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Wave-function mapping conditions in open quantum dot structures
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We discuss the minimal conditions for wave-function spectroscopy, using resonant tunneling as the mea-
surement tool, in open quantum dots. The present results establish a parameter region where the wave-function
spectroscopy by resonant tunneling can be achieved. A breakdown of the mapping condition is related to a
change into a double quantum dot structure induced by the local probing potential. The precise control over
shape and extension of the potential probes is irrelevant for wave-function mapping. Moreover, the present
system is a realization of a tunable Fano system beyond the wave-function mapping regime, as well as a system
where the states can be selectively manipulated.
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I. INTRODUCTION proposed also a few years ajdNow the mapping of the
probability density along the quantum well is related to shifts
Experimental probing of electronic states in systemsof the resonant tunneling current peaks for an ensemble of
showing spatial quantization is probably the most direct vi-double-barrier tunneling diodes, where each sample has a
sualization of quantum-mechanical effects. Such probing irperturbative potential spike located at a specific position.
condensed matter has been a challenge over decades until thgis tunneling wave-function spectroscopy has not yet been
development of artificial model structures, initially semicon- experimentally verified. Nevertheless, magnetotunneling has

ductor quantum wells and more recently quasi-ofer peen used as a tool for imaging of electron wave functions in
zero) dimensional mesoscopic systems. The control over thgelf-assembled quantum dats.

design and fabrication of these structures leads naturally to |maging of wave functions, in spite of the efforts men-
the introduction of well-defined local probes of the electronictioned above, has experienced a growing interest mainly due
states. A landmark in the wave-function spectroscopy is thgo the use of scanning probe microscopes in searching local
optical probing of quantum-well eigenstates by Marzin andelectron distributions in mesoscopic systems. Within an al-
Gerard more than 10 years agBhe basic idea introduced in ready long list of achievements, it is worth mentioning the
this work is that a very thin barrier, which can therefore bestudy of Bloch wave functions in quasi-one-dimensional sys-
considered as 4 function, is grown within the quantum well tems, such as single wall carbon nanotStesl imaging of

at a certain position, leading to a potential perturbation of theyound states in quantum corrdl both cases scanning tun-
form V&(z—zp). Such perturbation probes the probability neling microscopes were used. Closely related to the ap-
density atz, by means of the eigenvalu€s shifts, which in  proaches using perturbative potential spikes is the use of

first-order approximation are simply atomic force microscopes with the measurement of shifts in
the conductance across a mesoscopic system as a function of
E/ =E+V|¥i(z0)|% (1) the position of the potential perturbation induced by the

atomic force microscop@AFM) tip. An interesting applica-

In the work by Marzin and Gerard, these energy shiftstion of this method is the imaging of coherent electron flow
were obtained by photoluminescence measurements perom a quantum point contaft.
formed in a set of nominally identical quantum wells but In the present work we analyze the suitability of such
with the perturbative barrier located at different positions. Inimaging procedure for quasibound states in open quantum
other words, such mappings rely on measurements pedot(OQD) system in the resonant tunneling regime. It can be
formed on different samples, each one probing the waveonsidered the two-dimensional counterpart of the probing of
function at a designed position. Later on, Salis andquasibound states in double-barrier quantum wells, consid-
co-worker$ performed a wave-function spectroscopy on aered as a toy model. Here we are mainly interested in the
single parabolic quantum well, where the electron distribu-conditions that maximize the energy shift of the resonances
tion was displaced with respect to a fixed perturbative barriem the transmission probability, which can be established
by applying an electric field. The energy shifts were obtainedvithout breaking the perturbative regime within the mapping
now by magnetotransport measurements. The great advaot the wave function. In the present situation we are dealing
tage of this procedure, namely, the spectroscopy on a singleith the quasibound states of a double point contact in the
sample, is somehow eclipsed by the fact that only a specificesonant tunneling regime, a rather different situation from
system(parabolic quantum wellss suitable for it. A varia- single quantum point contacis theoretically discussed
tion of this spectroscopy is the introduction of monolayerswithin a similar framework. Although our main concern is
with magnetic ions embedded in different positions of athe mapping of quantum dot states, related to resonance
guantum well, using the Zeeman splitting as a probe for theshifts in energy, the analysis could also be extended to the
wave function® An alternative approach, based on energybehavior of the transmission probability plateaus related to
shifts measured by means of resonant tunneling, has bee¢he quantum point contact channéls.
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lattice sites that define a square quantum dot connected to
two-dimensional contacts to the left and to the right by point

