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Wave-function mapping conditions in open quantum dot structures
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We discuss the minimal conditions for wave-function spectroscopy, using resonant tunneling as the mea-
surement tool, in open quantum dots. The present results establish a parameter region where the wave-function
spectroscopy by resonant tunneling can be achieved. A breakdown of the mapping condition is related to a
change into a double quantum dot structure induced by the local probing potential. The precise control over
shape and extension of the potential probes is irrelevant for wave-function mapping. Moreover, the present
system is a realization of a tunable Fano system beyond the wave-function mapping regime, as well as a system
where the states can be selectively manipulated.
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I. INTRODUCTION

Experimental probing of electronic states in syste
showing spatial quantization is probably the most direct
sualization of quantum-mechanical effects. Such probing
condensed matter has been a challenge over decades un
development of artificial model structures, initially semico
ductor quantum wells and more recently quasi-one-~or
zero-! dimensional mesoscopic systems. The control over
design and fabrication of these structures leads naturall
the introduction of well-defined local probes of the electro
states. A landmark in the wave-function spectroscopy is
optical probing of quantum-well eigenstates by Marzin a
Gerard more than 10 years ago.1 The basic idea introduced i
this work is that a very thin barrier, which can therefore
considered as ad function, is grown within the quantum we
at a certain position, leading to a potential perturbation of
form Vd(z2z0). Such perturbation probes the probabili
density atz0 by means of the eigenvaluesEi shifts, which in
first-order approximation are simply

Ei85Ei1VuC i~z0!u2. ~1!

In the work by Marzin and Gerard, these energy sh
were obtained by photoluminescence measurements
formed in a set of nominally identical quantum wells b
with the perturbative barrier located at different positions.
other words, such mappings rely on measurements
formed on different samples, each one probing the w
function at a designed position. Later on, Salis a
co-workers2 performed a wave-function spectroscopy on
single parabolic quantum well, where the electron distrib
tion was displaced with respect to a fixed perturbative bar
by applying an electric field. The energy shifts were obtain
now by magnetotransport measurements. The great ad
tage of this procedure, namely, the spectroscopy on a si
sample, is somehow eclipsed by the fact that only a spe
system~parabolic quantum wells! is suitable for it. A varia-
tion of this spectroscopy is the introduction of monolaye
with magnetic ions embedded in different positions of
quantum well, using the Zeeman splitting as a probe for
wave function.3 An alternative approach, based on ener
shifts measured by means of resonant tunneling, has b
0163-1829/2003/68~20!/205302~7!/$20.00 68 2053
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proposed also a few years ago.4 Now the mapping of the
probability density along the quantum well is related to sh
of the resonant tunneling current peaks for an ensembl
double-barrier tunneling diodes, where each sample ha
perturbative potential spike located at a specific positi
This tunneling wave-function spectroscopy has not yet b
experimentally verified. Nevertheless, magnetotunneling
been used as a tool for imaging of electron wave function
self-assembled quantum dots.5

Imaging of wave functions, in spite of the efforts me
tioned above, has experienced a growing interest mainly
to the use of scanning probe microscopes in searching l
electron distributions in mesoscopic systems. Within an
ready long list of achievements, it is worth mentioning t
study of Bloch wave functions in quasi-one-dimensional s
tems, such as single wall carbon nanotubes6 and imaging of
bound states in quantum corrals.7 In both cases scanning tun
neling microscopes were used. Closely related to the
proaches using perturbative potential spikes is the use
atomic force microscopes with the measurement of shifts
the conductance across a mesoscopic system as a functi
the position of the potential perturbation induced by t
atomic force microscope~AFM! tip. An interesting applica-
tion of this method is the imaging of coherent electron flo
from a quantum point contact.8

