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Spatial carrier-carrier correlations in strain-induced quantum dots
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The electron-hole correlation effects on the energy levels and the wave functions of the electrons and holes
in a strain-induced quantum dot containing one to ten carrier pairs have been studied using large-scale
configuration-interaction calculations. The present calculations show the formation of excitons and biexcitons
in the quantum dot. By increasing the number of carrier pairs, one observes a transition from a strongly
correlated system to a quantum dot system for which the electron-electron and hole-hole correlations are
dominated by exchange interaction and are relatively well described at the Hartree-Fock level, while for an
accurate description of the electron-hole correlations configuration-interaction calculations are necessary. Ring-
shaped carrier distributions emerge with increasing number of carrier pairs.
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[. INTRODUCTION nition of the word “correlation” put forward by [wdin !
that the Coulomb correlation is those spatial correlations
The possibility of observing and studying the photolumi- which are not considered at the HF level. The Coulomb cor-
nescence from individual quantum d¢@D),'°®and thereby relation results in an increased probability of finding the
probing the details of their electronic structure, has made ielectrons and the holes closer to each other, and a decreased
increasingly relevant to include the electron-hole correlatiorprobability of finding particles of equal charge very close to
effects in the calculation of the QD energy spectra. For areach other. In this work, the electron-hole correlation effects
accurate treatment of the carrier-carrier correlations, thare considered by performing configuration-interaction cal-
Hamiltonian of the QD system has to be diagonalized exculations. The full configuration-interactigkCl) model rep-
actly. This is clearly impossible without some simplifying resents an exact solution of the effective-mass Stihger
assumptions. Generally, two different types of approximaequationt?and it allows a systematic, numerical study of the
tions have been introduced to circumvent the size problencorrelations in the few-body quantum dot system. By com-
For small QD system$~1—5nm), an atomic cluster ap- paring the HF and the ClI results for a QD containing a dif-
proach using many-body pseudopotential theory has beefierent number of electron-hole pairs, the importance of the
proposed. Since the atomic cluster method is based oncorrelation effects on the total energy, on the chemical po-
atomic one-particle basis sets, an accurate solution of thintial, and on the carrier distribution can be evaluated.
equations in the given one-particle basis is not possible for While the transition from a strongly correlated few-
larger QD systems. For large, weakly confined QD systemgarticle system to a system containing many electrons and
(~10—-100 nm), the use of the effective-mass approxima-oles has been studied extensively in bulk semiconductors
tion is almost universal.*° The electrons and the holes in and in quantum well$QW),**** considerably less effort has
the QD can then be treated as an interacting few-body systetsteen devoted to how this transition occurs in zero-
situated in an external confinement potential. Since the situdimensional systems, such as QD’s. In this paper, we present
ation of a few confined carriers in the QD can be realizedhe results of FCI and of truncated, but extensive, ClI calcu-
experimentally, it is of importance to solve the few-body lations performed on a strain-induced QRef. 15 contain-
problem exactly in order to judge the validity of the ing one to ten electron-hole pairs. Besides the correlation
effective-mass approximation. energy, we investigate how the Coulomb interaction effects
The Hartree-FockHF) model is the most common start- the distribution of the electrons and the holes within the QD.
ing point for accurate solutions of the many-body Sehro This is done by evaluating the pair-correlation function ob-
dinger equations. In the HF approximation, each particlgained from the many-particle wave function. In contrast to
moves independently of the other particles. Due to the antithe QD electron-hole system studied in this work, the behav-
symmetry requirement on the total wave function, the spatialor of the pair-correlation function in QD’s containing only
correlation of electrons with parallel spins is partly consid-electrons has been studied quite extensively at both the HF
ered even at the HF level. In his work we will use the defi-and at the exact levéf2°
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In Sec. Il the Hamiltonian and correlation functions are
introduced. The numerical methods used for solving the Pz(Xl,Xz):N(N—l)J dxa- - - x| W (X, X, - . X))
many-particle equation are described in Sec. lll, and the re- (2)
sults for calculation on a QD containing one to ten pairs are
given in Sec. IV. In Eqg. (2), the quantityp,(X;,X,) gives the probability of