N contacts. The size of the quantum dotSgp=15aXx 15a,
where a is the host-lattice parameter. The circles inside a
square represent a potential column simulating the perturba-
tion induced, for instance, by an AFM tip located on the
sample at that position. In what follows we consider pertur-
bations of a single host-lattice site, which corresponds to an

1 extension relative to the quantum dot area $§~4.5
><10*3SQD, up to a 5x5 square, corresponding a relative
extension 0fSp~0.1S,p .

It should be kept in mind that lattice models, with nearest-
neighbor interactions only, are usually thought as simple, al-
though useful, approximations for superlattices or arrays of
quantum dots, where each quantum well or quantum dot is
represented by a site of the lattice. Apart from this extreme
lattice limit, lattice models are also useful in emulating the
bottom of semiconductor conduction bands that are well de-
scribed by the effective-mass approximation. In the present
work, the tight-binding hopping parameter is chosen in order

‘ . ‘ . to emulate the electronic effective mass for the GaAs bottom
0.00 0.01 0.02 0.03 0.04 of the conduction band,m*=0.067n,. Since V,,

E (v =—#%l(2m*a®), V, ,=0.142 eV for a lattice parameter of
a=20 A. Such parametrization represents quantum dots
with lateral sizes up th.p =300 A, Fig. Xa), still an order

(b)

FIG. 1. (a) Schematic illustration of the open quantum dot struc-
ture. (b) Total transmission probabilities as functions of incident f itude | h the tvoical di . f actual
energy for the structure i(@): bare structuréthin solid line, with a of magnitude fower than the yplca |m.enS|ons o actua
potential bump at the center of the structure witk-0.05 eV and quantum dots constructed by I|thpgrap.h|c m?thOdS'. How-
L=1a (dashed ling L=3a (long dashed ling andL=5a (thick €&l the present results ha_ve the intention of illustrating the
probing of the local probability density and the relevant scale
is the ratio between the extension of the perturbative spike

An important point in the present work is that, if a wave and the dot dimensiorSy/Sop - . .
. . . . The AFM tip can also be seen as a controllable impurity
function mapping could be experimentally achieved, the

OQD system coupled to an AFM tip would be a realization'" al_qua_mtumfdot anld_trlwerefore a 5|crjnple tunableﬁxperrl]mental
of a tunable Fano system. Fano resonances have been rreef:uzatlon of a multiply qonnecte nanqstru_ct rdp t e

cently observed in electronic transport through a singlce-[:.)r(ES(:"r.]t a_pproach, a continuous system Is dlscr(_auzed into a
electron transistort but a tunability of the effect has been t|ght-b|nd|ng lattice, consldermg a s_lngkehke orbital per

reached only in tr;e presence of magnetic fisfdwjth the site and only nearest-neighbor hopping elements. The_se two
quantum dot in an Aharonov-Bohm interferometer. The deParameters are the only ones necessary for describing the
gree of freedom introduced by the movable AFM tib opens aelectronlc behavior in laterally modulated heterostructures
new possibility for such tuning in the absence of magnetic S the bottom of the GaAs conduction band. The device

field effects. Although Fano resonances have been discussez'on of an oEen quantum dot syitem m"de"?d this way,
. - ig. 1(a), is M=45 sites long andN=25 sites wide. The
before in the context of mesoscopic systems, the present

work proposes a possible experimental realization of formetgtealthoam(')litr?tng?&ggt’ r'; %i:%ggﬁgé;egm; th?ir?stthaénd
theoretical prediction$® P gions, y the,

left and right contact region$], andHg, respectively, and
the coupling term between the contacts and the dot structure,
II. IMAGING OF WAVE FUNCTIONS IN OPEN \&

QUANTUM DOTS

A. Model calculation Hr=Hp+H_+Hg+V. 2

solid line).