In the present work we analyze the suitability of su
imaging procedure for quasibound states in open quan
dot ~OQD! system in the resonant tunneling regime. It can
considered the two-dimensional counterpart of the probing
quasibound states in double-barrier quantum wells, con
ered as a toy model. Here we are mainly interested in
conditions that maximize the energy shift of the resonan
in the transmission probability, which can be establish
without breaking the perturbative regime within the mappi
of the wave function. In the present situation we are deal
with the quasibound states of a double point contact in
resonant tunneling regime, a rather different situation fr
single quantum point contacts,8 theoretically discussed
within a similar framework.9 Although our main concern is
the mapping of quantum dot states, related to resona
shifts in energy, the analysis could also be extended to
behavior of the transmission probability plateaus related
the quantum point contact channels.10
©2003 The American Physical Society02-1
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An important point in the present work is that, if a wav
function mapping could be experimentally achieved,
OQD system coupled to an AFM tip would be a realizati
of a tunable Fano system. Fano resonances have bee
cently observed in electronic transport through a sing
electron transistor,11 but a tunability of the effect has bee
reached only in the presence of magnetic fields,12 with the
quantum dot in an Aharonov-Bohm interferometer. The
gree of freedom introduced by the movable AFM tip open
new possibility for such tuning in the absence of magne
field effects. Although Fano resonances have been discu
before in the context of mesoscopic systems, the pre
work proposes a possible experimental realization of form
theoretical predictions.13

II. IMAGING OF WAVE FUNCTIONS IN OPEN
QUANTUM DOTS

A. Model calculation

The transmission probabilities through an OQD are cal
lated within a Green’s-function formalism applied to a latti
model in the tight-binding approximation. This method h
already been described throughout the literature and has
applied in a variety of problems in the context of mesosco
systems.14–16 For the sake of clarity this method is briefl
sketched below.

The OQD structure, emulated by a tight-binding latti
model is depicted in Fig. 1~a!. The black circles represent th

FIG. 1. ~a! Schematic illustration of the open quantum dot stru
ture. ~b! Total transmission probabilities as functions of incide
energy for the structure in~a!: bare structure~thin solid line!, with a
potential bump at the center of the structure withH50.05 eV and
L51a ~dashed line!, L53a ~long dashed line!, andL55a ~thick
solid line!.
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lattice sites that define a square quantum dot connecte
two-dimensional contacts to the left and to the right by po
contacts. The size of the quantum dot isSQD515a315a,
where a is the host-lattice parameter. The circles inside
square represent a potential column simulating the pertu
tion induced, for instance, by an AFM tip located on t
sample at that position. In what follows we consider pert
bations of a single host-lattice site, which corresponds to
extension relative to the quantum dot area ofSP'4.5
31023SQD , up to a 535 square, corresponding a relativ
extension ofSP'0.1SQD .

It should be kept in mind that lattice models, with neare
neighbor interactions only, are usually thought as simple,
though useful, approximations for superlattices or arrays
quantum dots, where each quantum well or quantum do
represented by a site of the lattice. Apart from this extre
lattice limit, lattice models are also useful in emulating t
bottom of semiconductor conduction bands that are well
scribed by the effective-mass approximation. In the pres
work, the tight-binding hopping parameter is chosen in or
to emulate the electronic effective mass for the GaAs bott
of the conduction band,m* 50.067m0. Since Vx,y
52\2/(2m* a2), Vx,y50.142 eV for a lattice parameter o
a520 Å. Such parametrization represents quantum d
with lateral sizes up toLD5300 Å, Fig. 1~a!, still an order
of magnitude lower than the typical dimensions of actu
quantum dots constructed by lithographic methods. Ho
ever, the present results have the intention of illustrating
probing of the local probability density and the relevant sc
is the ratio between the extension of the perturbative sp
and the dot dimension,SP /SQD .

The AFM tip can also be seen as a controllable impur
in a quantum dot and therefore a simple tunable experime
realization of a multiply connected nanostructure.17 In the
present approach, a continuous system is discretized in
tight-binding lattice, considering a singles-like orbital per
site and only nearest-neighbor hopping elements. These
parameters are the only ones necessary for describing
electronic behavior in laterally modulated heterostructu
near the bottom of the GaAs conduction band. The dev
region of an open quantum dot system modeled this w
Fig. 1~a!, is M545 sites long andN525 sites wide. The
total Hamiltonian,HT , is a sum of four terms: the dot an
the two point contact regions, described by theHD , and the
left and right contact regions,HL andHR , respectively, and
the coupling term between the contacts and the dot struct
V:

HT5HD1HL1HR1V. ~2!

