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A full-vectorial mode solver in terms of the transverse magnetic field components for optical waveguides
with transverse anisotropy is described by using the multidomain spectral collocation method based on
Chebyshev polynomials. The waveguide cross section surrounded by the perfectly matched layers is divided
into suitable number of homogeneous rectangles, and then connected with by imposing the continuities of
the longitudinal field components at the dielectric interfaces shared by the adjacent rectangles, resulting in a
generalized matrix eigenvalue problem. To validate the established method, results of an anisotropic square
waveguide and a magnetooptic rib waveguide are presented and compared with those from the full-
vectorial finite difference method, full-vectorial beam propagation method, and the experimental data.
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1. Introduction

Anisotropic optical waveguides like poling-induced polymer wave-
guides andmagnetoopticwaveguides have beenwidely applied to form
various kinds of integrated optical devices, including optical modula-
tors/switches, polarization converters/splitters, and optical isolators
[1,2], in photonic integrated circuits or planar lightwave circuits (PICs/
PLCs). An efficient and accurate full-vectorial mode solver is indispens-
able for the analysis and design of these devices. It is almost impossible,
however, to get the analytical solutions. Therefore, the use of numerical
(or approximate) analysis becomes necessary.

Vectorial coupled mode theory (V-CMT) [2,3] is often used to
analyze the magnetooptic waveguides. In V-CMT, the imaginary off-
diagonal terms of the relative permittivity tensor are treated by
perturbation theory, which is only valid for the waveguide structures
where the off-diagonal terms are small compared to the relative
permittivity of the corresponding isotropic waveguides [2,3]. Over the
years, more rigorously numerical techniques, e.g., finite difference (FD)
method [4–7], finite element (FE) method [8–13], and FD- [14,15] and
FE-based [16–20] beam propagation method (BPM), have been
proposed and successfully applied to analyze the guide modes or the
propagation characteristics of the anisotropic dielectric waveguides.
However, FD and FE method are often based on the low-order basis
functions, normally leading to large matrix.

Alternatively, the series expansionmethod, e.g., theGalerkinmethod
(GM) and spectral collocation method (SCM), expresses the unknown
fieldsbya complete set of orthogonal basis functions, resulting in a small
matrix. The authors have developed a full-vectorial mode solver for
optical waveguides with step-index profiles by using the GM with
variable transformation technique [21,22]. Although the order of the
resulted matrix is small compared to the FD and FE method, it is also
time-consuming since laborious integral procedure is required for
calculating the matrix elements. In SCM, the unknown fields are
imposed to be satisfied with the wave equation at a set of collocation
points so that the integral procedure is avoided. As a result, the
calculation is more efficient. So far, several kinds of SCM have been
proposed and successfully applied in studying the optical waveguide
problems. Sharma and Banerjee [23] applied the SCM with single
domain to analyze the guided modes and the propagation character-
istics of optical waveguides. However, for inhomogeneous waveguide
structures, the solutions show theGibbs phenomenon, resulting in poor
convergent behavior. To overcome this problem, Huang et al. [24–27]
applied the domain decomposition (DD) technique to the SCM, the so-
calledmultidomainSCM(MSCM), inwhich thewhole interest domain is
divided into several homogeneous subdomains, and then connected
with by imposing the continuities of the longitudinal field components
at thedielectric interfaces. The results [24–27] show that such treatment
greatly improves the numerical stability and accuracy. However, the
scaling factors of the Laguerre-Gauss basis functions used in the semi-
infinite subsomains, which strongly affect the computational accuracy,
should be carefully chosen.More recently, Chiang et al. [28,29] proposed
a more versatile MSCM, in which a curvilinear coordinate mapping
technique is used to transformeach curvilinearquadrilateral subdomain
into a square one. With the help of this technique, the MSCM can be
applied to solve the guided modes of the waveguide structures with
curved dielectric interfaces, e.g., circular optical fibers and fused fiber
couplers, and compute the band diagrams of the 2-D photonic crystals.
Although the MSCM has proved to be powerful and versatile, the

mailto:jbxiao@seu.edu.cn
http://dx.doi.org/10.1016/j.optcom.2010.03.057
http://www.sciencedirect.com/science/journal/00304018


2836 J. Xiao, X. Sun / Optics Communications 283 (2010) 2835–2840
recent reported studies only focus on the isotropic waveguide struc-
tures, in which the anisotropy of the constituent material is completely
neglected.