The transmission probabilities through an OQD are calcu-
lated within a Green’s-function formalism applied to a lattice ~We are interested in the transmissi,, and reflexion
model in the tight-binding approximation. This method hasr, ,» amplitudes, related to theG*(v',r,»,I,E) and
already been described throughout the literature and has beén (v',1,v,1,E) Green’s functions, respectively. Hendy)
applied in a variety of problems in the context of mesoscopicstands for a site column at the léfight) of the OQD device,
systems*~16 For the sake of clarity this method is briefly as indicated in Fig. (B), while v(v') are transverse incident
sketched below. (scatteregl modes in the contacts at a given enekgyThe

The OQD structure, emulated by a tight-binding latticefirst step is calculating Green’s functions of the semi-infinite
model is depicted in Fig.(&). The black circles represent the contactsC, andCg:
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. |y | S s )
G'E)=2 ————, 3) TE)=2 | 2 [t(B)]. (12
vu E—E"+igy o\
where|”*) andE"* are the eigenstates and eigenvalues of
the contact regions, withv(u) as transversélongltudlnab B. Numerical results: Energy shifts and imaging
guantum numbers. Actually, we need the matrix elements of S . .
Green’s functions for thé andr site columns, given by The main limitations of resonant tunneling mapping of the
wave function, namely, the broadness of measu¥¥dchar-
N , elfy acteristics, as well as the uncertainties related with a proce-
Giry(n,n")= Z Xn(Xn)* A ; (4)  dure involving a set of different samplésan be overcome
=l X in the imaging of quasibound states in OQD’s. The embed-
with ded potential spikes are substituted by the potential bumps

induced by an AFM tip scanned over a single sample and the

0 _1 resonant tunneling current, a rather wide integration of trans-
=CO0S
14

(E—e)

v 1

mvn

N+1

() mission probability resonances, is reduced to single and well
and electron flow through a quantum point contact has been
5 reported® where the mapping is achieved by measuring de-
Xn™ NN+ 1Sln of AFM tip position, the use of energy shifts of conductance
peaks to image the wave function inside a quantum dot re-
chains withN sites each. The Hamiltonian for one of these  Typical transmission probabilities as functions of incident
chainsi is written as energy are shown in Fig(il). Here we clearly see two reso-

defined conductance peaks. Although imaging of coherent
_ ©6) viations of the quantized conductance plateaus as a function

The device region can be decoupled i transverse mains to be properly discussed.
nances due to quasibound states in the quantum dot below

N
. . . . the threshold of the first quantized conductance plateau due
Hi:ngl ([i,m)ein(iun[+ 1MV nea(isn+1] to the quantum point contacts that connect the dot to the left
and right two-dimensional reservoirs. The thin continuous
+i,MVyn-1(i,n—1]), (7) line is for the unperturbed quantum dot. The other curves are

for potential bumps at the center of the dot with
=0.05 eV, but different sizes. It should be noticed that this
is actually a strong perturbation, since the energy separation
Gi=[(E+im)I—H] ®) between the _two_ resonances in t_he bare dcrtw_B;OE ev.
The dashed line is for &-function-like bump, withL=1a.
Green’s functionsG* (v',r,»,I,E) and G*(v',l,v,l,E) It can be seen that a small shift occurs for the lowest reso-

are calculated by means of a recursive procedure, couplingance, while the second one remains unchanged as expected.
Green’s functions of successive transversal chains along thehe long-dashed curve is for a wider bumips=3a, with

where the hopping elements at the edges\4ig.1=V1o
=0. The corresponding Green’s function is

device, Eq.(8), based on the Dyson equation corresponding larger shifts of the resonances. The thick con-
tinuous line is folL = 5a revealing the signature of a doublet
G=Gy+GoVG=Gy+GVG,. 9 resonance of a symmetrically structured dot, instead of

slightly perturbed single quantum dot levels.