We are interested in the transmissiontn,n8 and reflexion
r n,n8 amplitudes, related to theG1(n8,r ,n,l ,E) and
G1(n8,l ,n,l ,E) Green’s functions, respectively. Here,l (r )
stands for a site column at the left~right! of the OQD device,
as indicated in Fig. 1~a!, while n(n8) are transverse inciden
~scattered! modes in the contacts at a given energyE. The
first step is calculating Green’s functions of the semi-infin
contactsCL andCR :

-
t
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WAVE-FUNCTION MAPPING CONDITIONS IN OPEN . . . PHYSICAL REVIEW B68, 205302 ~2003!
G1~E!5(
n,m

ucnm&^cnmu

E2Enm1 ih
, ~3!

whereucnm& andEnm are the eigenstates and eigenvalues
the contact regions, withn(m) as transverse~longitudinal!
quantum numbers. Actually, we need the matrix element
Green’s functions for thel and r site columns, given by

Gl (r )~n,n8!5 (
n51

N

xn
n~xn8

n
!*

eiun

uVxu
; ~4!

with

un5cos21F ~E2en!

2Vx
11G ~5!

and

xn
n5A 2

N11
sinS pnn

N11D . ~6!

The device region can be decoupled inM transverse
chains withN sites each. The Hamiltonian for one of the
chainsi is written as

Hi5 (
n51

N

~ u i ,n&e in^ i ,nu1u i ,n&Vn,n11^ i ,n11u

1u i ,n&Vn,n21^ i ,n21u!, ~7!

where the hopping elements at the edges areVN,N115V1,0
50. The corresponding Green’s function is

Gi5@~E1 ih!I2Hi #
21. ~8!

Green’s functionsG1(n8,r ,n,l ,E) and G1(n8,l ,n,l ,E)
are calculated by means of a recursive procedure, coup
Green’s functions of successive transversal chains along
device, Eq.~8!, based on the Dyson equation

G5G01G0VG5G01GVG0. ~9!

The starting point of this iterative procedure is Gree
function, given by Eq.~4!, corresponding to a transvers
chain at the right,r 5M11 (Gr), of the OQD structure,
successively coupled to the device chainsGi and finally to
the left contactGl .

The transmitted and reflected amplitudes are

tnn8~E!5 i2uVxuAsinun8 sinunei (un l2un8r )G1~n8,r ,n,l ,E!

~10!

and

r nn8~E!5 iAsinun8
sinun

ei (un1un8) l

3@2uVxusinunG1~n8,l ,n,l ,E!1 idn8n#. ~11!

The total transmission probability, the quantity discuss
in what follows, is given by the Landauer-Bu¨ttiker formula:
20530
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T~E!5(
n8

N S (
n

N

utn8n~E!u2D . ~12!

B. Numerical results: Energy shifts and imaging

The main limitations of resonant tunneling mapping of t
wave function, namely, the broadness of measuredI -V char-
acteristics, as well as the uncertainties related with a pro
dure involving a set of different samples,4 can be overcome
in the imaging of quasibound states in OQD’s. The emb
ded potential spikes are substituted by the potential bum
induced by an AFM tip scanned over a single sample and
resonant tunneling current, a rather wide integration of tra
mission probability resonances, is reduced to single and w
defined conductance peaks. Although imaging of coher
electron flow through a quantum point contact has be
reported,8 where the mapping is achieved by measuring
viations of the quantized conductance plateaus as a func
of AFM tip position, the use of energy shifts of conductan
peaks to image the wave function inside a quantum dot
mains to be properly discussed.