We here describe a full-vectorial mode solver for optical wave-
guides with transverse anisotropy by using the MSCM in terms of
transverse magnetic field components. To avoid the nonphysical
reflection from the computational window edges, the robust perfectly
matched layer (PML) absorbing boundary conditions [30] are
incorporated into the present method. Chebyshev polynomials are
chosen as the basis functions for each subdomain because of the
nonperiodicity of the waveguide structures [31]. Moreover, additional
efforts for choosing the optimum scaling factor as used in [24–26] are
avoided since only one kind of polynomials is utilized in our
formulation. In order to test the validity and utility of the established
method, an anisotropic square waveguide and a magnetooptic rib
waveguide are analyzed, and the results are comparedwith those from
the full-vectorial FDmethod, full-vectorial BPM, and the experimental
data.

2. Description of the method

Assuming monochromatic electromagnetic fields with angular
frequency ω propagating along the z-direction and using the complex
coordinate stretching technique [30], the curl Maxwell's equations
can be written as

j̃ × ⇀
E = −jωμ0

⇀
H ð1aÞ

j̃ × ⇀
H = jωε0 ε̂

⇀
E ð1bÞ

where ε0 and µ0 are the electric permittivity and the magnetic
permeability in free space, respectively, and the operator ∇̃ is defined
as

j̃→αx
∂
∂x x̂ + αy

∂
∂y ŷ + αz

∂
∂z ẑ ð2Þ

where αx, αy, and αz are the complex PML parameters. The parameter
αz is set to be unity since the fields are assumed to propagate along the
z-direction. The typical definitions of the other parameters can be
found in [30]. Here we consider the dielectric media with transverse
anisotropy, and the relative permittivity tensor ε̂ takes the form [1,2]

ε̂ =
εxx εxy 0
εyx εyy 0
0 0 εzz

2
4

3
5 ð3Þ

From Eqs. (1a) and (1b), a full-vectorial wave equation in terms of
magnetic fields can be derived as

j̃ × ε̂−1j̃ × ⇀
H

� �
−k20

⇀
H = 0 ð4Þ

where k0=2π/λ with λ being the wavelength in free space. In the
case of the optical waveguides with the uniform index profiles along
the z-direction, the guided mode solutions can be written as H

⇀
(x,y)

exp(−jβz) , where β=k0neff is the propagation constant and neff is the
effective index. Using the divergence relation∇̃ H

⇀
=0, from Eq. (4)

we derive the following coupled eigenvalue equation in terms of the
transverse field components Hx and Hy