simultaneously finding a particle at the spatial paiptwith
spin o1, and another at, with spin o,. By fixing one coor-
Il. THEORY dinate of p,(X;,X,), one obtains for the one-pair casl
. _ =1) po(x1)=2|¥(x,,x9)|?, which gives the electrorfor
We describe the QD electron-hole system using theyole) probability distribution in an exciton. From the distri-
effective-mass model. In our QD system the strained QWgytion function, p,(x,), one can deduce the probability of
lifts the heavy-holgHH) and light-hole(LH) degeneracy at  finging the other electrons and/or holes relative to the fixed
the -y point, separating the HH-LH bands by approximatelyone. For the QD systems containing many electron-hole
40 meV. Calculations show that the HH-LH coupling shifts pajrs, the distribution functiom,(x,), provides information

the single-particle energies by only a few meV and that theyhout the formation of multiexcitonic molecular states. By
HH component dominates for the lowest few hole st&téS.  jtroducing a one-particle basis st;(x)}, Eq. (2) can be

For the sake of simplicity, we therefore neglect the effects ofyitten as
the HH-LH mixing and only consider two bands in our
Hamiltonian. The effective-mass Hamiltonian can then be

written as p2<x1,x2>=% bi(X1) B(X0) i (X)) &F (X pijr s (3

where pijk|=(\lf|afé\lé\|éj|\1’> is the two-particle density

LUC 00 | arix matrix. o . .
conl )) velX) Since we are mainly interested in the purely spatial cor-
relations, the spatial two-particle correlation function can be

72v?
2mg

A= [ axioo -

+f dx Q/g(x)( _ 2v? +uh (x)) B(X) obtained by summing over the spin degrees of freedom
2mh con
1 A - - - p2(ry,r2)= 2 p2(ri101,r207)
t3 f dx f dy Ved X=Y) P00 (Y) he(Y) tre(X) 1.0
1 X i i i =p1(ra,ra) +pq (re,ro)+p1(re,ra)
+§J dXJ dy Vin(X—Y) () 4(Y) ¥n(Y) () +p(rr2), (4

N T A wherep;;(rq,r,) is the contribution tq, arising from two
_f dxf dy Ven(X=Y) he(X) (V) n(Y) e(X), (1) particles atr, and r,, both with spin +2, and similarly
py,(rqy,ry) arises from two particles a andr, with spins
) . . ] +1 and —3, respectively. Each component yields the prob-
where the integration over the coordinater,o also in-  apjlity of finding two particles at certain positions in space
cludes the summation over the spin components, 4},  and with a given spin configuration. By using the two-

are the electron and hole confinement potentials. The Coparticle correlation function in Eq4), one can directly ob-
lomb interaction between the electrons and holes is assumagin the distribution function of the spatial separation be-

to be a pure Coulomb potential, but with a background ditween two particles as

electric constant. Since the electrons and the holes are dis-

tinct particles with different masses in our model, the elec-

tron and hole operators commute and there will appear no P(R):f drlf dry S(R=[ri—ra))pa(ryra). (5
electron-hole exchange interaction term in ED.

The total correlation energ¥;,,, is defined asEcq To gain some insight into the structure of the two-particle
=Erci—Enr, i€, the difference between the FCI and thecorrelation function, one can compare Ed) to the corre-
HF energy. Truncated CI calculations, such as all single andponding HF expressions. In the HF approximation, when
double CI(SDCI) calculations, consider in general more thanboth coordinates refer to the same speigs, electrons or

80% of the total correlation ener§§/.The energies of still holes, the terms appearing in E¢) reduce to
larger Cl expansions are even closer to the FCI results.