Typical transmission probabilities as functions of incide
energy are shown in Fig. 1~b!. Here we clearly see two reso
nances due to quasibound states in the quantum dot b
the threshold of the first quantized conductance plateau
to the quantum point contacts that connect the dot to the
and right two-dimensional reservoirs. The thin continuo
line is for the unperturbed quantum dot. The other curves
for potential bumps at the center of the dot withH
50.05 eV, but different sizes. It should be noticed that t
is actually a strong perturbation, since the energy separa
between the two resonances in the bare dot is'0.01 eV.
The dashed line is for ad-function-like bump, withL51a.
It can be seen that a small shift occurs for the lowest re
nance, while the second one remains unchanged as expe
The long-dashed curve is for a wider bump,L53a, with
corresponding larger shifts of the resonances. The thick c
tinuous line is forL55a revealing the signature of a double
resonance of a symmetrically structured dot, instead
slightly perturbed single quantum dot levels.

The mapping of the probability density is obtained
scanning the potential bump across the quantum dot in b
directions. This procedure introduces asymmetries in
structure as far as the perturbation is not at the center of
structure. However, the figure of merit is the position in e
ergy of the transmission resonances and not the peak hei
For the perturbation strength in the results shown in F
1~b!, the mapping should be taken carefully. Indeed, suc
high perturbation potential,H550 meV, strongly affects the
transmission channels when placed near the quantum p
contacts. This is illustrated in Fig. 2, where the energy sh
of the lowest and second resonances are depicted as a
tion of the position of two different perturbative bumps. Fi
ure 2~a! represents a bona fide mapping of the probabi
densities for a very low, although spatially extended, pert
bation: H55 meV andL55a, while Fig. 2~b! shows an
inadequate mapping forH550 meV andL53a. The cusps
in Fig. 2~b! are artifacts due to mode couplings and show
2-3
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M. MENDOZA AND P. A. SCHULZ PHYSICAL REVIEW B68, 205302 ~2003!
resemblance with the actual shapes of probability den
maxima, while the behavior of the energy shifts in Fig. 2~a!
is qualitatively in agreement with the probability densiti
for the two lowest states of the unperturbed OQD system

The differences between a fair and an inadequate map
situation become clearer by looking at the contour plots
the energy shifts as a function of the probing potential po
tion, Fig. 3, for the same cases shown in Fig. 2. In Fig. 3~a!
we see a fair mapping for quasibound states in an OQD w
a high probability density leaking into the quantum po
contacts. This is not the case in Fig. 3~b!, where the height of
the potential bump, when positioned near the quantum p
contacts, strongly suppresses the resonant tunneling c
nels, turning the open system into a closed one. An ap
priate mapping is also obtained for a even wider,L57a, low
potential bump (H55 meV) ~not shown here!. The interest-
ing point here is that the lateral size of the perturbative bu
is almost half of the lateral size of the quantum dot be
probed, corresponding to a bump to dot area ratio ofSP
'0.2SQD . Therefore, the upper limit for the spatial exte
sion of the probing potential is not crucial, as far as t
corresponding height of the potential is kept low enough, i
H,E22E1.

The important finding is that such wave-function mappi
should be experimentally feasible, since the perturba
strength can be smoothly tuned in observing the conducta
peak shifts,18 while the actual underlying potential profile—
experimentally lesser known—plays no essential role.

III. TUNABLE FANO RESONANCES

As pointed out in the Introduction, if a wave-functio
mapping could be experimentally achieved, the OQ

FIG. 2. Energy shifts of the lowest~left! and second~right!
quasibound states as a function of the position of the potential b
inside the open quantum dot structure.~a! Bona fide probability
density mapping for a wide and low probe potential:H55 meV
andL55a. ~b! Unrealistic mapping for a high probe potential:H
550 meV andL53a.
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coupled to an AFM tip would be a realization of a tunab
Fano system for a parameter region beyond the mapp
condition. Fano resonances have been observed in elect
transport through a quantum dot,11 but a completely tunable
resonance has been reached only with the quantum dot i
Aharonov-Bohm interferometer.12 The variation of the con-
necting channels, achievable by changing gate voltages,
provide a partial tunability,11 but an extra degree of freedom
introduced by the movable AFM tip, allows such tuning
the absence of magnetic-field effects.

