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Spatial carrier-carrier correlations in strain-induced quantum dots
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The electron-hole correlation effects on the energy levels and the wave functions of the electrons and holes
in a strain-induced quantum dot containing one to ten carrier pairs have been studied using large-scale
configuration-interaction calculations. The present calculations show the formation of excitons and biexcitons
in the quantum dot. By increasing the number of carrier pairs, one observes a transition from a strongly
correlated system to a quantum dot system for which the electron-electron and hole-hole correlations are
dominated by exchange interaction and are relatively well described at the Hartree-Fock level, while for an
accurate description of the electron-hole correlations configuration-interaction calculations are necessary. Ring-
shaped carrier distributions emerge with increasing number of carrier pairs.
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I. INTRODUCTION

The possibility of observing and studying the photolum
nescence from individual quantum dots~QD!,1–6 and thereby
probing the details of their electronic structure, has mad
increasingly relevant to include the electron-hole correlat
effects in the calculation of the QD energy spectra. For
accurate treatment of the carrier-carrier correlations,
Hamiltonian of the QD system has to be diagonalized
actly. This is clearly impossible without some simplifyin
assumptions. Generally, two different types of approxim
tions have been introduced to circumvent the size probl
For small QD systems~;125 nm!, an atomic cluster ap
proach using many-body pseudopotential theory has b
proposed.7 Since the atomic cluster method is based
atomic one-particle basis sets, an accurate solution of
equations in the given one-particle basis is not possible
larger QD systems. For large, weakly confined QD syste
(;102100 nm), the use of the effective-mass approxim
tion is almost universal.8–10 The electrons and the holes
the QD can then be treated as an interacting few-body sys
situated in an external confinement potential. Since the s
ation of a few confined carriers in the QD can be realiz
experimentally, it is of importance to solve the few-bo
problem exactly in order to judge the validity of th
effective-mass approximation.

The Hartree-Fock~HF! model is the most common star
ing point for accurate solutions of the many-body Sch¨-
dinger equations. In the HF approximation, each part
moves independently of the other particles. Due to the a
symmetry requirement on the total wave function, the spa
correlation of electrons with parallel spins is partly cons
ered even at the HF level. In his work we will use the de
0163-1829/2001/64~3!/035312~9!/$20.00 64 0353
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nition of the word ‘‘correlation’’ put forward by Lo¨wdin,11

that the Coulomb correlation is those spatial correlatio
which are not considered at the HF level. The Coulomb c
relation results in an increased probability of finding t
electrons and the holes closer to each other, and a decre
probability of finding particles of equal charge very close
each other. In this work, the electron-hole correlation effe
are considered by performing configuration-interaction c
culations. The full configuration-interaction~FCI! model rep-
resents an exact solution of the effective-mass Schro¨dinger
equation,12 and it allows a systematic, numerical study of t
correlations in the few-body quantum dot system. By co
paring the HF and the CI results for a QD containing a d
ferent number of electron-hole pairs, the importance of
correlation effects on the total energy, on the chemical
tential, and on the carrier distribution can be evaluated.

While the transition from a strongly correlated few
particle system to a system containing many electrons
holes has been studied extensively in bulk semiconduc
and in quantum wells~QW!,13,14 considerably less effort ha
been devoted to how this transition occurs in ze
dimensional systems, such as QD’s. In this paper, we pre
the results of FCI and of truncated, but extensive, CI cal
lations performed on a strain-induced QD~Ref. 15! contain-
ing one to ten electron-hole pairs. Besides the correla
energy, we investigate how the Coulomb interaction effe
the distribution of the electrons and the holes within the Q
This is done by evaluating the pair-correlation function o
tained from the many-particle wave function. In contrast
the QD electron-hole system studied in this work, the beh
ior of the pair-correlation function in QD’s containing onl
electrons has been studied quite extensively at both the
and at the exact level.16–20
©2001 The American Physical Society12-1
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In Sec. II the Hamiltonian and correlation functions a
introduced. The numerical methods used for solving
many-particle equation are described in Sec. III, and the
sults for calculation on a QD containing one to ten pairs
given in Sec. IV.