The magnitude of the correlation energy is one measure pTHTF(rl,rz)IpT(rl)pT(rz)—pT(rz;rl)pT(rl;rz) (6)
of the strength of the carrier-carrier correlation. A more di-
rect way to detect the correlation effects is to study the spafor spin-up electrons or holes and an analogous expression
tial distribution of the carriers in the QD. By introducing the When the two particles have down spins. For electrons or
pair-correlation function, information about carrier-carrier holes with antiparallel spins one gets
correlations can be extracted from tNeparticle wave func- HE
tion. The pair-correlation function is defined as pr| (r1,r2)=p(ry)p(ra). (7)
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The corresponding correlation functions for electron-hole 2R
pairs are InP «—
HF
p11 (r1,r2)=pp(ra)p(ra), 8 )
Qv
PTHLF(rl T2)=p(ro)p(ra). ) D GaAs y 4
) . ) . w In,Ga,; As o
The interpretation of the one-particle densities, such as
p;(ry) and p (r,), becomes more apparent when one ex- GaAs
presses them in terms of a one-particle basig ggtx)}. In

this case, one obtains
FIG. 1. Strain-induced QD sample. The material parameters and

N the dimensions of the QD sample used in our calculations are listed
pT(rl):% @i (r)ei(ry), (10 in Table I.

occ

where the sum is over occupied spin-up orbitals. IN@@),  electrons and holes, respectively.

it can be seen that(ry) is simply the density of spin-up  |n the correlation calculations, thé-particle Hamiltonian
particles. An analogous expression can be obtained for spins Eq. (1) is diagonalized in the configuration state function
down particles. The density;(r,;r;) appearing in Eq(6)  (CSP basis. The FCI CSF basis consists of all the Slater

becomes determinants obtained by exciting the electrons and the holes
oce from the HF reference to the unoccupied HF orbitalSince
FCI calculation represents the exact solution of the Schro
ry;rp)= F(ry)ei(r 11 a L ; ) .
pi(rirz) %:) or (r2)ei(r), e dinger equation in the given one-particle basis set, the many-

. . particle wave function will contain all the correlation effects.
which reduces to Eq10) whenry=r,. In the HF approxi-  The first step in our computational approach is to solve the
mation, there is no correlation between the particles of op;aciricted HF equatioff The solution of the HF equation
posite spin. The joint probability is simply the product of the gives a set of optimized, occupied single-particle orbitals,
two one-particle densities. This is clearly an approximation 4 4 complementary set of unoccupied ones. The CSF basis
as the Coulomb interaction correlates the motion of the paris then constructed from the set of occupied and unoccupied

ticles. Also, the correlation function betwe_en _electrons anq)rbitals, and the corresponding Hamiltonian matrix is diago-
holes always factorizes at the HF level, which is not the cas@jizeqd.

at the correlated level of theory. This implies that a proper o Fc| algorithm uses the direct CI approach, as imple-
description of the spatial correlations requires that one mustanted in the computer progranucia 2728 The direct Cl
go beyond the single Slater determinant approximation.  qethod is based on the Davidson diagonalization
To visualize the spatial carrier-carrier correlations, thealgorithm,zsvzgwhich avoids storing and manipulating the en-
two-particle correlation function with one fixed coordinate e Hamiltonian matrix and its eigenvectors. The factorial
has been studied. The spatial two-particle correlation funcy gy ih of the number of CSF’s makes the FCI intractable for
tions in Eq.(4) have been evaluated for the QD systemSgystems with many electrons and holes. To treat larger sys-
containing one to ten electron-hole pairs. The correlatloqems’ one must use a truncated CSF basis. A systematic way
contr_ibutions h_ave been studied by comparing the correlatiog truncating the basis is to include all singly, doubly, triply,
functions obtained at the HF and the CI levels of theory. quadruply,(SDTQ), etc., excited Slater determinants in the
CSF expansion. The all singles and double$SDCI) is, for
1. NUMERICAL CALCULATIONS instance, obtained by diagonalizing the Hamiltonian matrix
in the CSF basis obtained by exciting at most two electrons,
two holes, or one electron and one hole from the HF refer-
ence.
The single-particle wave functions for the electrons and
the holes are expanded in an anisotropic Gaussian basis set