Pxx Pxy
Pyx Pyy

� �
Hx
Hy

� �
= β2 Hx

Hy

� �
ð5Þ
with

PxxHx =
∂2Hx

∂ x̃2
+ εyy

∂
∂ ỹ

1
εzz

∂Hx

∂ ỹ

� �
+ εyx

∂
∂ ỹ

1
εzz

∂Hx

∂ x̃

� �
+ k20εyyHx ð6aÞ

PxyHy =
∂2Hy

∂ ỹ∂ x̃
−εyy

∂
∂ ỹ

1
εzz

∂Hy

∂ x̃

 !
−εyx

∂
∂ x̃

1
εzz

∂Hy

∂ x̃

 !
−k20εyxHy ð6bÞ

PyxHx =
∂2Hx

∂ x̃∂ ỹ
−εxx

∂
∂ x̃

1
εzz

∂Hx

∂ ỹ

� �
−εxy

∂
∂ ỹ

1
εzz

∂Hx

∂ ỹ

� �
−k20εxyHx ð6cÞ

PyyHy = εxx
∂
∂ x̃

1
εzz

∂Hy

∂ x̃

 !
+

∂2Hy

∂ ỹ2
+ εxy

∂
∂ x̃

1
εzz

∂Hy

∂ ỹ

 !
+ k20εxxHy ð6dÞ

where ∂/∂γ→̃αγ ∂/∂γ(γ=x,y). If the off-diagonal terms in Eq. (3) are
set to be zero and the diagonal terms are assumed to be identical, Eq.
(5) is reduced to that for the isotropic optical waveguides.

Considering the single domain with constant material parameters,
the unknown filed components Hx and Hy are expanded by a set of
cardinal basis functions based on the Chebyshev polynomials [31]

Hxðx; yÞ = ∑
K

k=1
Hk

xΘkðx; yÞ = ∑
Nx

p=0
∑
Ny

q=0
Hx xp; yq
� �

θpðxÞθqðyÞ ð7aÞ

Hyðx; yÞ = ∑
K

k=1
Hk

yΘkðx; yÞ = ∑
Nx

p=0
∑
Ny

q=0
Hy xp; yq
� �

θpðxÞθqðyÞ ð7bÞ

where Hx
k and Hy

k are the values of Hx and Hy, respectively, at the
collocation point (xp, yq), the so-called Chebyshev Gauss-Lobatto
point, Nx+1 and Ny+1 are the number of the collocation points in x-
and y-directions, respectively, K=(Nx+1)×(Ny+1) is the total
number of the collocation points, and θq(xp)=δp, q and θq(yp)=δp, q
where δp, q is the Kronecker delta. The integer quotient function div
and the remainder on division function mod are employed to relate k
to p and q as

p = ðk−1Þ div Ny + 1
� �

ð8aÞ

q = ðk−1Þmod Ny + 1
� �

: ð8bÞ

Substituting Eqs. (7a) and (7b) into to Eq. (5) together with Eq.
(6), and assuring that Hx and Hy are satisfied with Eq. (5) at each
collocation point, Eq. (5) is converted into a standard matrix
eigenvalue equation as below

Axx Axy

Ayx Ayy

� �
Hx
Hy

� �
= β2 Hx

Hy

� �
: ð9Þ

The elements of the relative permittivity tensor are constant so
that the submatrices Axx, Axy, Ayx, and Ayy can be derived as follows

Axx→Dxx +
εyy
εzz

Dyy +
εyx
εzz

Dyx + k20εyyI ð10aÞ

Axy→ 1−
εyy
εzz

� �
Dyx−

εyx
εzz

Dxx−k20εyxI ð10bÞ

Ayx→ 1− εxx
εzz

� �
Dxy−

εxy
εzz

Dyy−k20εxyI ð10cÞ

Ayy→
εxx
εzz

Dxx + Dyy +
εxy
εzz

Dxy + k20εxxI ð10dÞ



Fig. 2. Horizontal (a) and vertical (b) dielectric interface.
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with the matrix elements

Dxx
k′ ;k = αxðxp′ ; yq′ Þ αðxÞ

x ðxp′ ; yq′ ÞθðxÞp ðxp′ Þ + αxðxp′ ; yq′ ÞθðxxÞp ðxp′ Þ
h i

δq′ ;q

ð11aÞ

Dyy
k′ ;k = αyðxp′ ; yq′ Þ αðyÞ

y ðxp′ ; yq′ ÞθðyÞq ðyq′ Þ + αyðxp′ ; yq′ ÞθðyyÞq ðyq′ Þ
h i

δp′ ;p

ð11bÞ

Dxy
k′ ;k = αxðxp′ ; yq′ Þαyðxp′ ; yq′ ÞθðxÞp ðxp′ ÞθðyÞq ðyq′ Þ ð11cÞ

Dyx
k′ ;k = Dxy

k′ ;k ð11dÞ

where I denotes a identity matrix, the superscripts (γ) and (γγ)
represent the first and second derivatives, respectively, with
respective to γ (γ=x, y), and k′ is related to p′ and q′ using Eqs.
(8a) and (8b).

