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Specific heat anomaly at the glass transition
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A general frame work is devised to obtain the specific heat of nonequilibrium systems described by
the energy-landscape picture, where a representative point in the phase space is assumed to obey a
stochastic motion which is governed by a master equation. The specific heat depends on the
observation time and becomes quenched one for short observation time and annealed one for long
observation time. In order to test its validity, the frame work is applied to a two-level system where
the state goes back and forth between two levels stochastically. The specific heat is shown to
increase from zero to the Schottky form as the observation time is increased from zero to infinity.
The anomaly of specific heat at the glass transition is reproduced by a system with a model
energy-landscape, where basins of the landscape form a one-dimensional array and jump rate
between adjacent basins obeys a power-law distribution. It is shown that the glass transition can be
understood as a transition from an annealed to a quenched system and that the glass transition
temperature becomes lower when the observation time is increase@d00®American Institute of
Physics. [DOI: 10.1063/1.1519237

I. INTRODUCTION as a function of the observation time. We prove that the
) N specific heat is given by a quenched average for short obser-

Much understanding of the glass transition has beeWation time and by an annealed average for long observation
achieved in recent years. The mode coupling theory based gfine and show that the glass transition can be understood as
the mean field treatment of liquid dynamics predicted a dy transition from the annealed average to the quenched aver-
namical transition in which structural arrest occurs at a criti—age due to the increase of the structural relaxation time be-
cal temperatureT,." It is now believed thafT, is much yond the observation time.
higher than the glass transition temperatligeidentified by We organize this paper as follows: In Sec. I, we present
thermodynamic measurements. Recently, a replica methage general frame work for the calculation of the specific heat
was introduced to calculate the configurational entropy ongy systems described by the landscape picture. We also
the basis of the energy-landscape picture, and it was argueghow rigorously that the specific heat in the short and long
that the Kauzmann temperatufg where the configurational  gbservation times reduce to the quenched and annealed ex-
entropy vanishes is an ideal glass transition temperéture. pressions, respectively. In order to test its validity, we apply

It has been shown that the specific heat of glass forminghe frame work to a system consisting of two levels where
materials exhibits a slight increment Wh§§ is approached  the state makes stochastic transition between these levels. We
from above and an abrupt decremenfTgt” This behavior  consjder in Sec. Ill a model energy-landscape consisting of
of the specific heat is opposite to the well-known anomalyyne-dimensional array of basins and investigate the tempera-
observed in the second order phase transition, where thge dependence of the specific heat when the jump rate be-
lower temperature phase has higher specific heat than thgeen two adjacent basins obeys a power law distribution
higher temperature phase. Although the analysis of the corynction which has been shown to hold in genéndle show
figurational entropy in the equilibrium treatment based ongnat the specific heat increases slightly before the glass tran-
the replica method reproduces the desired change in the Spgtion and decreases sharply at the glass transition when the
cific heat’ the transition occurs &t and not aff;. Thus, it temperature is reduced. This behavior is due to the transition
is still an open and challenging problem to explain thefom the annealed average aboVg and to the quenched

anomaly of the specific heat at the glass transition which igyerage belowl,. We give summary of the results and dis-
believed to occur betweeR andT,. Itis worth mentioning  cyssion in Sec. IV.

that in the MCT approach the anomaly of the specific heat is
regarded as an artifact due to slow relaxafion.
In this paper, we propose a possible explanation for the
sharp change in the specific heat at the glass transition on ﬂ?,e FRAMEWORK
basis of the energy-landscape pictfifigeating the dynamics
of a representative point in the phase space by a stochasifs Basic equations

master equation and assuming the density of states for the |, ihe energy-landscape picture, the energy of each basin

collective dynamics in each basin, we obtain the specific hegt sssumed to be well defined. We denote Pfat) the