The QD sample modeled in our calculations is a strain
induced QD formed by the self-organizing growth of an InP
island on top of a GaAs/liGa, _,As QW (Ref. 15 (Fig. 1).
The carrier confinement potentitalﬁ'ohn(x) appearing in Eq.
(1) can for this type of QD be calculated numerically, using o 2,2 2

. . —a(x+y)a—pz

only the material parameters and the sample structure as iti the formxxyvzze e ", where we denote the
put. The details of how this is done has been presented
earlier?” The material and structural parameters for the QD  TABLE I. The material parameters and the structure of the QD
sample used in our calculations are given in Table |. Thesample(see Fig. 1 used in our calculations. The values for the
depth of the confinement potential caused by the InP stresséfectron effective masm; and the paralleky (to the QW and
is ~70 meV for the electrons and 30 meV for the hole&* perpendiculaz components of the heavy-hole mamsg are those in
The InP island and the confinement potentials are assumed e QW.¢, is the value of the relative dielectric constant in the QW.
be cylindrically symmetric. The eigenstates can thus be la=

; e, h D (nm) 2R (nm) W(nm) Xx € m myY m?
beled using the total angular momentlg=L5+L;, where ' e h h
the stateslL,|=0,1,2 ... will be denoted>,IT,A, ..., and 5 80 7 0.1 13 0.0668, 0.143n, 0.34m,
by the total spin$® andS". The superscripte andh refer to
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functions with I,+1,+1,=0,1,2... Dby the letters 30 PP
s,p,d, ... . Since the confinement potentials are cylindrical O =
symmetric, we use the same exponentfor the x andy 2 04725 _ oea00
functions. The strong quantum-well confinement allows us to il
reduce the size of our basis set by describing zltepen- 10 MR- e

dence by a few Gaussians with=0. A basis set consisting _ (Sixed hole

of 4s4p3d basis functions has been used in our numerical& o
calculations’® In this basis, we are able to perform FCI cal- =
culations on a QD containing up to four electron-hole p&irs. -10
This results in a CSF basis consisting of about 68 million
Slater determinants. The larger systems have been studied k -20
performing truncated CI calculations, including all singly,
doubly, triply, and quadruply excited determinants -3
(SDTQCI). The validity of this approximation is justified by
the fact that when comparing with the FCI calculations for
the case of one to four pairs, one sees that the Cl coefficient g1 2. spatial two-particle correlation functiops(re s ,r°) for
for higher than quadruple excitations are very small. Th&ne electron-hole paiN,=1). The QD symmetry axis defines the
truncated CI calculations also correctly predict the experiyrigin of the plot.
mentally observed rigid shell structure of the QD PL
spectr&’ correlation function. Since there is no exchange interaction
The diagonalization of the Hamiltonian matrix yields the between particles with antiparallel spins, the two-particle
eigenvectors of the few lowest eigenstates. The singleeorrelation functions obtained at the HF level will show no
particle and two-particle density matrices and correlatiorspatial correlations.
functions are constructed from the eigenvectors. Hence, At the correlated level, one would expect that the system
single-particle and two-particle expectation values can easilgan either consist of two weakly interacting excitons or of a

0 30

X[nm]

be evaluated for a specific eigenstate. bound biexciton. Assuming that the two excitons are weakly
interacting, then the two-particle correlation functions for the