The starting point of this iterative procedure is Green’s The mapping of the probability density is obtained by
function, given by Eq.(4), corresponding to a transversal scanning the potential bump across the quantum dot in both
chain at the rightr=M+1 (G,), of the OQD structure, directions. This procedure introduces asymmetries in the
successively coupled to the device cha@sand finally to  structure as far as the perturbation is not at the center of the
the left contaciG, . structure. However, the figure of merit is the position in en-

The transmitted and reflected amplitudes are ergy of the transmission resonances and not the peak heights.

, For the perturbation strength in the results shown in Fig.
t,, (E)=i2|V,|\sind, sind e 0G* (v r,v,l,E) 1(b), the mapping should be taken carefully. Indeed, such a
(10 high perturbation potentiaH =50 meV, strongly affects the

and transmission channels when placed near the quantum point
contacts. This is illustrated in Fig. 2, where the energy shifts
Sing., of the lowest and second resonances are depicted as a func-
ro(E)=iv/ sinav gl (fut o)l tion of the position of two different perturbative bumps. Fig-

ure Aa) represents a bona fide mapping of the probability
X[2|Vy|sing,G"(v' I,v,1,E)+is,,,]. (11) densities for a very low, although spatially extended, pertur-
bation: H=5 meV andL=5a, while Fig. 2b) shows an
The total transmission probability, the quantity discussednadequate mapping fdd =50 meV andL =3a. The cusps
in what follows, is given by the Landauer-Biker formula:  in Fig. 2(b) are artifacts due to mode couplings and show no
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FIG. 3. Contour plots of energy shifts, corresponding to the
FIG. 2. Energy shifts of the lowedleft) and secondright) situations depicted in Fig. 2. The structure probed is an open quan-
quasibound states as a function of the position of the potential bumfum dot one and ifa), corresponding to a bona fide mapping, the
inside the open quantum dot structute) Bona fide probability  contours indicate finite probability density in the contact regions.
density mapping for a wide and low probe potentidl=5 meV (b) High probe potentials isolate the quantum dot.
andL=5a. (b) Unrealistic mapping for a high probe potential:

=50 meV andL=3a. . .
coupled to an AFM tip would be a realization of a tunable

resemblance with the actual shapes of probability densitfano system for a parameter region beyond the mapping
maxima, while the behavior of the energy shifts in FigQ2  condition. Fano resonances have been observed in electronic
IS qualltatlvely In agreement with the probablllty denSltleStransport through a quantum dlétbut a Comp|ete|y tunable
for the two lowest states of the unperturbed OQD system. resonance has been reached only with the quantum dot in an
_ The differences between a fair and an inadequate mappingharonov-Bohm interferometé?. The variation of the con-
situation become clearer by looking at the contour plots 0f,ecting channels, achievable by changing gate voltages, may
the energy shifts as a function of the probing potential posiy -, ide a partial tunability® but an extra degree of freedom,
tion, Fig. 3,.f0r the Same cases shown in F|g: 2.In Fig) 3 _introduced by the movable AFM tip, allows such tuning in
we see a fair mapping for quasibound states in an OQD Withy o absence of magnetic-field effects.
a high probability density leaking into the quantum point  1he richness of the new effects due to this extra degree of
contacts. Th|s is not the case n FigbB where the height of . freedom is illustrated by calculations done for OQD structure
the potential bump, when positioned near the quantum poindjniiar to the one discussed above. Some important aspects
contacts, strongly suppresses the resonant tunneling chagze recajled in the inset of Fig(a. The black circle repre-
ne_ls, t“m'”g th_e open sysFem into a C'Osef_’ one. An approgenis g potential column simulating the local induced pertur-
priate mapping |sialso obtained for a even wider, 7a, low  p4ti0n We consider perturbations of a single host-lattice site
_potent_|a| bumF_’ H=5 meV) (not s_hown here The Interest- Sy, which corresponds to an extension relative to the quan-
ing point here is that the lateral size of the perturbative bump .\ qot of Sy/Sop~0.02 for OQD with dimensiong x
is almost half of the lateral size of the quantum dot being_, \_ 7, The repulsive perturbation will be characterized
probed, corresponding to a bump to dot area ratidSef by a heightH in the range betweeti=50 meV andH

~0.25qp . Therefore, the upper limit for the spatial exten- ~1 eV, since now we are not restricted to the mapping con-

sion of the. probipg potential is not.crucial, as far as .thedition.ApartiaI tunability of the system, by means of chang-
corresponding height of the potential is kept low enough, i.e.