II. THEORY

We describe the QD electron-hole system using
effective-mass model. In our QD system the strained Q
lifts the heavy-hole~HH! and light-hole~LH! degeneracy a
the g point, separating the HH-LH bands by approximate
40 meV. Calculations show that the HH-LH coupling shi
the single-particle energies by only a few meV and that
HH component dominates for the lowest few hole states.21,22

For the sake of simplicity, we therefore neglect the effects
the HH-LH mixing and only consider two bands in o
Hamiltonian. The effective-mass Hamiltonian can then
written as

Ĥ5E dx ĉe
†~x!S 2

\2¹2

2me
1Ucon

e ~x! D ĉe~x!

1E dx ĉh
†~x!S 2

\2¹2

2mh
1Ucon

h ~x! D ĉh~x!

1
1

2E dxE dy Vee~x2y!ĉe
†~x!ĉe

†~y!ĉe~y!ĉe~x!

1
1

2E dxE dy Vhh~x2y!ĉh
†~x!ĉh

†~y!ĉh~y!ĉh~x!

2E dxE dy Veh~x2y!ĉe
†~x!ĉh

†~y!ĉh~y!ĉe~x!, ~1!

where the integration over the coordinatex[r ,s also in-
cludes the summation over the spin components, andUcon

e,h

are the electron and hole confinement potentials. The C
lomb interaction between the electrons and holes is assu
to be a pure Coulomb potential, but with a background
electric constant. Since the electrons and the holes are
tinct particles with different masses in our model, the el
tron and hole operators commute and there will appear
electron-hole exchange interaction term in Eq.~1!.

The total correlation energyEcorr is defined asEcorr
5EFCI2EHF , i.e., the difference between the FCI and t
HF energy. Truncated CI calculations, such as all single
double CI~SDCI! calculations, consider in general more th
80% of the total correlation energy.23 The energies of still
larger CI expansions are even closer to the FCI results.

The magnitude of the correlation energy is one meas
of the strength of the carrier-carrier correlation. A more
rect way to detect the correlation effects is to study the s
tial distribution of the carriers in the QD. By introducing th
pair-correlation function, information about carrier-carri
correlations can be extracted from theN-particle wave func-
tion. The pair-correlation function is defined as
03531
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r2~x1 ,x2!5N~N21!E dx3•••dxNuC~x1 ,x2 , . . . ,xN!u2.

~2!

In Eq. ~2!, the quantityr2(x1 ,x2) gives the probability of
simultaneously finding a particle at the spatial pointr1 with
spin s1, and another atr2 with spin s2. By fixing one coor-
dinate ofr2(x1 ,x2), one obtains for the one-pair case (Np

51) r2(x1)52uC(x1 ,x2
0)u2, which gives the electron~or

hole! probability distribution in an exciton. From the distr
bution function,r2(x1), one can deduce the probability o
finding the other electrons and/or holes relative to the fix
one. For the QD systems containing many electron-h
pairs, the distribution function,r2(x1), provides information
about the formation of multiexcitonic molecular states. B
introducing a one-particle basis set$w i(x)%, Eq. ~2! can be
written as

r2~x1 ,x2!5(
i jkl

f i~x1!f j~x2!fk* ~x1!f l* ~x2!r i jkl , ~3!

where r i jkl 5^Cuâi
†âk

†âl â j uC& is the two-particle density
matrix.

Since we are mainly interested in the purely spatial c
relations, the spatial two-particle correlation function can
obtained by summing over the spin degrees of freedom

r2~r1 ,r2!5 (
s1 ,s2

r2~r1s1 ,r2s2!

5r↑↑~r1 ,r2!1r↑↓~r1 ,r2!1r↓↑~r1 ,r2!

1r↓↓~r1 ,r2!, ~4!

wherer↑↑(r1 ,r2) is the contribution tor2 arising from two
particles atr1 and r2, both with spin 11

2, and similarly
r↑↓(r1 ,r2) arises from two particles atr1 and r2 with spins
11

2 and 21
2, respectively. Each component yields the pro

ability of finding two particles at certain positions in spa
and with a given spin configuration. By using the tw
particle correlation function in Eq.~4!, one can directly ob-
tain the distribution function of the spatial separation b
tween two particles as

r~R!5E dr1E dr2 d~R2ur12r2u!r2~r1 ,r2!. ~5!