IV. RESULTS one and two exciton cases should not differ significantly. A

_ stronger exciton-exciton interaction would result in the for-

A. Excitons mation of biexcitons. A biexciton can be considered to be an

In Fig. 2 the correlation functiop,(r.,rY) is plotted for ~ excitonic analogue of the hydrogen molecule,JHAs for

the QD system with one electron-hole pair. The position ofH2, the excitonic bond would show up in a higher probability
the hole ¢2) has been fixed at,=5 nm, y,=5 nm, and Of observing the electrons in the region between the two

2,=0. py(re,r0) is plotted in theze=0 plane, which defines NOl€s.

the symmetry plane of the QW. The distance of the hole of . In Figs. 3a) and 3b), the qorrelatio_n functions fo_r the QD
~7 nm from the center of the QD can be compared to thavith two  electron-hole pairs are |Ilustgated. F|guréa)3
radius of the confinement potential, which-is40 nm. This  Shows the electron-hole corrglat|¢@(r8,rh), and Fig. 3b)
position for the fixed hole will be used throughout. shows the hole-hole correlatigip(ry,,r). The spins of the
When fixing the hole coordinates of the exciton, and usingWo electrons and the two holes, respectively, are assumed to
Egs. (8) and (9) in the conditional probability expression Pe antiparallel, each forming a spin-singlet state. The hole-
P(re;rﬁ)=pE'F(re,rﬂ)/pT(rﬂ), one can see that the electron hole correlation function in Fig. (8) shows that the fixed

distribution is independent of the hole position at the HFNO!€ repels the other hole, pushing it to the opposite side of

level. In general, the two-particle correlation function doestn® QD center. What is more interesting, though, is that the

not factorize. Since the electron and the hole attract eacfl€ctron-hole correlation function shows that the electron is
other, one expects that the hole will drag the electron distriMoSt likely found in the region between the two holes. The
bution along with it. As seen in Fig. 2, the probability distri- POSition of the electrons is not purely a result of the confine-
bution is not centered around the QD symmetry axis, as thaent potential, since the pair-correlation function for the first
HF result suggests. Instead, the electron follows the holeeXcited 'I1 state shows that the preferred position for the
clearly indicating the formation of a correlated electron-hole€/€ctrons is between the two holesee Figs. é) and 4b)].
pair, i.e., an exciton. However, one can also see in Fig. 2 thathese observations indicate the formation of a biexciton in
the effect of the confinement potential is not negligible, agh® QD- The energy calculations show that the lowStof

the electron stays in-between the hole and the QD centef€ biexciton has a positive binding energyyy, of 2.0
which is the location of the potential minimum. meV relative to the energy of two noninteracting excitons.

Since the exciton energies of them, and theo.op, com-

plexes are-74.01 and-78.99 meV, respectively, the lowest

I state is bounded by 1.55 meV as compared to the two
For a QD system containing two electron-hole pai, ( noninteracting excitons.

=2), with both electrons and holes in the spin-singlet state, Low-lying triplet states {2) can be constructed from two

the HF calculations yield a centrally symmetric two-particle holes with parallel spin forming a triplet and from two elec-

B. Biexcitons
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Electron-hole correlation Electron-hole correlation (excited p,-state)

08750 — 1.000
0.7500 — 0.8750
06250 — 0.7500
05000 — 0.6250
03750 — 0.5000
[ 0.2500 — 03750
1 0.1250 — 0.2500
O - 0.1250

08750 — 1.000
0.7500 — 0.8750
06250 — 0.7500
05000 — 0.6250
03750 — 0.5000

[ 0.2500 — 0.3750

1 0.1250 — 0.2500

0 - 01250
0 - 0 20
X [nm] X[nm]
Hole-hole correlation Hole-hole correlation (excited p,-state)

Fixed hole

Y [nm]

0 0

X[nm] X [nm]
~ FIG. 3. Electron-holéa) and the hole-hol¢b) correlation func- FIG. 4. Electron-holéa) and the hole-hol¢b) correlation func-
tions for theN,=2 system. tions for the lowest excitedI] state of theN,=2 system.