probability that the system is in basiat timet. Then the
dElectronic mail: odag3scp@mbox.nc.kyushu-u.ac.jp energy of the system at timds given by
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It is known that the matridV is negative semidefinite and
<E(t)>:2a EaP(at), (1) the largest eigenvalue,=0 is nondegenerate and the corre-
sponding eigenvectax, is given byPg,.” It is straightfor-
whereE, is the energy of basia. The probability distribu- ward to show that
tion P(a,t) depends on details of the temperature control for _ N B 1
the measurement. Here, we consider the control that the tem- P()=P(0)+[(x0,0,- - -) = X][E= AJX""P(0), ®

peratureT () at timet is given by whereX is a matrix defined by
) T (t<0) X=(X01X11X21"')7
T(t)= T (0=t) (2) andA is a diagonal matrix whose () element is given by

exp(\t). We find that this solution gives the two limiting
The specific heat for a given observation titgeis defined  behaviors correctlysee Appendix
by the ratio of the increase of the energy and the temperature

; _pl
jump when the jump is infinitesimal. Namely, the specific t“TOP(tO)_Peq )
heat atT is defined b§ °
and
_ (E(t5))—(E(0) )
C(T,ty)= lim % ©) lim P(t0)=qu. (10
ToT to—

The probability functiorP(a,t) can be assumed to obey Therefore, the specific heat defined by E8). becomes the

the master equation quenched value for the short observation tirye 0
IP(at : Ea(T')—Ey(T)
DS waPb - 3 wPlan), @ C(TO)=lim X, ——— ———P{a)=(C{{(T),
at bZa b#a 7 a T-T
11
wherewy, is the transition rate from basimto basina. The o @)
initial condition for and the annealed one for the long observation tigzex
: S EALT )P (a)— 2 ELT)PL(a)
C(T, )= lim a-al eq ‘ a-al eq(
P(t)=| P(at) an T
' _ i (Ea(TD) —(Eo(T) 12
is the equilibrium distribution aT B T -7 '
T =T
P(0)=P¢, Generally speaking, observation is made for a finite observa-

tion time. Therefore, if the characteristic time scale of the
relaxation process becomes longer than the fixed observation
time as the temperature is reduced, we expect that the spe-
cific heat undergoes a transition from the annealed value to
the quenched value.

In order to quantify the observation time dependence, we
introduce the degree of annealing defined by

where
PL| PLa

and qu(a)z ZA(MIZ,Zp(T). Here Z,(T) is the partition

function of basina at T. Note the jump rate in Eq4) must ~ C(T,t)—C(T,0
satisfy the detailed balance S(T.to) = C(T,»)—C(T,0)" (13
WapZo(T) =W Zo(T). (5) Note thatS(T,t,) =0 for the quenched system a&(T,t,)

=1 for the annealed system.
B. Quenched and annealed limits

The master equation Ed@4) can be solved readily by
using the eigenvectors and eigenvalues of a maltfjx(a,b)
element of which is given by To test the preceding formalism, we first apply it to a
two level system consisting of two levels B{=0 andE,
=¢. The probabilities that the system is in each level is

C. Schottky and Zeller—Pohl specific heats

W,, (whena#b),

W= assumed to obey the master equations
A7) > we, (whena=bh). C y a
¢ dP(1,t)
. ) ——=Wq,P(2,t) —wy,P(L1), (14
We denote eigenvectors and eigenvalues\bby {x;} and dt
\;, respectively, dP(2,t)
WXi:)\iXi . (7) dt :W21P(1,t)_W12P(2,t). (15)
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FIG. 1. Temperature dependence of the specific heat of a two level systefnlG. 2. The observation time dependence of the linear coefficient for the
for three observation timest,=1,10,100. For simplicity, we set=¢ in  Zeller—Pohl specific heat obtained by the present method.
this plot. (a) and(qg) denote the annealed and quenched cases.

shown by Zeller and Pofito depend linearly on tempera-
We assume a potential barrier between two levels of heighiyre. This temperature dependence has been explained on the
A above level 2 and set basis of the two level system as follotd.et n(e) denote
AkgT |y, = pe~ (A ellkeT the density of states of two levels with energy separation

