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Specific heat anomaly at the glass transition
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A general frame work is devised to obtain the specific heat of nonequilibrium systems described by
the energy-landscape picture, where a representative point in the phase space is assumed to obey a
stochastic motion which is governed by a master equation. The specific heat depends on the
observation time and becomes quenched one for short observation time and annealed one for long
observation time. In order to test its validity, the frame work is applied to a two-level system where
the state goes back and forth between two levels stochastically. The specific heat is shown to
increase from zero to the Schottky form as the observation time is increased from zero to infinity.
The anomaly of specific heat at the glass transition is reproduced by a system with a model
energy-landscape, where basins of the landscape form a one-dimensional array and jump rate
between adjacent basins obeys a power-law distribution. It is shown that the glass transition can be
understood as a transition from an annealed to a quenched system and that the glass transition
temperature becomes lower when the observation time is increased. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1519237#
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I. INTRODUCTION

Much understanding of the glass transition has b
achieved in recent years. The mode coupling theory base
the mean field treatment of liquid dynamics predicted a
namical transition in which structural arrest occurs at a cr
cal temperatureTc .1 It is now believed thatTc is much
higher than the glass transition temperatureTg identified by
thermodynamic measurements. Recently, a replica me
was introduced to calculate the configurational entropy
the basis of the energy-landscape picture, and it was arg
that the Kauzmann temperatureTK where the configurationa
entropy vanishes is an ideal glass transition temperature2

It has been shown that the specific heat of glass form
materials exhibits a slight increment whenTg is approached
from above and an abrupt decrement atTg .3 This behavior
of the specific heat is opposite to the well-known anom
observed in the second order phase transition, where
lower temperature phase has higher specific heat than
higher temperature phase. Although the analysis of the c
figurational entropy in the equilibrium treatment based
the replica method reproduces the desired change in the
cific heat,2 the transition occurs atTK and not atTg . Thus, it
is still an open and challenging problem to explain t
anomaly of the specific heat at the glass transition which
believed to occur betweenTK andTc . It is worth mentioning
that in the MCT approach the anomaly of the specific hea
regarded as an artifact due to slow relaxation.1

In this paper, we propose a possible explanation for
sharp change in the specific heat at the glass transition on
basis of the energy-landscape picture.4 Treating the dynamics
of a representative point in the phase space by a stoch
master equation and assuming the density of states for
collective dynamics in each basin, we obtain the specific h
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as a function of the observation time. We prove that
specific heat is given by a quenched average for short ob
vation time and by an annealed average for long observa
time and show that the glass transition can be understoo
a transition from the annealed average to the quenched a
age due to the increase of the structural relaxation time
yond the observation time.

We organize this paper as follows: In Sec. II, we pres
the general frame work for the calculation of the specific h
for systems described by the landscape picture. We
show rigorously that the specific heat in the short and lo
observation times reduce to the quenched and annealed
pressions, respectively. In order to test its validity, we ap
the frame work to a system consisting of two levels whe
the state makes stochastic transition between these levels
consider in Sec. III a model energy-landscape consisting
one-dimensional array of basins and investigate the temp
ture dependence of the specific heat when the jump rate
tween two adjacent basins obeys a power law distribut
function which has been shown to hold in general.5 We show
that the specific heat increases slightly before the glass t
sition and decreases sharply at the glass transition when
temperature is reduced. This behavior is due to the transi
from the annealed average aboveTg and to the quenched
average belowTg . We give summary of the results and di
cussion in Sec. IV.

II. FRAMEWORK

A. Basic equations

In the energy-landscape picture, the energy of each b
is assumed to be well defined. We denote byP(a,t) the
probability that the system is in basina at time t. Then the
energy of the system at timet is given by
1 © 2002 American Institute of Physics
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^E~ t !&5(
a

EaP~a,t !, ~1!

whereEa is the energy of basina. The probability distribu-
tion P(a,t) depends on details of the temperature control
the measurement. Here, we consider the control that the
peratureT̂(t) at time t is given by

T̂~ t !5H T ~ t,0!

T8 ~0<t !
. ~2!