trons with antiparallel spins forming a singlet. Alternatively,
the two electrons form a triplet and the two holes a singlet
Of these two triplet states, th& state with the two hole
Sg'n\f thr)]i?l;d rto ié”sﬁzlett Ilsvsh:lcwzﬁr n en(ra?rrgy.tlttlsiQ.fsrr;eVas more electron-hole pairs are added to the QD.
?neo\/?:\bove tlgeogroundas?éte T?]is iemspiiceos thast ?hz Izvv"?ést To see how the correlation energy changes as we add
state is not a bound biexciton. This situation is analogous tcr)nore pairs to the QD, the correlation ener@ () is given
H,, which is has a strongly bound singlet state, but a nega-
tive binding energy for the lowest triplet state. The lowest 4,
singlet 11 state which is also the first excited state of the
biexciton lies 4.6 meV above the ground state. 20
1
E

the sum distribution of the remaining electrons and holes.
Since there are no strongly bound HH,, etc., molecules in
nature to guide our intuition, it is not clear what will happen

Hole-hole correlation (excited >-state)

0.8750 — 1.000
07500 - 0.8750
06250 — 0.7500
05000 — 0.6250

[ 0:3750 — 0.5000

[ 0:2500 - 0.3750

[ 0.1250 — 0.2500

MO - 01250

The electron-hole correlation function for th& and 3%,
states are very similar. However, a significant difference is
observed in the hole-hole correlation functidkig. 5),
clearly showing the effects of the exchange term. The ex-z=
change interaction carves out a minimum along a circle withf
the same radius as the distance between the fixed hole ar
the center of the QD. The other hole is forced partly inwards,

but mostly outwards.

0
0

-10

C. Multiexcitons

The interpretation of the correlation functiginy(rq,r») X[
for QD systems containing more than two pairs is somewhat
less obvious, since one cannot any longer identify the free FIG. 5. Hole-hole correlation function for the first excitéd
coordinate with only one particle. What one sees instead istate of theN,=2 system.
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TABLE II. The correlation energyin meV) of the ground state Bediron-hde comelation
as a function of the number of electron-hole pairs. For the QD 0
systems with one to four electron-hole paiE;, have been ob- e
tained at the FCI level, while for the QD systems containing more 20 e
carrier pairsE¢, have been calculated at the SDTQCI level. -gg:g%
I 01250 — 02500
Np Ec Ene Ecorr Ecorr/Np NCI(Np) /LHF(Np) e
1 -7899 -77.76 —123 -123 -7899 -77.76 F
2 —159.97 —155.53 —4.44 —-222 —80.98 -—77.76 f
3 —229.00 —218.40 —10.60 —3.53 —69.03 —62.87 10
4 —298.74 —290.59 —-8.15 -—-4.04 —-69.74 -72.19
5 —367.15 —354.43 —12.72 —-254 —-68.41 -63.84 2
6 —436.35 —427.55 —-8.80 —147 —69.20 -—73.11
7 —492.26 —479.77 —12.49 -—-1.78 —55.91 -—52.23
8 —548.25 —539.43 -8.82 -1.10 -55.99 -59.66 'm_m 20 -0 0 10 20 0
9 —604.90 -596.30 —8.60 —-0.96 —56.65 —56.87 X[
10 —661.13 —653.34 —-7.79 —-0.78 —56.23 -—57.04
Hole-hdle correlation

