofk values:k[kln5n ln /R, and values ofB̃klm .
After the spectrum and constants are found, the value oR2
can go to infinity so that the final answer is independent
its particular value.

The rest of the calculation is analogous to the derivat
of the electron-SO-phonon interaction Hamiltonian. W
again set up the polarization vectors associated w
phonons: this time there will be two of them, one for each
the LO phonon frequencies. Writing the classical Hamilt
function for each polarization separately and equating i
the free phonon Hamiltonian

Hph
(LO)5(

lmn
\VS almn

† almn1
1

2D ~46!

with eigenfrequencyV5v1LO or v2LO, respectively, allows
us to find the values of the normalization constantsAlmn and
Ãlmn :

Almn5
4p\

v1LORmnl
2 j l 11~mnl!

1

x1
2~v1LO!Q1~v1LO!

, ~47!

Ãlmn5
2p\

v2LORInl

1

x2
2~v2LO!Q2~v2LO!

, ~48!

where the normalization integralI ln is

I ln5n ln
2 E

1
dxx2u f l~n lnx!u2.
24532
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Then the electron-phonon interaction Hamiltonian can a
be easily evaluated.

After some calculations, it turns out that the polarizati
associated with the frequencyv1LO gives rise to a nonzero
value of this interaction only when an electron is confin
inside the sphere (r e,R). Physically this fact can be unde
stood by noting that in our model phonons are dispersion
and thus the frequencyv1LO corresponds to the excitation o
phonons only in medium 1. The value of this electro
phonon interaction is equal to~in order to calculate it, the
first Green’s identity was used together with expansion
ur2reu21 in spherical harmonics!:

Hep
(1)52(

lmn
b lmn

(1) @Vlmn
(1) ~r !almn1H.c.#, ~49!

where

b ln
(1)5H 4pe2

R

\v1LO

m ln
2 j l 11

2 ~m ln!
S 1

«1`
2

1

«10
D J 1/2

, ~50!

Vlmn
(1) ~r !5 j l~klnr !Ylm~u,w!. ~51!

When the electron is outside the sphere (r e.R), it inter-
acts only with the polarization due to phonons in medium
The value of this potential is

Hep
(2)52(

lmn
b lmn

(2) @Vlmn
(2) ~r !almn1H.c.#, ~52!

with

b ln
(2)5H 2pe2

R

\v2LO

I ln
S 1

«2`
2

1

«20
D J 1/2

, ~53!

Vlmn
(2) ~r !5 f l~klnr !Ylm~u,w!. ~54!

Finally, the full electron-phonon Hamiltonian can be wr
ten by adding the electron-SO-phonon interaction poten
and the free SO phonon Hamiltonian given by Eqs.~36! and
~24! to the electron-bulk-phonon potential and the free L
phonon Hamiltonian obtained above:

Hep5Hep
(SO)1Hep

(LO)1Hph
(SO)1Hph

(LO) , ~55!

where

Hep
(LO)5H Hep

(1) , r ,R,

Hep
(2) , r .R.

~56!

Note also that if the electron is confined perfectly insi
the sphere, then this full Hamiltonian, given now by Eq
~36!,~24!,~49!,~46!, agrees with that of Kleinet al.9

III. RESULTS OF CALCULATIONS

A. Method

In this section we apply the electron-phonon interact
HamiltonianHep obtained above to the problem of a polaro
in a spherical QD. We consider an electron which is confin
0-5
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in a sphere with radiusR and is interacting with LO phonons
In the effective-mass approximation the Hamiltonian of t
system is given by sum of the electronicHe and the electron-
phonon interactionHep parts

H5He1Hep . ~57!

Here the electronic part is given by

He5
p2

2m
1VQD~r !, ~58!

where m, p, and r are the effective mass, momentum a
coordinate of the electron, respectively,VQD(r ) is the con-
finement potential of the QD:

VQD~r !5H 0, r ,R,

V0 , r .R,
~59!

and V0 is the value of the conduction band-edge misma
between the materials of the QD and the surround
medium ~the interface barrier potential experienced by
electron!.