The specific heat for a given observation timeto is defined
by the ratio of the increase of the energy and the tempera
jump when the jump is infinitesimal. Namely, the speci
heat atT is defined by6

C~T,to!5 lim
T8→T

^E~ to!&2^E~0!&

T82T
. ~3!

The probability functionP(a,t) can be assumed to obe
the master equation

]P~a,t !

]t
5(

bÞa
wabP~b,t !2(

bÞa
wbaP~a,t !, ~4!

wherewab is the transition rate from basinb to basina. The
initial condition for

P~ t ![S A

P~a,t !

A
D

is the equilibrium distribution atT

P~0!5Peq
T ,

where

Peq
T 5S A

Peq
T ~a!

A
D

and Peq
T (a)5 Za(T)/(bZb(T). Here Za(T) is the partition

function of basina at T. Note the jump rate in Eq.~4! must
satisfy the detailed balance

wabZb~ T̂!5wbaZa~ T̂!. ~5!

B. Quenched and annealed limits

The master equation Eq.~4! can be solved readily by
using the eigenvectors and eigenvalues of a matrixW, (a,b)
element of which is given by

Wab5H wab ~whenaÞb!,

2(
c

wca ~whena5b!.
~6!

We denote eigenvectors and eigenvalues ofW by $xi% and
l i , respectively,

Wx i5l ixi . ~7!
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It is known that the matrixW is negative semidefinite an
the largest eigenvaluel050 is nondegenerate and the corr
sponding eigenvectorx0 is given byPeq

T .7 It is straightfor-
ward to show that

P~ t !5P~0!1@~x0 ,0,••• !2X#@E2L#X21P~0!, ~8!

whereX is a matrix defined by

X5~x0 ,x1 ,x2 ,••• !,

andL is a diagonal matrix whose (i ,i ) element is given by
exp(lit). We find that this solution gives the two limiting
behaviors correctly~see Appendix!

lim
to→0

P~ t0!5Peq
T ~9!

and

lim
to→`

P~ t0!5Peq
T8 . ~10!

Therefore, the specific heat defined by Eq.~3! becomes the
quenched value for the short observation timeto50

C~T,0!5 lim
T8→T

(
a

Ea~T8!2Ea~T!

T82T
Peq

T ~a!5^Ca
eq~T!&,

~11!

and the annealed one for the long observation timeto5`

C~T,`!5 lim
T8→T

(aEa~T8!Peq
T8~a!2(aEa~T!Peq

T ~a!

T82T

5 lim
T8→T

^Ea~T8!&2^Ea~T!&

T82T
. ~12!

Generally speaking, observation is made for a finite obse
tion time. Therefore, if the characteristic time scale of t
relaxation process becomes longer than the fixed observa
time as the temperature is reduced, we expect that the
cific heat undergoes a transition from the annealed valu
the quenched value.

In order to quantify the observation time dependence,
introduce the degree of annealing defined by

S~T,to!5
C~T,to!2C~T,0!

C~T,`!2C~T,0!
. ~13!

Note thatS(T,to)50 for the quenched system andS(T,to)
51 for the annealed system.

C. Schottky and Zeller–Pohl specific heats

To test the preceding formalism, we first apply it to
two level system consisting of two levels atE150 andE2

5«. The probabilities that the system is in each level
assumed to obey the master equations

dP~1,t !

dt
5w12P~2,t !2w21P~1,t !, ~14!

dP~2,t !

dt
5w21P~1,t !2w12P~2,t !. ~15!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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We assume a potential barrier between two levels of he
D above level 2 and set

w125ne2D/kBT, w215ne2(D1«)/kBT,

wheren is the attempt frequency serving as the scale of tim
kB is the Boltzmann constant. Solving the master equati
~14! and ~15! under the initial conditions

P~1,0!5Peq
T ~1!5

1

11e2«/kBT
,

P~2,0!5Peq
T ~2!5

e2«/kBT

11e2«/kBT
,

we find P(2,t), which determines the average energy
^E(t)&5«P(2,t),

P~2,t !5P~2,0!1F P~1,0!2
1

11e2«/kBT8G
3@12exp$2~11e2«/kBT8!e2D/kBT8nt%#. ~16!