in Table Il as a function of the number of electron-hole pairs
(Np). As seen in Table II, the correlation energy as a func- 20
tion of N, grows for QD systems containing up to three pairs
and then the correlation energy starts to oscillate arouhd
meV. This implies that the correlation energy per pair
reaches a maximum for three pairs and then it starts tc
slowly decreasé®>!
The correlation energy is, however, only one indicator of
the strength of the correlations. Figure@6and Gb) show
the pair-correlation functions obtained at the FCI level for
the QD containing three electron-hole pairs. Again the sta- -2
tionary hole pulls the electrons towards it and pushes the
other holes to the opposite side of the QD. While the g
electron-hole pair-correlation function obtained at the HF
level [Fig. 7@], p5"(re.rd), is symmetric around the QD Xinm
axis, the hole-hole correlation functioplgF(rh ,rﬂ), shows a )
displaced hole distributiofiFig. 7(b)]. This means that the FIG. 6. Electron-holda) and the hole-holéb) correlation func-
significant part of the hole-hole correlation seen in Figb) 6 tions for theN,=3 system.
and 7b) arises from the hole-hole exchange term, while
configuration-interaction calculations are needed for obtainwhereE(N,) is the ground-state energy of the QD with,
ing the large spatial electron-hole correlation effects seen bglectron-hole pairs, anﬁipvd are the energies of thg p,
comparing Figs. @ and 1a). andd excitons, respectively. In Table Ill the exciton stabili-
Since the correlation energy in Table Il increases quazation energies obtained from Ed.2) are given. As seen in
dratically with the number of electron-hole pairs for the QD Table 111, the ground states of all the studied QD systems are
systems containing one to three pairs, it seems as if at leagbund relative to the dissociation of the complex consisting
triexcitons are formed in the QD system. As seen in FIgSOf Np electron-hole pairs into a multiexciton With—j_
6(a) and @b), the electrons prefer to be located between theslectron-hole pairs and an exciton. Since we use a truncated
fixed hole and the two remaining holes, which are pushed t@| expansion foN,>4, the stabilization energy for the QD
the other side of the QD, forming a “chemical” bond. Since system withN,=5 is somewhat smaller than for the others.
the pair-correlation functions in this case consist of severathe stabilization energy increases with an increasing number
indistinguishable contributions, a thorough interpretation isgf electron-hole pairs in the dot. This suggests a relative
nontrivial. strong interaction between the excitons and the formation of
The calculation of the energy spectrum for one to fourstable multiexciton complexes. Jacak, Hawrylak, and Wojs
electron-hole pairS has been presented e§ﬁ|§he relative Suggested recenﬂy that the biexcitonic b|nd|ng energy ex-
gxciton energies, i.e., the stabilization energies, can be deeeds the binding energy of the larger excitonic complexes,
fined as implying that the QD containing many electrons and holes
form a system of weakly interacting biexcitons. The present

spd study shows that this is apparently not the case in our QD
Estas=E(Np) —E(Np— 1)+ EZP, (12 system.

Y [nm]
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Hectron-hdle corelation (HF) Electron-hole correlation

0.8750 — 1.000
0570 - 1000 0.7500 — 0.8750
0.7500 - 08750 0.6250 — 0.7500
06250 - 0.7500 05000 — 0.6250
0.5000 — 0.6250 03750 — 0.5000
0.3750 - 0.5000 [ 0.2500 — 0.3750
0.2500 - 0.3750 [ 0.1250 — 0.2500
=u1250—<12:m — O - 0.1250
0 - 01250 ﬂ @ )»
b

\_

0-

Y [nm]

X[nm]

Hole-hole correlation

Fixed hole
Q

0
X[nm]

FIG. 8. Electron-holg¢a) and the hole-holéb) correlation func-
tions for theN,=4 system.

Figures &) and &b) show the pair-correlation functions
obtained at the FCI level for the QD containing four
electron-hole pairs. As for the QD containing three electron-
hole pairs, the fixed hole pushes the rest of the holes to the
other side of the QD center, while most of the electrons are
located around the fixed hole. However, now a significant
part of the electrons are attracted by the hole distribution on
the other side of the QD. The electrons seem to form a

FIG. 7. Electron-hole and hole-hole correlation functions for
Np=3 calculated at the HF level.