To gain some insight into the structure of the two-partic
correlation function, one can compare Eq.~4! to the corre-
sponding HF expressions. In the HF approximation, wh
both coordinates refer to the same species~i.e., electrons or
holes!, the terms appearing in Eq.~4! reduce to

r↑↑
HF~r1 ,r2!5r↑~r1!r↑~r2!2r↑~r2 ;r1!r↑~r1 ;r2! ~6!

for spin-up electrons or holes and an analogous expres
when the two particles have down spins. For electrons
holes with antiparallel spins one gets

r↑↓
HF~r1 ,r2!5r↑~r1!r↓~r2!. ~7!
2-2
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SPATIAL CARRIER-CARRIER CORRELATIONS IN . . . PHYSICAL REVIEW B64 035312
The corresponding correlation functions for electron-h
pairs are

r↑↑
HF~r1 ,r2!5r↑~r1!r↑~r2!, ~8!

r↑↓
HF~r1 ,r2!5r↑~r1!r↓~r2!. ~9!

The interpretation of the one-particle densities, such
r↑(r1) and r↓(r2), becomes more apparent when one e
presses them in terms of a one-particle basis set$w i(x)%. In
this case, one obtains

r↑~r1!5(
i (↑)

occ

w i* ~r1!w i~r1!, ~10!

where the sum is over occupied spin-up orbitals. In Eq.~10!,
it can be seen thatr↑(r1) is simply the density of spin-up
particles. An analogous expression can be obtained for s
down particles. The densityr↑(r1 ;r2) appearing in Eq.~6!
becomes

r↑~r1 ;r2!5(
i (↑)

occ

w i* ~r2!w i~r1!, ~11!

which reduces to Eq.~10! when r15r2. In the HF approxi-
mation, there is no correlation between the particles of
posite spin. The joint probability is simply the product of th
two one-particle densities. This is clearly an approximati
as the Coulomb interaction correlates the motion of the p
ticles. Also, the correlation function between electrons a
holes always factorizes at the HF level, which is not the c
at the correlated level of theory. This implies that a prop
description of the spatial correlations requires that one m
go beyond the single Slater determinant approximation.

To visualize the spatial carrier-carrier correlations, t
two-particle correlation function with one fixed coordina
has been studied. The spatial two-particle correlation fu
tions in Eq. ~4! have been evaluated for the QD syste
containing one to ten electron-hole pairs. The correlat
contributions have been studied by comparing the correla
functions obtained at the HF and the CI levels of theory.

III. NUMERICAL CALCULATIONS

The QD sample modeled in our calculations is a stra
induced QD formed by the self-organizing growth of an I
island on top of a GaAs/InxGa12xAs QW ~Ref. 15! ~Fig. 1!.
The carrier confinement potentialUcon

e,h (x) appearing in Eq.
~1! can for this type of QD be calculated numerically, usi
only the material parameters and the sample structure a
put. The details of how this is done has been presen
earlier.22 The material and structural parameters for the Q
sample used in our calculations are given in Table I. T
depth of the confinement potential caused by the InP stre
is ;70 meV for the electrons and;30 meV for the holes.24

The InP island and the confinement potentials are assume
be cylindrically symmetric. The eigenstates can thus be
beled using the total angular momentumLz5Lz

e1Lz
h , where

the statesuLzu50,1,2, . . . will be denotedS,P,D, . . . , and
by the total spinsSe andSh. The superscriptse andh refer to
03531
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electrons and holes, respectively.
In the correlation calculations, theN-particle Hamiltonian

of Eq. ~1! is diagonalized in the configuration state functio
~CSF! basis. The FCI CSF basis consists of all the Sla
determinants obtained by exciting the electrons and the h
from the HF reference to the unoccupied HF orbitals.25 Since
a FCI calculation represents the exact solution of the Sch¨-
dinger equation in the given one-particle basis set, the ma
particle wave function will contain all the correlation effect
The first step in our computational approach is to solve
restricted HF equation.26 The solution of the HF equation
gives a set of optimized, occupied single-particle orbita
and a complementary set of unoccupied ones. The CSF b
is then constructed from the set of occupied and unoccup
orbitals, and the corresponding Hamiltonian matrix is diag
nalized.