The richness of the new effects due to this extra degre
freedom is illustrated by calculations done for OQD structu
similar to the one discussed above. Some important asp
are recalled in the inset of Fig. 4~a!. The black circle repre-
sents a potential column simulating the local induced per
bation. We consider perturbations of a single host-lattice
Sp , which corresponds to an extension relative to the qu
tum dot of Sp /SQD'0.02 for OQD with dimensionsLx
5Ly57a. The repulsive perturbation will be characterize
by a heightH in the range betweenH550 meV andH
'1 eV, since now we are not restricted to the mapping c
dition. A partial tunability of the system, by means of chan
ing the lead widths, is shown in Fig. 4~a!. For w53a ~con-
tinuous line! we clearly see resonances in the transmiss
probability due to the bound states of the OQD, as well
the first conductance plateau. For wider leads,w55a
~dashed line!, we see the resonances due to OQD sta
shifted to lower energies, since the effective confinemen
diminished with the widening of the contacts. Moreover t
resonance peaks are broadened because the coupling t
reservoirs is enhanced. As expected, the conductance
teaus are also shifted to lower energies and the onset
second plateau can be seen in the same energy range.

p

FIG. 3. Contour plots of energy shifts, corresponding to t
situations depicted in Fig. 2. The structure probed is an open q
tum dot one and in~a!, corresponding to a bona fide mapping, t
contours indicate finite probability density in the contact regio
~b! High probe potentials isolate the quantum dot.
2-4
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WAVE-FUNCTION MAPPING CONDITIONS IN OPEN . . . PHYSICAL REVIEW B68, 205302 ~2003!
aspects related to widening the leads should be kept in m
~i! the shift in energy and broadening of the resonances
not a monotonous function of the energy; and~ii ! even the
shape of a resonance may be qualitatively changed, as ca
seen for the antiresonance forw53a changing into a peak
for w55a.

The above discussion summarizes the effects on the
ductance that can be achieved by varying~symmetrically!
the leads, i.e, the voltages of the gate electrodes that act
define the quantum dot structure. In what follows we foc
on the new degree of freedom in manipulating dot sta
Such new mechanism is introduced by a local potential p
turbation that could be moved across the sample, such a
AFM tip, as suggested above. The novelty of this local p
turbation is that the resonances may be selectively tun
exploring the wave-function symmetries of the states.

In order to explore the wave-function symmetries, one
to look along three symmetry axes of the square QD: al
the axis connecting the leads (x axis!, the axis perpendicula
to the line joining the leads and crossing the center of the
(y axis!, and a diagonal, also crossing the center, as indica
in the sketch shown in Fig. 4~a!. The shift in energy of a
certain resonance peak depends on the position of the
perturbation, since such shift is proportional to the wa
function amplitude at this position, Eq.~1!.

FIG. 4. ~a! Conductance for the OQD forw53a, continuous
line, andw55, dashed line. Inset: schematic illustration of the op
quantum dot structure.~b! Local density of states~probability den-
sities! for the energies labeled in~a!, referring to thew53a case.
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Fig. 4~b! shows contour plots of the local density of stat
at the energies of the four resonances and the antireson
shown in Fig. 4~a! for the w53a wide leads case~continu-
ous line!. The last panel is for an energy slightly above t
antiresonance. Having these contour plots in mind it
straightforward to see that the width of the resonance pea
proportional to the wave-function amplitude leaking into t
leads. Of particular interest is the strong localization of t
fifth state, which corresponds to the antiresonance in F
4~a!, as well as the clear one-dimensional~1D! channel char-
acter at off resonance energies in the conductance plat
E51D.