TABLE lll. The total energies of the multiexcitons and their
stabilization energiegin meV) as a function of the number of

electron-hole pairsh,, . “chemical” bond between the fixed hole and the rest of the
holes. This structure seems to be the first sign of the cres-
N, E(Np) AEgian ESP centlike shape of the hole-hole correlation functions and the

ring-shaped electron-electron correlation functions obtained

2 —159.97 —1.99 ~78.99 for the QD systems containing five to ten electron-hole pairs.
8 —229.00 —5.28 ~63.78 As we add more pairs to the QD, the hole distribution
4 —298.74 —5.99 —63.75 starts to spread out due to the Coulomb repulsion between
5 —367.15 —4.66 —63.75 the holes. A similar spread is also seen in the electron distri-
6 —436.35 —5.45 —63.75 bution, since they follow the holes. For six pairs, the hole
! —492.26 —1.56 —48.3% distribution spreads out into a crescent shape. A crescent that
8 —548.25 —7.64 —48.35 almost forms a ring for ten pai§ig. 9). By comparing the

9 —604.90 ~8.30 —48.35 hole-hole correlation function obtained at the HF level to
10 —661.13 —7.88 —48.35

results of the SDTQCI calculations, the same broad features
aThe energy of ther(e)o(h) exciton ES). can be seen at both levels of thedRyg. 10. The only major
bThe energy of ther(e)7(h) exciton E). difference is the more pronounced Coulomb hole seen
°The energy of thes(e) 5(h) exciton EZ). around the fixed hole in the SDTQCI results.
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Electron-hole correlation
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Hole-hole correlation

Y [nm]
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FIG. 9. Electron-holéa) and the hole-hol¢b) correlation func-
tions for theN,=10 system.

D. Average carrier separation

An interesting possibility that arises when observing the

ring-shaped structure formed by the electron-hole system

Hole-hole correlation (HF)

30
20
10

0

Y [nm]

-10

X[nm]

FIG. 10. Hole-hole correlation function for thid,=10 case
calculated at the HF level.
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the formation of a crystalline structure similar to the Wigner
crystal suggested to exist in QD’s confining only electrons.

A crystalline structure would show up as distinct peaks in the
carrier separation distributiop(R), introduced in Eq.(5),

for certain carrier separatiorf® For an exciton, the maxi-
mum of p(R) gives the exciton Bohr radiuRy, which for

our QD system iRy=7.0 nm. As more pairs are added to
the QD, the carrier separation distribution broadens. As seen
in Fig. 11, the more carrier pairs in the QD system, the closer
the HF result comes to the CI results. The monotonous
broadening of both the electron-hole and hole-hahet
shown distance distribution implies that there are no pre-
ferred distances between the carriers inside the ring, suggest-
ing that no crystalline structure is formed in our QD system.

Electron-hole separation

i<

0 5 10 15 20 25 30 35 40

R [nm]

FIG. 11. Distance distribution function for theé,=2, N,=4,
andN,=6 systems.
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V. SUMMARY binding of two excitons to a biexciton can be observed in the
correlation function as an increased probability of finding the
two electrons between the holes analogously to the formation

ggzg/eld GQaE Azons\;i;tlr:];gveogeaei:] sl,?uF:ji(;?jlalland g:;ortrcr)l?n Ofe: of the chemical bond in molecular systems. For the QD sys-
nGa ,As Q y P 9 tem containing six electron-hole pairs, the correlation func-

tensive Cl calcule_mons. The calcula}uons show the IMPOr%ions become ring shaped, while when further pairs are added
tance of the carrier-carrier correlations. For one and tw

9o the QD, the correlation functions are ring shaped. The

i s oL, mPleSlcted sibilzalon energies suggest the fomalon of
P Y ultiexciton complexes.

level. The spatial electron-electron and the hole-hole corre-
lations for QD’s containing many electron-hole pairs is
dominated by the exchange interaction, vyhlch is obtained ACKNOWLEDGMENTS

already at the HF level. However, to consider the electron-

hole correlation effects the calculations have to be performed We thank Professor P. Pyyklkamd The Academy of Fin-
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