H<E,—E,. ing the lead widths, is shown in Fig(&. Forw=3a (con-

. o . ._tinuous ling we clearly see resonances in the transmission
The important fmdmg s that S.UCh wgve—functlon mapping robability due to the bound states of the OQD, as well as
should be experimentally feasible, since the perturbatio

, : he first conductance plateau. For wider leadss=5a
strength can be smoothly tuned in observing the conductanc(%ashed ling we see the resonances due to OQD states
peak shiftst® while the actual underlying potential profile—

. . shifted to lower energies, since the effective confinement is
experimentally lesser known—plays no essential role. diminished with the widening of the contacts. Moreover the
resonance peaks are broadened because the coupling to the
reservoirs is enhanced. As expected, the conductance pla-

As pointed out in the Introduction, if a wave-function teaus are also shifted to lower energies and the onset of a
mapping could be experimentally achieved, the OQDsecond plateau can be seen in the same energy range. Two

IIl. TUNABLE FANO RESONANCES
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a) Fig. 4(b) shows contour plots of the local density of states
at the energies of the four resonances and the antiresonance
shown in Fig. 4a) for the w=3a wide leads casécontinu-
ous ling. The last panel is for an energy slightly above the
antiresonance. Having these contour plots in mind it is
straightforward to see that the width of the resonance peak is
proportional to the wave-function amplitude leaking into the
leads. Of particular interest is the strong localization of the
fifth state, which corresponds to the antiresonance in Fig.
4(a), as well as the clear one-dimensioi@) channel char-
acter at off resonance energies in the conductance plateau,
Es+A.

Within this framework we are able to understand the ef-
fects of the position dependent perturbation. In this sense,
two important effects are shown in Fig. 5. First, for a pertur-
bative spike positioned at the center of the quantum dot, Fig.
5(a), we see the selective shift of the resonances in the per-
turbed system wittd = 0.2 eMcontinuous ling compared to
the unperturbed oné&ashed ling We clearly identify that
important shifts(lowest resonance and antiresongnaecur
only for those states that have significant amplitude at the
center of the dot. Next, for a perturbatibh=0.5 eV placed
at one of the leadscontinuous ling Fig. 5b), no energy
shifts of the resonances are observed. On the other hand, a
strong suppression of the conductance plateau can be ob-
served, an effect which has been used recently for imaging

E4 Es Es+A the electron flow through quantum point contdtts.
The dependence of the selective resonance shifts on the

FIG. 4. (a) Conductance for the OQD faw=3a, continuous  wave-function symmetries for moving the perturbative spike
line, andw=5, dashed line. Inset: sc_hematic iIIustration_ _of the oPenalong the y axis can be analyzed by comparing Fi¢s. &nd
q_u_antum dot structgréb) Local _den5|ty of_ stategprobability den- 5(c). Now, for H=0.05 eV (continuous ling and H=4 eV
sitieg for the energies labeled if@), referring to thew=3a case. (dashed ling the second resonance remains almost un-

changed and the lowest one is shifted, as expected from the
aspects related to widening the leads should be kept in mingjensity of states in Fig.(8). Having Fig. 4b) in mind, it is
(i) the shift in energy and broadening of the resonances argsq expected that the third resonance would be perturbed in
not a monotonous function of the energy; aifid even the g sjtuation and, indeed, this resonance is not only shifted
shape of a resonance may be qualitatively changed, as can peenergy hut the line shape also changes into a Fano-like
seen for the antiresonance far=3a changing into a peak ¢,y The perturbation breaks the symmetry of the state, in-

for w=5a. . . .
. . . ducing a coupling to the lowest lead state. Moving the per-
The above discussion summarizes the effects on the con- 9 pling 9 P

) . . turbation further away from the center in thelirection, Fig.
ductance that can be achieved by varyisymmetrically d), this third resonance evolves towards a symmetric peak
the leads, i.e, the voltages of the gate electrodes that actual? ! y P

define the quantum dot structure. In what follows we focus gain(continuous line foH =0.05 eV), illustrating the tun-

on the new degree of freedom in manipulating dot states"?,‘bi”ty of a specific resonance with a controllable perturba-