Now the DD technique is applied to deal with the inhomogeneous
waveguide structures for improving the numerical accuracy and
stability. The waveguide structures is surrounded by the PMLs, and
then divided into suitable number of subdomains with constant
material parameters, as shown in Fig. 1. By assembling all the
subdomains, we have

A1 0 0 0
0 A2 0 0
0 0 ⋱ 0
0 0 0 As

2
664

3
775

H1

H2

⋮
Hs

2
664

3
775= β2

H1

H2

⋮
Hs

2
664

3
775 ð12Þ

where Ai and Hi =
Hi

x

Hi
y

" #
ði = 1;2; ⋯; sÞrepresent the matrix from

Eq. (9) and the values of Hx and Hy at the collocation points of the ith
subdomain, respectively, and s stands for the total number of the
subdomains.

It is noted that the collocation points at the dielectric interfaces are
shared by the adjacent subdomains. Instead of Eq. (5), these points are
replaced by satisfying the continuity conditions of the longitudinal
field components Ez and Hz. From ∇̃ H

⇀
=0, Hz can be expressed in

terms of the transverse field components Hx and Hy as

Hz = − j
β

∂Hx

∂ x̃
+

∂Hy

∂ ỹ

 !
ð13aÞ
Fig. 1. Cross section of an anisotropic square waveguide surrounded by the PMLs.
and from Eq. (1b), Ez is expressed by

Ez = − j
k0εzz

ffiffiffiffiffi
μ0
ε0

r ∂Hy

∂ x̃
−∂Hx

∂ ỹ

 !
ð13bÞ

Considering the horizontal interfaces as show in Fig. 2(a), the
continuity of Ez gives

εy
þ

zz
∂Hx

∂ ỹ j
y−
−εy

−

zz
∂Hx

∂ỹ j
yþ

= εy
þ

zz −εy
−

zz

� � ∂Hy

∂ x̃
ð14aÞ

and the continuity of Hz yields

∂Hy

∂ ỹ j
yþ

=
∂Hy

∂ ỹ j
y−

ð14bÞ

where y+ and y− denote the locations at the infinitesimally upper and
lower side of the horizontal interface, respectively. Similarly, for a
vertical interface as show in Fig. 2(b), we have

εx
þ

zz
∂Hy

∂ x̃ j
x−
−εx

−

zz
∂Hy

∂ x̃ j
xþ

= εx
þ

zz −εx
−

zz

� �∂Hx

∂ ỹ
ð14cÞ

and

∂Hx

∂ x̃ j
xþ

=
∂Hx

∂ x̃ j
x−

ð14dÞ

where x+ and x− denote the locations at the infinitesimally right and
left of the vertical interface, respectively. After all the collocation
points at the horizontal and vertical dielectric interfaces are replaced
by satisfying the above continuity conditions, Eq. (12) becomes a
generalized matrix eigenvalue equation. MATLAB subroutines are
employed to solve the finally resulting equation, in which the
eigenvectors are related to the modal field distributions, while the
corresponding eigenvalues are related to the propagation constants.

3. Numerical results

The validation of the present method is first performed for the
anisotropic square waveguide with high index contrast between the
core and cladding. The waveguide cross section is surrounded by the
PMLs and then divided into nine homogeneous rectangles, as shown
in Fig.1. The cladding is set to be isotropic with the index ns=1.0 (air),
whereas the core is set to be anisotropic, a poling-induced polymer.