Let us assume that the electron moves much faster
the surrounding ions. This situation can be realized~1! when
the radius of the QD is sufficiently small so that the quant
confinement gives rises to orbital shrinking of the electro
density and increases the kinetic energy of the electron
~2! when the electron-phonon interaction is so strong t
electron self-localization occurs, i.e., fast electron osci
tions. This means that the phonon field experiences a s
distribution of electronic charge density and there is no c
relation between the instantaneous position of the elec
and the induced polarization field; this is what is usua
called the adiabatic approximation.

Within this approach, the effect of the electron-phon
interaction is to displace the equilibrium positions of t
ions. This can be achieved by performing two linear sh
canonical transformations corresponding to the interac
with bulk ( j 51) and surface (j 52) phonon modes:

U j5expH(
s

@ f s
( j )ajs1~ f s

( j )!* ajs
† #J , ~60!

wheres5$ l ,m,n% for j 51, s5$ l ,m% for j 52, and the pa-
rametersf js are to be determined variationally. With the
transformations taken into account, the total wave funct
of the system is given by the product of the electronic p
uc~r !& and the phonon partU1U2u0&:

uC&5uc~r !&U1U2u0&, ~61!

whereu0& is the phonon ground state.
The subsequent minimization of the expectation ene

value

E5^CuHuC& ~62!

with respect to the variational parametersf js , leads to the
following standard expressions for them:
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f lmn
(1) 55 2

^cuVlmn
(1) ~r !uc&

\v1LO
, r ,R,

2
^cuVlmn

(2) ~r !uc&
\v2LO

, r .R,

~63!

f lm
(2)52

^cuVlm~r !uc&
\v l

. ~64!

Following the variational method, we choose the electro
wave function in the form23

c~r !5c0~r !e2gr , ~65!

whereg is a variational parameter, indicating the degree
the electron-phonon interaction, andc0(r ) is the ground
state eigenfunction of the HamiltonianHe :

c0~r !5H N
sin~zr !

r
, r ,R,

N
sin~zR!

r
e2h(r 2R), r .R.

~66!

In this equationN is the normalization constant given as

N2254p~A1B! ~67!

with

A5
12e22gR

4g
2

g1e22gR@z sin~2zR!2g cos~2zR!#

4~g21z2!
,

~68!

B5
sin2~zR!e22gR

2~z1g!
, ~69!

and z5A2mE0 /\2,h5A2m(V02E0)/\2; the value of the
ground state energy ofHe , E0, is determined from the tran
scendental equation

h tan~zR!52z. ~70!

Note also that from this equation it follows that the smalle
value of the QD radiusR required for the existence of
bound state isRc5(p2\2/8mV0)1/2.

After some calculations we can find the expectation
ergy E as a functional of the parameterg in the form

E@g#5
2p\2N2

m
@~g22z2!A1~g1h!2B2gzC#

14pN2V0B2(
lmn

ub ln
(1)u2

u^cuVlmn
(1) ~r !uc&u2

\v lLO

2(
lmn

ub ln
(2)u2

u^cuVlmn
(2) ~r !uc&u2

\v2LO
, ~71!

whereC is given by

C5
z2e22gR@g sin~2zR!1z cos~2zR!#

2~g21z2!
. ~72!
0-6
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In the above expression for the polaron energy functionaE,
the first two summands correspond to the energy of the b
electron confined in the QD, and the third and fourth on
describe the interaction of the electron with bulk L
phonons in media 1 and 2, respectively. Note also that in
equation the contribution from the electron-SO-phonon in
action is absent. This can be explained by the fact that in
case the electron has a spherically symmetrical wave fu
tion given by Eq.~65!, and thus the value of the paramet
f lm

(2) is equal to zero. Physically this can be explained
noting that in the adiabatic approximation the electron
oscillating fast and since it is in the ground state with
spherically symmetrical charge distribution, the average
face ionic polarization charge is zero.

In the following calculations we will pay special attentio
to these quantities: total polaron energyE, given by Eq.~71!,
and contributions to it from the electron-bulk-phonon inte
action in media 1 and 2,ELO

(1) andELO
(2) , which can be cast in

the following form:

ELO
(1)52

@4eRN2#2

R S 1

«1`
2

1

«10
D

3 (
n51

`
1

n2 F E
0

p

dx
sin~nx!

x
sin2S zRx

p De22gRx/pG2

, ~73!