Such new mechanism is introduced by a local potential pert!o": _ _ _ .
turbation that could be moved across the sample, such as an "€ Symmetry of the localized states in the QD gives rise
AFM tip, as suggested above. The novelty of this local perl0 tWO new consequences when the perturbation is moved
turbation is that the resonances may be selectively tunedlong the diagonal, see Fig. 6. Here dashed and continuous
exploring the wave-function symmetries of the states. lines are for perturbative spikes at the center and at the di-
In order to explore the wave-function symmetries, one haggonal, respectively. Both situations are far=0.5 eV.
to look along three symmetry axes of the square QD: alongrirst, we observe the inversion of the Fano resonance asso-
the axis connecting the leads éxis), the axis perpendicular ciated toE,:*® from Fig. 5c) to Fig. 6, the peak position is
to the line joining the leads and crossing the center of the dateversed. Moreover, only an off center perturbation along the
(y axig), and a diagonal, also crossing the center, as indicatediagonal breaks the symmetry of thg state, allowing the
in the sketch shown in Fig.(d4). The shift in energy of a coupling to the 1D channel and leading to a Fano resonance.
certain resonance peak depends on the position of the loc@his symmetry is not broken with the perturbation positioned
perturbation, since such shift is proportional to the wave-along the other symmetry axes é&ndy), since the density
function amplitude at this position, E¢L). of states related t&, is negligible there?®

2.0 r

]

=

o
o

0.00 0.10 0.20

b)
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FIG. 6. Conductance for the OQD as a function of incident
electron energy for a perturbative spike at the center of the dot
(dashed ling and near a cornefcontinuous ling For both cases
H=0.5eV.

electrons in the dot an ill-defined quantity, in contrast to
systems where the single-electron charging effects are impor-
tant. Charging effects are crucial in other mapping experi-
ments, such as the imaging of incompressible stripes in the
quantum Hall regim@ in which a different scenario is re-
vealed with dramatic charging effects induced by the scan-
ning probe. In absence of magnetic fields, however, such
effects are drastically minimized.In the situation consid-
ered here, single-particle resonances should also be robust
with respect to the effects of electron-electron interactions.
The important point is the comparison between the conduc-
tances of a unperturbed and the perturbed OQD and the per-
turbation should not influence the number of electrons in the
structure. OQD structures with such characteristics have
been under investigation previoushand are candidates for
the wave-function mapping of the low-lying resonances fo-
cused in the present study.

Wave-function mapping is achievable with rather spatially
extended perturbative movable potentials. The opposite limit,
namely, higher resonances with shorter de Broglie wave-
lengths, has been recently considered for the semiclassical
limit by means of a microwave analog to an O®D.

This is contrary to the initial idea of-like perturbative
spikes'? but provides a strong support to the imaging using

OQD as a function of incident electron energy, comparing the unAFM induced perturbations, where the exact form and exten-
perturbed with perturbed ones at the positions indicated in the insion of the depletion underneath the tip are not so clearly

sets. (a) Dashed line forH=0.0 eV and continuous line foH
=0.2 eV. (b) Dashed line foH=0.0 eV: and continuous line for
H=0.5 eV.(c) and(d) Continuous line foH=0.05 eV and dashed
line forH=4 eV.

IV. FINAL REMARKS

controlled. We believe that our results open new possibilities
for the imaging experiments carried out so far on single
quantum point contacfsas well as for the quest for selective
manipulation of quantum states. An OQD coupled to the tip
of an AFM could also be a new realization of tunable reso-
nance line shapes of the conductance through mesoscopic
systems.

The present work addresses the modeling of wave-
functions imaging by means of experimental perturbative ap- ACKNOWLEDGMENTS
proaches. The situation studied here concerns a two-
dimensional problem, namely, an OQD in the resonant M.M. would like to acknowledge the Brazilian agency
tunneling regime. The present discussion applies to deviceSAPES for financial support, while P.A.S. is grateful for the
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