With use of the definition of the specific heat~3!, we finally
obtain

C~ to!5kBS «

kBTD 2 e2«/kBT

~11e2«/kBT!2
@12exp$2~11e2«/kBT!

3e2D/kBTnto%#. ~17!

Figure 1 shows the temperature dependence of the spe
heat for several observation times. We can see that the
cific heat changes gradually from the quenched va
C(T,0)50 to the annealed one, i.e., the Schottky spec
heat

C~T,`!5kBS «

kBTD 2 e2«/kBT

~11e2«/kBT!2
,

as the observation time is increased from 0 to`.
An immediate application of the two level system is t

low temperature specific heat of glasses which has b

FIG. 1. Temperature dependence of the specific heat of a two level sy
for three observation timesnto51,10,100. For simplicity, we setD5« in
this plot. ~a! and ~q! denote the annealed and quenched cases.
Downloaded 02 Mar 2009 to 129.8.242.67. Redistribution subject to AIP
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shown by Zeller and Pohl8 to depend linearly on tempera
ture. This temperature dependence has been explained o
basis of the two level system as follows.9 Let n(«) denote
the density of states of two levels with energy separation«.
Then the specific heat of the system is given by

CL5kBE
0

`

n~«!S «

kBTD 2 e2«/kBT

~11e2«/kBT!2
d«. ~18!

At sufficiently low temperatures one can assumen(«)
.n(0) for « ’s which contribute to the integral. Thus on
finds the linear temperature dependence

CL.
p2

6
n~0!kB

2T.

Using the observation-time dependent specific hea
Eq. ~18!, we find that the observation time dependence of
low temperature specific heat is written as

CL~T,to!5CLF12
6

p2E0

` x2ex

~ex11!2

3exp$2~11e2x!e2D/kBT%todxG . ~19!

Figure 2 shows the observation time dependence
CL(T,to)/CL(T) where we assumedD5« for simplicity of
calculation.

III. GLASS TRANSITION IN A MODEL
ENERGY-LANDSCAPE

A. Array of Einstein oscillators

We consider an energy-landscape in which basins for
one-dimensional array. We also assume that the dynam
within a basin is described by a set of oscillators and
density of states of basina is denoted asDa(v). Then the
energy of basina is given by

Ea~T!5E \v

2
coth

\v

2kBT
Da~v!dv. ~20!

mFIG. 2. The observation time dependence of the linear coefficient for
Zeller–Pohl specific heat obtained by the present method.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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The probability distributionP(a,t) obeys the master equa
tion

dP~a,t !

dt
5waa21P~a21,t !1waa11P~a11,t !

2~wa21a1wa11a!P~a,t !. ~21!

We assume the jump rate from basina to basinb is given by

wba5n expS 2
FA~T!2Fa~T!

kBT D , ~22!

whereFa(T) is the local free energy of basina and FA(T)
5max$Fa(T),Fb(T)%1D is the free energy of the transitio
state. HereD is a positive constant introduced as an ene
barrier. As an example, we employed the density of state
the Einstein oscillator and assumed that the Einstein
quency of each basin is distributed uniformly betweenvE

and 3vE . We solved numerically the master equation~21!
for 50 basins with the periodic boundary condition under
initial condition

P~a,0!5
Za~T!

(bZb~T!
,

whereZa(T) is the partition function of basina. The specific
heat is calculated from Eq.~3! for several observation time
which is shown in Fig. 3. For a given observation time, t
specific heat shows a sharp drop at a critical tempera
with slight increase before the drop. This behavior of t
specific heat is qualitatively the same as the system in wh
all basins are mutually connected.10

Figure 4 shows the temperature dependence of the
gree of annealing for several observation times. At the te
perature where the specific heat decreases sharply, the d
of annealing shows a transition from the annealed state to
quenched state.

FIG. 3. The specific heat of a model energy-landscape consisting o
Einstein oscillators. The solid curves represent~q! the quenched systemto

50 and~a! the annealed systemto5`. The dotted curves correspond to~1!
nto5102, ~2! nto5104, and~3! nto5106. In this plot, we setD53\vE .
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B. Power law distribution

On the basis of the analysis of single particle dynam
in the supercooled liquid, Odagaki has proposed a uni
view for the glass transition singularities.11,12 In the trapping
diffusion model, it is concluded that the jump rate for
single particle dynamics obeys a power law distribution5,11,12

F~w!5H s11

w0
S w

w0
D r

, ~ for 0<w<w0!