Within this framework we are able to understand the
fects of the position dependent perturbation. In this sen
two important effects are shown in Fig. 5. First, for a pert
bative spike positioned at the center of the quantum dot,
5~a!, we see the selective shift of the resonances in the
turbed system withH50.2 eV~continuous line! compared to
the unperturbed one~dashed line!. We clearly identify that
important shifts~lowest resonance and antiresonance! occur
only for those states that have significant amplitude at
center of the dot. Next, for a perturbationH50.5 eV placed
at one of the leads~continuous line!, Fig. 5~b!, no energy
shifts of the resonances are observed. On the other han
strong suppression of the conductance plateau can be
served, an effect which has been used recently for imag
the electron flow through quantum point contacts.8

The dependence of the selective resonance shifts on
wave-function symmetries for moving the perturbative sp
along the y axis can be analyzed by comparing Figs. 5~a! and
5~c!. Now, for H50.05 eV ~continuous line! and H54 eV
~dashed line!, the second resonance remains almost
changed and the lowest one is shifted, as expected from
density of states in Fig. 4~b!. Having Fig. 4~b! in mind, it is
also expected that the third resonance would be perturbe
this situation and, indeed, this resonance is not only shi
in energy but the line shape also changes into a Fano-
form. The perturbation breaks the symmetry of the state,
ducing a coupling to the lowest lead state. Moving the p
turbation further away from the center in they direction, Fig.
5~d!, this third resonance evolves towards a symmetric p
again~continuous line forH50.05 eV), illustrating the tun-
ability of a specific resonance with a controllable perturb
tion.

The symmetry of the localized states in the QD gives r
to two new consequences when the perturbation is mo
along the diagonal, see Fig. 6. Here dashed and continu
lines are for perturbative spikes at the center and at the
agonal, respectively. Both situations are forH50.5 eV.
First, we observe the inversion of the Fano resonance a
ciated toE3:13 from Fig. 5~c! to Fig. 6, the peak position is
reversed. Moreover, only an off center perturbation along
diagonal breaks the symmetry of theE4 state, allowing the
coupling to the 1D channel and leading to a Fano resona
This symmetry is not broken with the perturbation position
along the other symmetry axes (x andy), since the density
of states related toE4 is negligible there.19

n
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IV. FINAL REMARKS

The present work addresses the modeling of wa
functions imaging by means of experimental perturbative
proaches. The situation studied here concerns a t
dimensional problem, namely, an OQD in the reson
tunneling regime. The present discussion applies to dev
with highly transmitting channels, making the number

FIG. 5. Total transmission probabilities~conductance! for the
OQD as a function of incident electron energy, comparing the
perturbed with perturbed ones at the positions indicated in the
sets. ~a! Dashed line forH50.0 eV and continuous line forH
50.2 eV. ~b! Dashed line forH50.0 eV: and continuous line fo
H50.5 eV. ~c! and~d! Continuous line forH50.05 eV and dashed
line for H54 eV.
20530
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electrons in the dot an ill-defined quantity, in contrast
systems where the single-electron charging effects are im
tant. Charging effects are crucial in other mapping expe
ments, such as the imaging of incompressible stripes in
quantum Hall regime20 in which a different scenario is re
vealed with dramatic charging effects induced by the sc
ning probe. In absence of magnetic fields, however, s
effects are drastically minimized.21 In the situation consid-
ered here, single-particle resonances should also be ro
with respect to the effects of electron-electron interactio
The important point is the comparison between the cond
tances of a unperturbed and the perturbed OQD and the
turbation should not influence the number of electrons in
structure. OQD structures with such characteristics h
been under investigation previously22 and are candidates fo
the wave-function mapping of the low-lying resonances
cused in the present study.

Wave-function mapping is achievable with rather spatia
extended perturbative movable potentials. The opposite li
namely, higher resonances with shorter de Broglie wa
lengths, has been recently considered for the semiclas
limit by means of a microwave analog to an OQD.23

This is contrary to the initial idea ofd-like perturbative
spikes,1,2 but provides a strong support to the imaging usi
AFM induced perturbations, where the exact form and ext
sion of the depletion underneath the tip are not so clea
controlled. We believe that our results open new possibilit
for the imaging experiments carried out so far on sin
quantum point contacts,8 as well as for the quest for selectiv
manipulation of quantum states. An OQD coupled to the
of an AFM could also be a new realization of tunable res
nance line shapes of the conductance through mesosc
systems.
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FIG. 6. Conductance for the OQD as a function of incide
electron energy for a perturbative spike at the center of the
~dashed line! and near a corner~continuous line!. For both cases
H50.5 eV.
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