Our FCI algorithm uses the direct CI approach, as imp
mented in the computer programLUCIA.27,28 The direct CI
method is based on the Davidson diagonalizat
algorithm,28,29which avoids storing and manipulating the e
tire Hamiltonian matrix and its eigenvectors. The factor
growth of the number of CSF’s makes the FCI intractable
systems with many electrons and holes. To treat larger
tems, one must use a truncated CSF basis. A systematic
of truncating the basis is to include all singly, doubly, tripl
quadruply,~SDTQ!, etc., excited Slater determinants in th
CSF expansion. The all singles and doubles CI~SDCI! is, for
instance, obtained by diagonalizing the Hamiltonian mat
in the CSF basis obtained by exciting at most two electro
two holes, or one electron and one hole from the HF ref
ence.

The single-particle wave functions for the electrons a
the holes are expanded in an anisotropic Gaussian basi
of the form xl xyl yzl ze2a(x21y2)e2bz2

, where we denote the

FIG. 1. Strain-induced QD sample. The material parameters
the dimensions of the QD sample used in our calculations are li
in Table I.

TABLE I. The material parameters and the structure of the Q
sample~see Fig. 1! used in our calculations. The values for th
electron effective massmc and the parallelxy ~to the QW! and
perpendicularz components of the heavy-hole massmh are those in
the QW.e r is the value of the relative dielectric constant in the QW

D ~nm! 2R ~nm! W ~nm! x e r me mh
xy mh

z

5 80 7 0.1 13 0.0665m0 0.143m0 0.34m0
2-3
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functions with l x1 l y1 l z50,1,2, . . . by the letters
s,p,d, . . . . Since the confinement potentials are cylindri
symmetric, we use the same exponenta for the x and y
functions. The strong quantum-well confinement allows us
reduce the size of our basis set by describing thez depen-
dence by a few Gaussians withl z50. A basis set consisting
of 4s4p3d basis functions has been used in our numer
calculations.26 In this basis, we are able to perform FCI ca
culations on a QD containing up to four electron-hole pairs23

This results in a CSF basis consisting of about 68 mill
Slater determinants. The larger systems have been studie
performing truncated CI calculations, including all sing
doubly, triply, and quadruply excited determinan
~SDTQCI!. The validity of this approximation is justified b
the fact that when comparing with the FCI calculations
the case of one to four pairs, one sees that the CI coeffic
for higher than quadruple excitations are very small. T
truncated CI calculations also correctly predict the exp
mentally observed rigid shell structure of the QD P
spectra.23

The diagonalization of the Hamiltonian matrix yields th
eigenvectors of the few lowest eigenstates. The sin
particle and two-particle density matrices and correlat
functions are constructed from the eigenvectors. Hen
single-particle and two-particle expectation values can ea
be evaluated for a specific eigenstate.

IV. RESULTS

A. Excitons

In Fig. 2 the correlation functionr2(re ,rh
0) is plotted for

the QD system with one electron-hole pair. The position
the hole (rh

0) has been fixed atxh55 nm, yh55 nm, and
zh50. r2(re ,rh

0) is plotted in theze50 plane, which defines
the symmetry plane of the QW. The distance of the hole
;7 nm from the center of the QD can be compared to
radius of the confinement potential, which is;40 nm. This
position for the fixed hole will be used throughout.

When fixing the hole coordinates of the exciton, and us
Eqs. ~8! and ~9! in the conditional probability expressio
P(re;rh

0)5r2
HF(re ,rh

0)/r↑(rh
0), one can see that the electro

distribution is independent of the hole position at the H
level. In general, the two-particle correlation function do
not factorize. Since the electron and the hole attract e
other, one expects that the hole will drag the electron dis
bution along with it. As seen in Fig. 2, the probability distr
bution is not centered around the QD symmetry axis, as
HF result suggests. Instead, the electron follows the h
clearly indicating the formation of a correlated electron-h
pair, i.e., an exciton. However, one can also see in Fig. 2
the effect of the confinement potential is not negligible,
the electron stays in-between the hole and the QD cen
which is the location of the potential minimum.

B. Biexcitons

For a QD system containing two electron-hole pairs (Np
52), with both electrons and holes in the spin-singlet sta
the HF calculations yield a centrally symmetric two-partic
03531
l

o

l

by

r
nt
e
i-

e-
n
e,
ly

f

f
e

g

s
ch
i-

e
e,

at
s
r,

,

correlation function. Since there is no exchange interact
between particles with antiparallel spins, the two-parti
correlation functions obtained at the HF level will show n
spatial correlations.