ELO
(2)52

@4epN2sin2~zR!e2hR#2

R22R S 1

«2`
2

1

«20
D

3(
k0n

1

k0n
2 F E

R

R2
dr

sin@k0n~r 2R!#

r
e22hre22gr G2

, ~74!

where k0n5pn/(R22R), n51,2, . . . , is thesolution of
Eqs.~44! and ~45!.

Since we assume that the outer medium is infinitely la
(R2→`), we can assert that the separation between the
jacent values ofk0n is infinitely small and thus replace th
summation overk0n in Eq. ~74! by a one-dimensional inte
gral overk which represents the transition from the discre
phonon modes to the continuum spectrum of phonons.
resulting expression does not depend on the particular v
of radiusR2 and can be rewritten as follows:

ELO
(2)52@4ep1/2N2sin2~zR!e2hR#2S 1

«2`
2

1

«20
D

3E
0

`dk

k2 F E
R

R2
dr

sin@k~r 2R!#

r
e22hre22gr G2

. ~75!

The energy of the bound polaron and electron-phon
interaction energies~73!,~75! can then be found by minimiz
ing numerically the functionalE@g# with respect to the pa
rameterg.

B. Electron-phonon coupling

Numerical calculations have been carried out
Zn12xCdxSe/ZnSe QD systems with different values ofx and
for CuCl quantum dots embedded in NaCl. We start w
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CdSe quantum dots. As was noted in Ref. 24, most of
necessary parameters are not very well known for Zn
CdSe, and their ternary alloys. Various theoretical studies
different values of these parameters. In this work we use
values of the material parameters adopted from Refs. 10
for ZnSe and CdSe~see Table I!. The parameters for
Zn12xCdxSe are obtained by linear interpolation from th
corresponding values for ZnSe and CdSe. For bandgap
match we use the simple relationDEg5920x(meV) for
Zn12xCdxSe/ZnSe systems assuming that this approxima
may have an effect only on quantitative properties, but
on qualitative conclusions. The value of the conduction ba
offset V0 is assumed to be 80% ofDEg .24

In Fig. 1 we present the total polaron energy as a funct
of the QD radius. It is seen that all these energies appro
the same negative value in the limit of large radius. Even
ally the energy becomes negative in the limit of the large Q
due to the fact that the electron-phonon interaction low
the conduction band edge. For small values of the dot’s
dius these energies are smaller than the energy calculate
the QD with infinite barriers in the interface since the ele
tron can spread out through the barrier, and when the ra
is close toRc the energies approach the values ofV0 for the
particular material.

In the next figure~Fig. 2! we present the total electron
phonon coupling energyELO given by the sumELO

(1)1ELO
(2)

for the Zn12xCdxSe/ZnSe QD system. The dependence
the electron-phonon interaction energy calculated for
case of perfect electron confinement (V0→`) is also shown

TABLE I. Physical parameters of two binary compounds:m
is the mass of an electron~in units of a free electron mass!, Eg is the
energy band gap~in eV!, «0 and «` are the static and high
frequency dielectric constants,\vLO is the energy of the LO pho-
non ~in meV!.

Material «0 «` \vLO m Eg

CdSe 6.23 9.56 26.46 0.11 1.9
ZnSe 7.6 5.4 31.4 0.13 2.82
CuCl 3.61 7.9 25.64 0.5 3.4
NaCl 2.3 5.9 33.6 2.8 8.4

FIG. 1. The dependence of the total polaron energyE on the
radius of the quantum dot.
0-7
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~curve 4!. It is seen that for large values of the dot’s radius
curves obtained for the various values of Zn concentra
approach the same value as calculated for the limiting cas
the infinitely deep potential well. However, their behavior f
smaller radii is rather different. When the radius decrea
the magnitude of the interaction energy first increases
obtained earlier for the polaron confined perfectly in t
QD:13 for small values ofR, ELO}1/R since the radius of the
dot now becomes the characteristic distance instead of
polaron radius in the bulk.18 When the radius decreases fu
ther, the energy begins to deviate from the limiting 1/R de-
pendence due to the fact that the electron now can be pre
in the barrier as well, effectively increasing its localizatio
radius. Note also that the smaller the value ofx the smaller
the interaction energy for all values ofR. When the radius of
the dot approaches the critical valueRc ~the ground state
level is close to the conduction band edge of the surround
material! the electron-phonon interaction energy reaches
limiting value appropriate for the situation when the great
part of the electronic density is in ZnSe.