0 ~otherwise!,

~23!

where the exponent parameter is related to the config
tional entropysc(T) as

r5
Tsc~T!2Tgsc~Tg!

Tgsc~Tg!
. ~24!

In the actual calculation, we simplify this expression to

r5
T2Tg

Tg2T0
, ~25!

assuming thatTsc(T)}T2T0 with the Vogel–Fulcher tem-
peratureT0;TK . We consider the factorne2D/kBT in Eq.
~22! is distributed according to Eq.~23! with exponent~25!.

Figure 5 shows the temperature dependence of the
cific heat for several observation times. We again observ
transition compatible with the glass transition. As we sh
in Fig. 6, the transition is considered as one from the
nealed state to the quenched state.

IV. SUMMARY AND DISCUSSION

In this paper we have presented a frame work for cal
lation of the specific heat of systems described by
energy-landscape picture. The essential point in this fra
work is in the assumption of separation of dynamics, one
the fast dynamics within a basin of the landscape and
other for the slow dynamics between basins described b
stochastic model. This view has been supported by a re
computer simulation.13 The dynamics within a basin can b

0
FIG. 4. Temperature dependence of the degree of annealing for three o
vation times shown by the dotted curves in Fig. 3:~1! nto5102, ~2! nto

5104, and~3! nto5106.
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characterized by the density of states. For the density
states we selected the Einstein model in this paper for s
plicity, but it can be easily generalized to more general ca
including the density of states consistent to the Boson pe
In general, the characteristic time for the stochastic dynam
becomes slower and slower as the temperature is red
and could exceed the observation time at a character
temperature. Above this characteristic temperature, the
tem can survey many basins and the observed value
physical quantity is given by the average over these bas
that is by the annealed average. Below the characteristic
perature, the representative point in the phase space h
moves out from the initial basin in the observation time a
the observed value is determined by the basin, that is by
quenched average. Thus we can expect a transition from

FIG. 5. The specific heat of a system described by a model ene
landscape consisting of 50 Einstein oscillators with power law distribut
In this plot, we setT050.1\vE /kB andTg50.2\vE /kB . The solid curves
represent~q! the quenched systemto50 and ~a! the annealed systemto

5`. The dotted curves correspond to~1! v0to5102, ~2! v0to5104, and~3!
v0to5106.

FIG. 6. Temperature dependence of the degree of annealing for three o
vation times shown by the dotted curves in Fig. 5:~1! v0to5102, ~2!
v0to5104, and~3! v0to5106.
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annealed average to the quenched average at the charac
tic temperature which can be considered as the explana
for the glass transition.

The frame work was applied for a few model system
First we analyzed effect of the slow transition rate on t
specific heat of a two level system and obtained the ob
vation time dependence of theT-linear Zeller–Pohl specific
heat of glasses. We also studied the specific heat of a m
energy-landscape and showed that the specific heat beh
consistently to observations for the glass transition,3 which
includes the slight increase of the specific heat just above
transition. In particular, it is important to note that the pow
law distribution of jump rates can explain the dynam
singularities11,12 as well as the thermodynamic singulari
and thus the energy-landscape picture gives a basis for
unified concept for understanding the glass transition.14

In the present paper, we consider a simplified setting
the temperature control. We can easily generalize the fra
work for more realistic temperature control, which includ
measurements along a cooling process or a heating pro
after quenching. Analysis in this line will be presente
elsewhere.15
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APPENDIX: LIMITING BEHAVIOR

It is self-evident that the second term on the right-ha
side of Eq.~8! vanishes att50 sinceL5E at t50. In the
limit of t5`, all elements ofL vanishes except forl11

51. Thus

P~`!5~x0 ,0,••• !X21P~0!.

We can easily show that the first row ofX21 is (1,1,
1,•••). Therefore, we have

P~`!5x0 ,

since(aP(a,0)51.
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