At the correlated level, one would expect that the syst
can either consist of two weakly interacting excitons or o
bound biexciton. Assuming that the two excitons are wea
interacting, then the two-particle correlation functions for t
one and two exciton cases should not differ significantly.
stronger exciton-exciton interaction would result in the fo
mation of biexcitons. A biexciton can be considered to be
excitonic analogue of the hydrogen molecule (H2). As for
H2, the excitonic bond would show up in a higher probabil
of observing the electrons in the region between the t
holes.

In Figs. 3~a! and 3~b!, the correlation functions for the QD
with two electron-hole pairs are illustrated. Figure 3~a!
shows the electron-hole correlationr2(re ,rh

0), and Fig. 3~b!
shows the hole-hole correlationr2(rh ,rh

0). The spins of the
two electrons and the two holes, respectively, are assume
be antiparallel, each forming a spin-singlet state. The ho
hole correlation function in Fig. 3~b! shows that the fixed
hole repels the other hole, pushing it to the opposite side
the QD center. What is more interesting, though, is that
electron-hole correlation function shows that the electron
most likely found in the region between the two holes. T
position of the electrons is not purely a result of the confin
ment potential, since the pair-correlation function for the fi
excited 1P state shows that the preferred position for t
electrons is between the two holes@see Figs. 4~a! and 4~b!#.
These observations indicate the formation of a biexciton
the QD. The energy calculations show that the lowest1S of
the biexciton has a positive binding energy,DXX , of 2.0
meV relative to the energy of two noninteracting exciton
Since the exciton energies of theseph and thesesh com-
plexes are274.01 and278.99 meV, respectively, the lowes
1P state is bounded by 1.55 meV as compared to the
noninteracting excitons.

Low-lying triplet states (3S) can be constructed from two
holes with parallel spin forming a triplet and from two ele

FIG. 2. Spatial two-particle correlation functionsr2(re,h ,rh
0) for

one electron-hole pair (Np51). The QD symmetry axis defines th
origin of the plot.
2-4
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SPATIAL CARRIER-CARRIER CORRELATIONS IN . . . PHYSICAL REVIEW B64 035312
trons with antiparallel spins forming a singlet. Alternative
the two electrons form a triplet and the two holes a sing
Of these two triplet states, the3S state with the two hole
spins coupled to a triplet lies lower in energy. It is 9.4 me
above the1S ground state, while the second3S state is 15.3
meV above the ground state. This implies that the lowest3S
state is not a bound biexciton. This situation is analogou
H2, which is has a strongly bound singlet state, but a ne
tive binding energy for the lowest triplet state. The lowe
singlet 1P state which is also the first excited state of t
biexciton lies 4.6 meV above the ground state.

The electron-hole correlation function for the1S and 3S
states are very similar. However, a significant difference
observed in the hole-hole correlation function~Fig. 5!,
clearly showing the effects of the exchange term. The
change interaction carves out a minimum along a circle w
the same radius as the distance between the fixed hole
the center of the QD. The other hole is forced partly inwar
but mostly outwards.

C. Multiexcitons

The interpretation of the correlation functionr2(r1 ,r2)
for QD systems containing more than two pairs is somew
less obvious, since one cannot any longer identify the f
coordinate with only one particle. What one sees instea

FIG. 3. Electron-hole~a! and the hole-hole~b! correlation func-
tions for theNp52 system.
03531
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the sum distribution of the remaining electrons and hol
Since there are no strongly bound H3, H4, etc., molecules in
nature to guide our intuition, it is not clear what will happe
as more electron-hole pairs are added to the QD.

To see how the correlation energy changes as we
more pairs to the QD, the correlation energy (Ecorr) is given

FIG. 4. Electron-hole~a! and the hole-hole~b! correlation func-
tions for the lowest excited1P state of theNp52 system.