In this situation the greatest contribution to the total va
of the electron-phonon interaction comes from interaction
the electron with phonons in the surrounding ZnSe. This
clearly seen in Fig. 3 where we plotted separately the con
butions from the internal LO phonons (ELO

(1)) and external
phonons (ELO

(2)) for x50.1. We see that for small radii th

FIG. 2. The electron-phonon interaction energyELO as a func-
tion of the quantum dot’s radius for the Zn12xCdxSe/ZnSe system

FIG. 3. The dependence of the interaction energy of the elec
with internal and external LO phonons on the dot’s radius.
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value of ELO
(1) is much smaller thanELO

(2) . As the radius in-
creases the quantityELO

(2) exponentially quickly approache
zero since the energy level becomes significantly below
interface barrier so that the electron is localized in the Q
Then the interaction with internal QD phonons becom
dominant.

To demonstrate the behavior of the electron-phonon in
action in the limit of a very large confinement potential, w
have also performed calculations for a CuCl quantum
embedded in NaCl matrix. The parameters for this syst
are taken from Refs. 10,11,26 and also listed in Table I.
the conduction band offset we have assumed that it is 50%
DEg . From the dependencies shown in Fig. 4, it is seen t
for most values of the QD radius the value of the electro
phonon interaction energy coincides with the limiting val
obtained for perfect electron confinement, which is to
expected since the value ofV0 here is 2.5 eV. Only for very
small radii (R,10 Å), it deviates sharply from that curve
Thus it can be concluded that for this situation the mo
assuming an infinite value of the potential barrier on t
interface produces reasonable results for almost all value
the QD radii.

IV. CONCLUDING REMARKS

In the present work we presented the Fro¨hlich Hamil-
tonian describing the electron-phonon interaction in sph
cal quantum dots. Such effects as the presence of a surro
ing polar material in which the QD is embedded and t
finite value of the band gap offset on the dot’s interface
taken into account. Interactions with both bulk LO and S
phonons were also considered. This Hamiltonian was t
applied to a study of the polaron confined in the quant
dot. The adiabatic variational method was used to treat
electron-phonon interaction. Generally speaking, this met
gives valid results only for small quantum dots when effe
of the quantum confinement predominate. It is in this ran
of QD radii that the most significant differences between
predictions of this Hamiltonian and the results obtained fr
the implementation of the model with perfect electron co
finement9,10 were found. As the radius of the dot decreas
the magnitude of the electron-phonon interaction energy
n

FIG. 4. The electron-phonon interaction energyELO as a func-
tion of the quantum dot’s radius for the CuCl/NaCl system.
0-8
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increases, passes through a maximum, and then grad
decreases to the value appropriate to the situation where
electron is weakly localized inside the dot. In this region t
contribution from the interaction of the electron wi
phonons in the surrounding material, not considered in
previous study,10 gives a significant contribution to the tota
electron-phonon coupling energy. As the height of the in
face barrier decreases, the absolute value of the elec
phonon interaction energy also decreases. These results
cate that the dependence of the electron-phonon interac
on the radius of the dot is much smaller than can be p
dicted from the simplified model with infinite value of th
band edge offset. The Hamiltonian obtained here should
useful to compare the predicted values of the electr
phonon coupling with experimentally observed values; it
known that the existing experimental results differ from ea
other significantly~see, e.g., Ref. 27, and references there!.
. B
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However, in order to make a quantitative comparison
tween the predictions of this model and available experim
tal data, the all-coupling variational scheme should be
lized to treat the electron-phonon interaction. This techniq
will allow us to obtain the correct values of the electro
phonon coupling in both weakly coupled systems such
GaAs/AlCaAs QD’s and intermediate coupled materi
where most of the compounds belong. The Hamiltonian
rived here can also be quite easily extended for other in
esting problems such as a polaron interacting with an im
rity and confined in the QD~bound polaron problem!,
confined polaron exciton problem, and so on.
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