Fig. 3. Effective indices neff of the two lowest order modes for an anisotropic square
waveguide as a function of the degree of the Chebyshev polynomials Nx (=Ny).
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For the sake of simplicity, the core is assumed to be homogeneously
poled at an angle θ=45° with respect to the x-axis so that the relative
permittivity tensor can be expressed by [1,32,33]

ε̂f =

n2
e cos

2θ + n2
o sin

2
θ ðn2

e−n2
oÞ cosθ sinθ 0

ðn2
e−n2

oÞ cosθ sinθ n2
e sin

2
θ + n2

o cos
2
θ 0

0 0 n2
o

2
6664

3
7775 ð15Þ

where ne = nf + 2
3Δn, no = nf− 1

3Δn, nf=1.65 is the index of the
core prior to poling, andΔn is birefringence of the core. Thewidth (the
height) of the core d is taken as 0.6 µm (operation at single-mode
condition prior to poling). The computational window is set to be
4.0×4.0 µm with thickness of the PMLs ρ=1.0 µm and the operating
wavelength λ is assumed to be 1.30 µm.

To investigate the convergent behavior of the present method, the
effective indices neff of the two lowest order modes for the anisotropic
square waveguide with Δn=0.015 as a function of the degree of the
Chebyshev polynomial Nx (=Ny) for each subdomain is illustrated in
Fig. 3. It can be seen that the results for both modes approach to the
convergent solutions with the increasing of the number of the basis
function Nx (=Ny). The convergent solutions can be obtained when
Nx=Ny=15 is chosen, and the results for both modes almost keep
constant for further increasing the number of the basis functions. Fig. 4
presents the variation of the effective indices neff and their difference
Δneff of the two lowest order modes for the anisotropic square
Fig. 4. Variation of the effective indices neff and their difference Δneff of the two lowest
order modes for an anisotropic square waveguide with the core birefringence Δn.
waveguide with the core birefringence Δn, where Nx=Ny=20. It
can be observed that the effective indices of the first mode linearly
increase with the increasing of the core birefringence, whereas the
results of the second mode show the opposite behavior. It is also seen
that as the core birefringence is increased, the modal birefringence
linearly increases as expected. In order to examine the accuracy of the
presentmethod, results from the full-vectorial FDM [6] are also plotted
in Fig. 4. Our results are good agreement with those from the FDM.
However, to obtain the results from this FDM, the number of
unknowns is up to 320,000 (the mesh size is Δx=Δy=0.01 µm),
whilst the corresponding number of the present method is 2 s(Nx+1)
(Ny+1)=7938. A HP personal computer with 2.0 GHz CPU speed and
2.0 GB memory size is used to execute our program, and the required
CPU time for the present method is nearly 4 times less than that of the
FD method. Apparently, the present method is more efficient. Fig. 5
shows the field patterns of the two lowest order modes for an
anisotropic square waveguide with Δn=0.015. It is found that the
transverse magnetic field components Hx and Hy for both modes have
the amplitudes of the same order. Hence, either scalar or semi-
vectorial analysis is inadequate for such waveguide structure since
neither of the two transverse components is negligible.

The present method is also applied to compute the eigenmodes of
a magnetooptic rib waveguide as shown in Fig. 6. The waveguide is
enclosed by the PMLs and then divided into fifteen subdomains. The
waveguide is made of two layers of bismuth yttrium iron garnet (Bi:
YIG) with thickness t1+h=3.6 µm and t2=3.4 µm, respectively,
grown on a gadolinium gallium garnet (GGG) substrate. The width
and height of the rib are, respectively, taken as w=8.0 µm and
h=0.5 µm. When the magnetization is aligned along the z-axis, the
relative permittivity tensor of Bi:YIG is given by [2,3]

ε̂i =

εixx jδ 0

−jδ εiyy 0

0 0 εizz

2
6664

3
7775 i = 1;2 ð16Þ

where εxxi , εyyi , and εzzi are the permittivity tensor terms in the x, y, and
z direction, respectively, and δ stands for the first-order magnetooptic
effect, which is related to the Faraday rotation angle ΘF through the
refractive index of the magnetooptic medium n by