FIG. 5. Hole-hole correlation function for the first excited1S
state of theNp52 system.
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in Table II as a function of the number of electron-hole pa
(Np). As seen in Table II, the correlation energy as a fu
tion of Np grows for QD systems containing up to three pa
and then the correlation energy starts to oscillate around210
meV. This implies that the correlation energy per p
reaches a maximum for three pairs and then it starts
slowly decrease.30,31

The correlation energy is, however, only one indicator
the strength of the correlations. Figures 6~a! and 6~b! show
the pair-correlation functions obtained at the FCI level
the QD containing three electron-hole pairs. Again the s
tionary hole pulls the electrons towards it and pushes
other holes to the opposite side of the QD. While t
electron-hole pair-correlation function obtained at the
level @Fig. 7~a!#, r2

HF(re ,rh
0), is symmetric around the QD

axis, the hole-hole correlation function,r2
HF(rh ,rh

0), shows a
displaced hole distribution@Fig. 7~b!#. This means that the
significant part of the hole-hole correlation seen in Figs. 6~b!
and 7~b! arises from the hole-hole exchange term, wh
configuration-interaction calculations are needed for obta
ing the large spatial electron-hole correlation effects seen
comparing Figs. 6~a! and 7~a!.

Since the correlation energy in Table II increases q
dratically with the number of electron-hole pairs for the Q
systems containing one to three pairs, it seems as if at l
triexcitons are formed in the QD system. As seen in Fi
6~a! and 6~b!, the electrons prefer to be located between
fixed hole and the two remaining holes, which are pushe
the other side of the QD, forming a ‘‘chemical’’ bond. Sinc
the pair-correlation functions in this case consist of seve
indistinguishable contributions, a thorough interpretation
nontrivial.

The calculation of the energy spectrum for one to fo
electron-hole pairs has been presented earlier.23 The relative
exciton energies, i.e., the stabilization energies, can be
fined as

Estab5E~Np!2E~Np21!1EX
s,p,d , ~12!

TABLE II. The correlation energy~in meV! of the ground state
as a function of the number of electron-hole pairsNp . For the QD
systems with one to four electron-hole pairs,ECI have been ob-
tained at the FCI level, while for the QD systems containing m
carrier pairs,ECI have been calculated at the SDTQCI level.

Np ECI EHF Ecorr Ecorr /Np mCI(Np) mHF(Np)

1 278.99 277.76 21.23 21.23 278.99 277.76
2 2159.97 2155.53 24.44 22.22 280.98 277.76
3 2229.00 2218.40 210.60 23.53 269.03 262.87
4 2298.74 2290.59 28.15 24.04 269.74 272.19
5 2367.15 2354.43 212.72 22.54 268.41 263.84
6 2436.35 2427.55 28.80 21.47 269.20 273.11
7 2492.26 2479.77 212.49 21.78 255.91 252.23
8 2548.25 2539.43 28.82 21.10 255.99 259.66
9 2604.90 2596.30 28.60 20.96 256.65 256.87

10 2661.13 2653.34 27.79 20.78 256.23 257.04
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whereE(Np) is the ground-state energy of the QD withNp

electron-hole pairs, andEX
s,p,d are the energies of thes, p,

andd excitons, respectively. In Table III the exciton stabi
zation energies obtained from Eq.~12! are given. As seen in
Table III, the ground states of all the studied QD systems
bound relative to the dissociation of the complex consist
of Np electron-hole pairs into a multiexciton withNp21
electron-hole pairs and an exciton. Since we use a trunc
CI expansion forNp.4, the stabilization energy for the QD
system withNp55 is somewhat smaller than for the other
The stabilization energy increases with an increasing num
of electron-hole pairs in the dot. This suggests a relat
strong interaction between the excitons and the formation
stable multiexciton complexes. Jacak, Hawrylak, and Wo32

suggested recently that the biexcitonic binding energy
ceeds the binding energy of the larger excitonic complex
implying that the QD containing many electrons and ho
form a system of weakly interacting biexcitons. The pres
study shows that this is apparently not the case in our
system.

FIG. 6. Electron-hole~a! and the hole-hole~b! correlation func-
tions for theNp53 system.

e
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FIG. 7. Electron-hole and hole-hole correlation functions
Np53 calculated at the HF level.

TABLE III. The total energies of the multiexcitons and the
stabilization energies~in meV! as a function of the number o
electron-hole pairs,Np .