Then the specific heat of the system is given by
wherev is the attempt frequency serving as the scale of time,

kg is the Boltzmann constant. Solving the master equations _ * €
(14) and (15) under the initial conditions CL=ks n(s) kBT

Wio,=ve

2 —elkgT

e
(1+ e—s/kBT)Z de

At sufficiently low temperatures one can assumeés)

(18)

P(1,0= q(l)_ e—e/keT’ =n(0) for &'s which contribute to the integral. Thus one
finds the linear temperature dependence
—elkgT
e B 2
- a
P(20)=P¢f2)= Tre et Ci= g N(O)KET
we find P(2,t), which determines the average energy as  ysing the observation-time dependent specific heat in
(E())=¢eP(21), Eq.(18), we find that the observation time dependence of the
low temperature specific heat is written as

P(2,t)=P(2,00+| P(1,0)—

1+e—£/kBT'
CL(T,t,)=Cy

) . - _J e+ 1)2
X[1—exp{—(1+e kT )e 4T pt}]. (16)

With use of the definition of the specific he@), we finally

_ —x)@—AlkgT
obtain Xexp{—(1+e *)e ~*8'Ht dx]|. (19
e \2 e elkel kT Figure 2 shows the observation time dependence of
Cto) =k KeT m[l—exp{—(lJre ) CL(T,tg)/C(T) where we assumed =¢ for simplicity of
calculation.
xe AkeTyt ). (17

Figure 1 shows the temperature dependence of the specifit. GLASS TRANSITION IN A MODEL
heat for several observation times. We can see that the spENERGY-LANDSCAPE
cific heat changes gradually from the quenched vaIueA Array of Einstein oscillators

C(T,0)=0 to the annealed one, i.e., the Schottky specific
heat We consider an energy-landscape in which basins form a

one-dimensional array. We also assume that the dynamics
e within a basin is described by a set of oscillators and the
(1+e ¢/keT)2’ density of states of basia is denoted a® ,(w). Then the
energy of basira is given by

2 elkgT

&

C(T,OC):kB kB_T

as the observation time is increased from Octo
An immediate application of the two level system is the

low temperature specific heat of glasses which has been al@)do. (20

T—f W
)= | Zcothg 5D
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FIG. 3. The specific heat of a model energy-landscape consisting of 5
Einstein oscillators. The solid curves repres@ptthe quenched systeig

=0 and(a) the annealed systety=cc. The dotted curves correspond(fo
vt,=10, (2) vt,=10% and(3) vt,=1CF. In this plot, we set\ =3f wg .

9—'IG. 4. Temperature dependence of the degree of annealing for three obser-
vation times shown by the dotted curves in Fig.(Br vt,=1C%, (2) t,
=10%, and(3) vt,=10F°.

. o B. Power law distribution
The probability distributionP(a,t) obeys the master equa- _ _ _ _ _
tion On the basis of the analysis of single particle dynamics

in the supercooled liquid, Odagaki has proposed a unified
view for the glass transition singularitiés!?In the trapping

dP(at P it ;
( ):Waa—lp(a_ L) + Wy 1P(a+ 1) diffusion model, it is concluded that the jump rate for a

dt single particle dynamics obeys a power law distributitr?
—(Wa_1atW P(at). 21 st+1({w\”
(Wa-1a+ Was 1) P(aL1) (21 _) ' (for D=wewg)
d(w)=3 Wo \Wp (23
We assume the jump rate from basito basinb is given by 0 (otherwise,
where the exponent parameter is related to the configura-
FA(T)—F4T) tional entropys.(T) as
Wa=vexp = —— — |, (22

B _ TSC(T) _Tgsc(Tg) (24)