δ =
nλΘF

π
ð17Þ

The introduced magnetooptic effect described by Eq. (16) gives
rise to TE-TMmode coupling and thus to mode conversion, which has
been applied to form an efficient optical isolator [34]. To get the
complete polarization rotation, the effective indices of the funda-
mental TE- and TM-like modes supported by the unperturbed
waveguide (δ=0) should be identical [3]. With proper device design
[34], the stress birefringence caused by the lattice mismatch between
the Bi:YIG layers and the GGG substrateΔs can be compensated by the
geometric birefringence Δg so that the phase matching condition is
realized. According to [34], Δg is set to be 2.2×10−4, and the relative
permittivity tensor elements of the Bi:YIG layers are modified
as εxx1 =εzz1 =(2.19−Δg)2,εyy1 =(2.19)2, εxx2 =εzz2 =(2.18−Δg)2, and
εyy2 =(2.18)2, with the off-diagonal terms computed assuming
ΘF=133°/cm. The computational window is set to be 40×11 µm
with thickness of the PML ρ=1.0 µm. The wavelength is assumed to
be 1.485 µm and the number of the basis functionsNx (=Ny) is chosen
as 20 for obtaining the convergent solutions.

If the structure is excited with the major component of the
fundamental TE-like mode supported by the unperturbed waveguide,
mode conversion along the z-axis will occur because of the off-
diagonal elements of the relative permittivity tensor. And the TE-like



Fig. 5. Field patterns of the eigenmodes for an anisotropic rectangular dielectric waveguide: (a) Hx and (b) Hy for the first mode; (c) Hx and (d) Hy for the second mode.
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mode will be converted into TM-like mode after the excited mode
propagates a length, the so-called conversion length Lc defined as

Lc =
λ

2 neff1−neff2ð Þ ð18Þ

where neff1 and neff2 are the effective indices of the first and second
modes of the magnetooptic rib waveguide, respectively. The results
computed by the present method are neff1=2.18413227 and
neff2=2.18402319, respectively, thus the conversion length is
Lc=6807 µm, which accords well with the experimental data in
Fig. 6. Cross section of a magnetooptic rib waveguide surrounded by the PMLs.
[34]. The same structure has also been analyzed by using full-vectorial
FD- [15] and FE-BPM [16,18,20], and the results in Refs. [15], [16], [18],
and [20] are Lc=6800, 6800, 6780, and 6700 µm, respectively. Our
results are also in good agreement with these ones. The values of the
transverse magnetic field components Hx and Hy for both modes are
complex with nearly equal modulus, but out of phase by±π/2 so that
themodes are circularly polarized. In order to better illustrate this, Fig. 7
presents the field patterns of the combinations of the transverse
magnetic field components H� = Hx � jHy

	 

=
ffiffiffi
2

p
of two lowest order

modes for the magnetooptic rib waveguide. It is found that the ratio
between the amplitudes ofH+andH− for thefirstmode thatH− andH+

for the second mode is over 30, which indicates that the first and
second modes are primarily left- and right-hand circularly polarized,
respectively.

4. Conclusion

We have developed a full-vectorial mode solver for optical
waveguides with transverse anisotropy by using the multidomain
spectral collocation method based upon the Chebyshev polynomials.
The PML absorption boundary conditions via the complex coordinate
stretching technique are incorporated into the present method. The
numerical results for an anisotropic square waveguide and a mag-
netooptic rib waveguide indicate that the established method show
superior convergent behavior to the FD method, with high efficiency
and accuracy. We here only consider the waveguide structures where
the dielectric interfaces are parallel (or perpendicular) with the x- and
y-axes. By introducing the curvilinear coordinate mapping technique,



Fig. 7. Field patterns of the combinations of the eigenmodes for a magnetooptic rib waveguide: (a) H+ and (b) H− for the first mode; (c) H+ and (d) H− for the second mode.
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the present method can also be applied to analyze the waveguide
structures with curved dielectric interfaces. Moreover, the present
method is also attractive to be applied to the full-vectorial BPM in
studying the propagation characteristics of the anisotropic dielectric
waveguides. Such considerations will be performed in our future
work.
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