Np E(Np) DEstab EX
s,p,d

2 2159.97 21.99 278.99a

3 2229.00 25.28 263.75b

4 2298.74 25.99 263.75
5 2367.15 24.66 263.75
6 2436.35 25.45 263.75
7 2492.26 27.56 248.35c

8 2548.25 27.64 248.35
9 2604.90 28.30 248.35

10 2661.13 27.88 248.35

aThe energy of thes(e)s(h) exciton (EX
s ).

bThe energy of thep(e)p(h) exciton (EX
p).

cThe energy of thed(e)d(h) exciton (EX
d).
03531
Figures 8~a! and 8~b! show the pair-correlation function
obtained at the FCI level for the QD containing fo
electron-hole pairs. As for the QD containing three electro
hole pairs, the fixed hole pushes the rest of the holes to
other side of the QD center, while most of the electrons
located around the fixed hole. However, now a signific
part of the electrons are attracted by the hole distribution
the other side of the QD. The electrons seem to form
‘‘chemical’’ bond between the fixed hole and the rest of t
holes. This structure seems to be the first sign of the c
centlike shape of the hole-hole correlation functions and
ring-shaped electron-electron correlation functions obtai
for the QD systems containing five to ten electron-hole pa

As we add more pairs to the QD, the hole distributi
starts to spread out due to the Coulomb repulsion betw
the holes. A similar spread is also seen in the electron dis
bution, since they follow the holes. For six pairs, the ho
distribution spreads out into a crescent shape. A crescent
almost forms a ring for ten pairs~Fig. 9!. By comparing the
hole-hole correlation function obtained at the HF level
results of the SDTQCI calculations, the same broad featu
can be seen at both levels of theory~Fig. 10!. The only major
difference is the more pronounced Coulomb hole se
around the fixed hole in the SDTQCI results.

r

FIG. 8. Electron-hole~a! and the hole-hole~b! correlation func-
tions for theNp54 system.
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D. Average carrier separation

An interesting possibility that arises when observing
ring-shaped structure formed by the electron-hole system

FIG. 9. Electron-hole~a! and the hole-hole~b! correlation func-
tions for theNp510 system.

FIG. 10. Hole-hole correlation function for theNp510 case
calculated at the HF level.
03531
e
is

the formation of a crystalline structure similar to the Wign
crystal suggested to exist in QD’s confining only electrons33

A crystalline structure would show up as distinct peaks in
carrier separation distributionr(R), introduced in Eq.~5!,
for certain carrier separationsR. For an exciton, the maxi-
mum of r(R) gives the exciton Bohr radiusRX , which for
our QD system isRX57.0 nm. As more pairs are added
the QD, the carrier separation distribution broadens. As s
in Fig. 11, the more carrier pairs in the QD system, the clo
the HF result comes to the CI results. The monotono
broadening of both the electron-hole and hole-hole~not
shown! distance distribution implies that there are no p
ferred distances between the carriers inside the ring, sugg
ing that no crystalline structure is formed in our QD syste

FIG. 11. Distance distribution function for theNp52, Np54,
andNp56 systems.
2-8
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V. SUMMARY

The electron-hole correlation effects for a straine
induced QD consisting of an InP island on top of
GaAs/InxGa2xAs QW have been studied by performing e
tensive CI calculations. The calculations show the imp
tance of the carrier-carrier correlations. For one and t
electron-hole pairs the HF solutions factorize, which impl
that the spatial correlation is only introduced at the correla
level. The spatial electron-electron and the hole-hole co
lations for QD’s containing many electron-hole pairs
dominated by the exchange interaction, which is obtain
already at the HF level. However, to consider the electr
hole correlation effects the calculations have to be perform
at a correlated level of theory. The spatial correlation fu
tions show the formation of excitons and biexcitons, wh
for QD systems containing many electron-hole pairs the
terpretation of the correlation functions is nontrivial. Th
a

re

se

-

on

.M

ev

cia

ak
th
v

J.
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binding of two excitons to a biexciton can be observed in
correlation function as an increased probability of finding t
two electrons between the holes analogously to the forma
of the chemical bond in molecular systems. For the QD s
tem containing six electron-hole pairs, the correlation fun
tions become ring shaped, while when further pairs are ad
to the QD, the correlation functions are ring shaped. T
calculated stabilization energies suggest the formation
multiexciton complexes.
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