P TgSe(Ty)

whereF 4(T) is the local free energy of basmandF(T)
=maxF4(T),Fu(T)}+A is the free energy of the transition
state. HereA is a positive constant introduced as an energy T-Ty4
barrier. As an example, we employed the density of state of P~ ﬁ*
the Einstein oscillator and assumed that the Einstein fre- _ )
quency of each basin is distributed uniformly betwagn ~ 2SSuming thal's(T)=T—T, with the Vogel-Fulcher tem-

and 3wg. We solved numerically the master equati@l)  PeratureTo~Ty. We consider the factore” */®7 in Eq.
for 50 basins with the periodic boundary condition under thel22) iS distributed according to E¢23) with exponent(25).
initial condition Figure 5 shows the temperature dependence of the spe-

cific heat for several observation times. We again observe a
Z4(T) transition compatible with the glass transition. As we show
SpZp(T)’ in Fig. 6, the transition is considered as one from the an-
nealed state to the quenched state.

In the actual calculation, we simplify this expression to

(25

P(a,0)=

whereZ(T) is the partition function of basia. The specific
heat is calculated from Eg3) for several observation times
Wh|ch_|s shown in Fig. 3. For a given obse_r\_/atlon time, thelv- SUMMARY AND DISCUSSION
specific heat shows a sharp drop at a critical temperature
with slight increase before the drop. This behavior of the In this paper we have presented a frame work for calcu-
specific heat is qualitatively the same as the system in whichation of the specific heat of systems described by the
all basins are mutually connect&d. energy-landscape picture. The essential point in this frame
Figure 4 shows the temperature dependence of the devork is in the assumption of separation of dynamics, one for
gree of annealing for several observation times. At the temthe fast dynamics within a basin of the landscape and the
perature where the specific heat decreases sharply, the degber for the slow dynamics between basins described by a
of annealing shows a transition from the annealed state to thetochastic model. This view has been supported by a recent
quenched state. computer simulatior® The dynamics within a basin can be
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' annealed average to the quenched average at the characteris-
tic temperature which can be considered as the explanation
for the glass transition.

The frame work was applied for a few model systems.
First we analyzed effect of the slow transition rate on the
specific heat of a two level system and obtained the obser-
vation time dependence of thelinear Zeller—Pohl specific
heat of glasses. We also studied the specific heat of a model
energy-landscape and showed that the specific heat behaves
consistently to observations for the glass transifiavhich
includes the slight increase of the specific heat just above the
transition. In particular, it is important to note that the power
law distribution of jump rates can explain the dynamic
] singularitie$'*? as well as the thermodynamic singularity
kel/ hoog and thus the energy-landscape picture gives a basis for the
FIG. 5. The specific heat of a system described by a model energy'—Jnncled concept for understanding .the glas_s ”‘?‘T‘S&fo”'.
landscape consisting of 50 Einstein oscillators with power law distribution. In the present paper, we consider a simplified setting of
In this plot, we sefly=0.1: wg /ks andTy=0.2k wg /kg . The solid curves ~ the temperature control. We can easily generalize the frame
represent() the quenched systemy=0 and(a) the annealed systety, ~ work for more realistic temperature control, which includes
=2. The dotted curves correspond(® wot,=1%%, (2) woto=10%, and3)  measurements along a cooling process or a heating process
wot,=10F. . . . . .

after quenching. Analysis in this line will be presented
elsewheré?

¢(T,ty)/Nkg
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becomes slower and slower as the temperature is reduced

and could exceed the observation time at a characteristispPENDIX: LIMITING BEHAVIOR

temperature. Above this characteristic temperature, the sys- It is self-evident that the second term on the right-hand
tem can survey many basins and the observed value of 84, ¢ Eq.(8) vanishes at=0 sinceA=E att=0. In the

physical quantity is given by the average over these basinﬁ,mit of t=c, all elements ofA vanishes except foky;
that is by the annealed average. Below the characteristic tem- 1 1,5

perature, the representative point in the phase space hardly .
moves out from the initial basin in the observation time and ~ P(*)=(X0,0,---)X"*P(0).

the observed value is determined by the basin, that is by thé/e can easily show that the first row ™! is (1,1,
qguenched average. Thus we can expect a transition from the- - -). Therefore, we have

P()=Xo,
since>,P(a,0)=1.
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